Abusing Client-Side Desync on Werkzeug to
perform XSS on default configurations

Kévin GERVOT (Mizu)

kevin.mizu@protonmail.com

Abstract. Werkzeug is a python Web Server Gateway Interface (WSGI)
library for website development. It provides a simple way to set up an
operational HTTP server for developers and is mostly present in Flask in
development mode.

This article highlight an interesting Client-Side Desync attack
(CVE-2022-29361 [11]) which can be used to perform Cross-Site Scripting
(XSS) attack on Werkzeug. The full attack leverages 2 vulnerabilities, an
HTTP request smuggling and an open redirect vulnerability present on
the Werkzeug core. After performing these chained attacks, a malicious
JavaScript file will be cached in the victim’s browser, allowing to trigger
XSS on every page of the website.

Introduction

Werkzeug is a python Web Server Gateway Interface (WSGI) [10]
library for website development. It provides a simple way to set up an
operational HTTP server for developers and is mostly present in Flask [15]
in development mode. In latest versions, Werkzeug use python [16] library
to handle most parts of the HT'TP protocol.

In this paper, we will deep dive into an interesting case of Client-Side
Desync (CVE-2022-29361 [11]) on Werkzeug versions 2.1.0 to 2.1.1
(included). Using this vulnerability on a vulnerable host could lead to a
full account takeover exploit via XSS.

1 Setting up a vulnerable environment

All information about setting up a vulnerable environment can be
found on the following github repository:
https://github.com/kevin-mizu/Werkzeug-CVE-2022-29361-PoC

2 HTTP request parsing error in Werkzeug

2.1 Finding the vulnerable commit

As Werkzeug is a development Web Server Gateway Interface (WSGI),
Pallets Projects [3] frequently updates the code of the Werkzeug core to

https://github.com/kevin-mizu/Werkzeug-CVE-2022-29361-PoC

2 Abusing Client-Side Desync on Werkzeug

facilitate its usage. Among the changes, the commit 4795b9a7 (released
in january 2022) aims to enable HTTP/1.1 when server has multiple
workers. This commit is special as it forces Werkzeug to use keep-alive
connections when threaded or processes options are enabled. At first
sight, this modification isn’t an issue, but still creates new possible attack
vectors on Werkzeug.

This commit was merged into Werkzeug production branch in commit
9a3a981d70d2e9ec3344b5192f86fcaf3210cd85 [19] and later available
in release 2.1.0. After this commit, issues #2380 [9] and #4507 [17]
involving bugs in the query handler were opened.

2.2 Understanding the issue

In impacted versions, when performing a POST request with parameters
that aren’t properly handled in the Flask application, it will break the
next HTTP request. From the developer’s point of view, this was more
annoying than dangerous and was not interpreted as a security issue. But
is it really not a security issue?

(sstic) [19:10] /sstic$ python app.py
127.0.0.1 - - [30/Mar/2023 19:11:56] "POST / HTTP/1.1" 200 -

127.0.0.1 - - [30/Mar/2023 19:11:56] "

Fig.1. 2.1.0 < Werkzeug < 2.1.1 improper handling of POST parameters [19].

As we can see on figure 1, it is possible to control arbitrary bytes in the
next request from the body of a POST request. As explained in the issue
#2546 [6], this behavior comes from python http.server [16] module
which doesn’t properly handle keep-alive connections. Therefore, when
not handled in the Flask application, POST parameters are left in the
connection queue and are still usable at the beginning of the next request.
Moreover, all queries made to the server are sent over the same connection
(ID) that is used for local ressources access which gives an interesting
context to perform Client-Side Desync attacks, as seen in figure 2.

Name A Status Type Size Connection ID
[El localhost 200 document 196 B 227387
main.js 304 script 241 B 227387

Fig. 2. Same connection ID is used for multiple ressources access.

K. Gervot 3

3 Client-Side Desync to the rescue

3.1 What are Client-Side Desync attacks?

Client-Side Desync attacks are a subset of request smuggling attacks,
which occur between the browser and the web server without proxy.
This vulnerability is made possible when a web server doesn’t properly
handle the request’s body during keep-alive connections. James Kettle
(@albinowax) published an excellent article on the subject last summer
which describe them in very specific details [7].

Let’s deep dive into a step-by-step example of a Client-Side Desync:

Client Requests Connection Queue Server Responses
POST /register HTTP/1.1 HTTP/1.1 200 OK
Host: localhost Content-Type: text/html

Cookie: session=1337 ﬁ POST /register HTTP/1.1 ﬁ Content-Length: 26
Host: localhost

Content-Length: 40 . X
N . Cookie: session=1337
Connection: keep-alive
Content-Length: 40

Connection: keep-alive

The current page is /login

GET /404 HTTP/1.1
X-Header: X

GET /404 HTTP/1.1

¥ .] HTTP/1.1 200 OK
GET /login HTTP/1.1 X-Header: XGET /login HTTP/1.1 Content-Type: text/html

Host: localhost Host: localhost
. ﬁ Cookie: session=1337 q Content-Length: 24

Cookie: session=1337

The current page is /404

Fig. 3. Incorrect server-side parsing leads to Client-Side Desync.

In the figure 3, the client sends a POST request in keep-alive mode
which contains the beginning of another GET request in the body. If the
web server is vulnerable, it will not process the request body and leave it
in the connection queue. Then, when the browser sends another request,
it will read the previous POST request body and the newly received GET
request. Thus, the client will expect to receive the content of /login, but
instead the web server will answer with /404.

