
Thoughts on Client
Systems Security

Joanna Rutkowska
Invisible Things Lab

SSTIC 2011, Rennes, France, June 2011

Why client systems security is
important?

If your client device (laptop, tablet, phone) is compromised...

... all the security is lost!

Client systems are your eyes and fingertips

The client OS can see
what you see on the
screen (decrypted)

The client OS
can pretend to

be you

Approaches to building secure
(client) systems

Security by Isolation:
Goals

App1 App2?

Isolation between two apps...

App1 App2

Isolation between two apps...

App1 App2

TCB (OS)

Isolation between two apps and the OS...

GUI-level isolation

Lack of GUI isolation on many Windowing Systems...

App1 App2

Sniff keystrokes

Take screenshots

Inject keystrokes

Fat GUI APIs that are likely to be buggy (and exploitable)

GUI API (Xlib, OpenGL, ...)

App1 App2

GPU

Work email Tetris

Bank
Browser

Personal
Browser

We don't want two apps to be able to interact with each other
via X/OpenGL/GPU!

(Xorg people still don't get it, after 20+ years...)

Anyway...

Let's imagine we implemented strong isolation...

We still must allow the user to bypass it sometimes!

Data flows between domains

Clipboard File sharing

Down-transfers vs. Up-transfers

App1

App2

Tr
us

t l
ev

el

"Up Transfer"

App1

App2

Tr
us

t l
ev

el

"Down Transfer"

"Traditional" school of thought:

Never allow down-transfers!

Even between two cooperating domains!

Rationale: never allow to move more sensitive data (e.g.
Embassy cables) to less trusted domain (e.g. The Internet)

App1 App2
MalwareMalware

Data

OS should never allow for this flow!

This requires elimination/drastic reduction of all potential
cooperative covert channels between the apps/domains!

I seriously doubt this is possible on modern x86 hardware...

Covert channels via CPU cache
Covert channels via GUI/GPU
Covert channels via networking
Covert channels via other subsystems
?

"Qubes" school of thought:

Avoid up-transfers!

Rationale: an up-transfer can potentially compromise a buggy
app in the destination domains (untrusted input processing)

Work domain

Compromised
app/domain

Malformed JPEG

Buggy JPEG
parser

Some up-transfers are difficult to avoid...

Copying a link found on the Internet, and emailing it to a
colleague at work

Copying a cool cartoon found on the Internet into work
confidential report/presentation

Solution: use trusted converters, e.g. for all JPEGs?

Another types of problems related to file sharing is
FS Metadata parsing

Machine 1 Machine 2

Two air-gapped systems

Machine 1 Machine 2

Two air-gapped systems

Copying data
using USB stick

Machine 1 Machine 2

Two air-gapped systems

The sticks partition table
turned out to be malformed...

Exploit

In Qubes we copy files between domains using shared
memory and simple cpio-like tool (this cpio-like tool is the

security critical code)

Limitations of Security by Isolation approach

Security by Isolation doesn't protect your apps from being
compromised!

Work email
Random

Web
browsing

Mail server

Work email
Random

Web
browsing

Exploiting hypothetical
bug in my email client's

OpenSSL

Mail server

Work email
Random

Web
browsing

Exploiting hypothetical
bug in my email client's

OpenSSL
MTIM

My recent adventure in a hotel in Paris ;)

Solution: decompose the app! (More security by isolation!)

Email
parsingGPG OpenSSL

handling

Capsicum is working on such app-level decompositions
(will definitely use in Qubes when ready)

Another approach: safe languages

(so, where can I get thunderbird-like app written in C#?)

Security by Isolation:
Useful technologies

Technologies for address space isolation

MMU Virtualization
(VT-x/AMD-v, EPT/NPT)

MMU VT-x/EPT

User mode (ring 3) Guest mode (non-root)

Kernel mode (ring 0) Hypervisor (root mode)

Page Tables Extended Page Tables (EPT)

Exceptions (#GP, #PF, ...) VM exits

Analogies

MMU VT-x/EPT

User mode and kernel mode often
share the same address space
(e.g. 3/1GB split on 32bit Linux)

Guest and the hypervisor never
share the same address space

SIPI interrupts kernel execution SIPI is blocked in VMX

Differences

SMEP somehow
eliminates this

difference

Interrupt
Remapping makes this

irrelevant anyway

So, why bother using virtualization?

Why not just use the good old MMU for address space
isolation?

For compatibility with OSes that are not para-virtualizable

Windows Mac OSX

Linux is PV aware and we can
virtualize it using MMU under Xen
(Run it as ring3, no need for VT-x)

But why would we want to virtualize the OS in the first place?

A virtualized buggy, messy OS
is still... a buggy, messy OS!

Because we want to use the OS as an API provider!

App1 App2

TCB (OS)

App3

USB stacks

Networking
stacks

File systems

GUI

Everything and
the kitchen sink!

AP
I (

e.
g.

 P
O

SI
X)

AP
I (

e.
g.

 P
O

SI
X)

AP
I (

e.
g.

 P
O

SI
X)

App1 App2

TCB (microkernel/hypervisor)

App3
Networking
Drivers &

stacks

Storage
drivers and
backends

(block,
pvusb)

Backend Backends

GUI

Backend

But those (legacy)
apps expect a POSIX API,
they don't know how to talk

to the backends
Untrusted

subsystems

CPU scheduling, MMU
& IOMMU only

So we must virtualize the whole OS to provide API for legacy
apps...

App1

TCB (microkernel/hypervisor)

Networking
Drivers &

stacks

Storage
drivers and
backends

(block,
pvusb)

Backend Backends

GUI

Backend

Untrusted
subsystems

App2
App3

Domain 1 Domain 2

Apps see
POSIX APIs

FrontendsFrontends

NICs SATA, USB GPU,
keyboard

But it is not like virtualization (VT-x) provides stronger security
than MMU!

IOMMU (VT-d)

IOMMU allows to sandbox drivers and devices, so plays a key
role in TCB disaggregation...

App1

TCB (microkernel/hypervisor)

Networking
Drivers &

stacks

Storage
drivers and
backends

(block,
pvusb)

Backend Backends

GUI

Backend

Untrusted
subsystems

App2
App3

Domain 1 Domain 2

FrontendsFrontends

NICs SATA, USB GPU,
keyboard

IOMMU/VT-d

IOMMU: catches

For safe language-based OSes (e.g. Singularity and
derivatives) IOMMU is needed to restrict devices to accesses

to their DMA buffers only to preserve memory safety

Catches:

MSI attacks
BDF Spoofing
Reflashing device firmware?

Interrupt Remapping
(see our latest paper on VT-d escapes)

PCIe ACS

DMA-resistant
trusted boot

We really need more trusted trusted boots!
(subject for another presentation)

No secure client systems without IOMMU and trusted boot!

Security by Isolation:
Challenges

How to partition my digital life into security domains?

Do we actually need domains? Perhaps we can just isolate
each app from each other app?

We need OSes to provide
legacy APIs to apps

Would be a waste of
memory to have one

instance of an OS per
each app...

But even if we did isolate (virtualize?) on a per app granularity,
still the problem of partitioning doesn't go away...

Mail

Mail
Personal

Mail
Work

Unless we get 100% safe languages we would not avoid
security by isolation...

Other challenges

GPU multiplexing

USB multiplexing

I'd love to discuss that last two problems!

Qubes OS implements lots of ideas mentioned here

Qubes is not a microkernel....

... It's everything else!

Qubes-OS.org

Thanks!