3.2 Where do they occur?

Client-Side Desync mainly occurs on endpoints that don’t require data
to be sent. As an example, a static image file or a server side redirection
endpoint may be good candidates as they usually don’t require user to
provide information.

https://twitter.com/albinowax

4 Abusing Client-Side Desync on Werkzeug

3.3 How to abuse them?

With this kind of vulnerabilities, real problems happened when it is
possible to perform cross-site attacks and keep the user’s session thanks to
CORS [1] or cookie missconfiguration [5]. Under this particular conditions
and depending on the website features, it might be possible to abuse them
to leak the Cookie header of the second query. A good example of this
attack can be found on PortSwigger Academy [14].

4 Exploit Chain

In section 2, we exposed a request smuggling vulnerability in Werkzeug
2.1.0 to 2.1.1, without exposing any security risk. In section 3, we
learned what Client-Side Desync are and how to use them. A notable
difference in the Werkzeug context is its connection management. In fact,
in vulnerable versions, it will keep the same connection ID for each query,
this is really interesting as it allows to potentially desync a request to a
ressource initiated by the browser.

Therefore, if the first ressource is a script file, it might be possible to
control its content thanks to the Client-Side Desync vulnerability. As the
vulnerable application hasn’t any file upload feature, it is not possible
to control a file on the server. It is necessary to find an open redirect
vulnerability inside the Werkzeug core, to use it to change the script file
location.

Client Requests Connection Queue Server Responses
POST /HTTP/1.1 HTTP/1.1 200 OK
Host: localhost Content-Type: text/html
Cookie: session=1337 POST/HTTP/11 Content-Length: 42

: Host: localhost
Content-Length: 40 [Cookie: ion=1337 —
Connection: keep-alive OoKie: session= <script src="/static/js/main.js'></script>
Content-Length: 40

GET /22227 HTTP/1.1 Connection: keep-alive
X-Header: X

cader GET /22222 HTTP/1.1 glzr‘]:i?éf:ggg

— — X-Header: XGET /static/js/main.js HTTP/1.1 3 -

GET /static/js/main.js HTTP/1.1 Host: localhost !) Content-Type: text/html
Host:.localh(.)st —> || Cookie: session=1337 —p| Location: https://mizu.re/
Cookie: session=1337

Fig. 4. Abuse open redirect to change script location.

K. Gervot 5

5 Finding an open redirect

5.1 Old reported vulnerabilities

Werkzeug is a development WSGI which makes it more focused on
usability than security. Therefore, it is important to take a look to newly
added features or old vulnerability fixes and reports. Among them, an
8 years old open redirect inside Werkzeug core reported on #822 [18]
(CVE-2020-28724 [8]) is a good start to go. This vulnerability was firstly
reported on Flask repository and occured when using an URL path that
starts by 2 slashes. When trying to access it with a double slash path we
successfully get redirected to the remote ressource.

Request Response
Raw Hex B \n = Pretty Raw Hex
1[GET //mizu.re HTTP/1.1 | 1[HTTP/1.1 308 PERMANENT REDIRECT|
2 Host: localhost 2 Date: Sat, 21 Jan 2023 18:31:25 GMT
3 Connection: close 3 Content-Type: text/html; charset=utf-8
4 4 Content-lLength: 224
5 5| Location: //mizu.re |

5

Fig. 5. Open redirect on Werkzeug < 0.11.6.

5.2 Understanding the fix

The Werkzeug project has fixed this vulnerability in the commit
556bdcb13516617335c10efdedf3c1bd50b31b6d [13]. They ensure that
the scheme in the url_parse output is not empty with a valid netloc.
This is a good way to fix it has there is impossible to create an URL with
those conditions on the browser side. This would be like trying to go to
https://domain.comhttps://mizu.re which makes no sense.

class WSGIRequestHandler (BaseHTTPRequestHandler) :
...
if request_url.scheme and request_url.netloc:

environ['HTTP_HOST'] = request_url.netloc

Fig. 6. Werkzeug commit 556bdcb13516617335c10efdedf3c1bd50b31b6d [13].

6 Abusing Client-Side Desync on Werkzeug

5.3 Bypassing the fix

Even if the fix prevents the abuse of the open redirect in normal
browser’s usage, the redirection will still be present. Indeed, as we have a
Client-Side Desync in Werkzeug, and this kind of attacks allows to control
arbitrary bytes of the next request, it is possible to abuse it to recreate
the open redirect payload from a malicious HTTP request.

In addition, it is important to notice that the redirect isn’t a simple
302 redirect, but a 308 permanent redirect. This type of redirect will force
the browser to cache the actual location of the ressource for further usage.
Therefore, successfully achieving the full chain exploit would poison the
location of the script for each loading page, even if the victim user doesn’t
trigger the attack again.

6 Wrapping up everything
6.1 Creating the client-side exploit

To create the client-side exploit, we need to find a way to send the pay-
load cross-site with one request which will change the first resource location.
The necessary condition for this exploit is that the connection of the mali-
cious request must be in keep-alive mode. If this condition is not met,
the connection will immediately be closed and no exploit would be possible.
Therefore, the best way to achieve our exploit will be to use a <form> with
method="P0OST" using target="http://vulnerable-website/". As we
want to control the first bytes of the next query, we will need to use space
and line return (CR.LF). In order to wrap this kind of payload into a
<form> POST data, we need to insert it inside the attribute name value.

<form action="http://vulnerable-website/" method="POST">
<textarea name="GET http://rogue-web-server HTTP/1.1
Foo: x">Mizu</textarea>

</form> <script> x.submit() </script>

v Form Data view source view decoded

GET+http%3A%2F%2Frogue-web-server%3A5000+HTTP%2F1.1%0D%0AF00%3A+xX: Mizu

Fig. 7. Simple form with Client-Side Desync payload. URL encoded body content,
the payload is invalid.

K. Gervot 7

Unfortunately, by default, requests made by the HTML <form> use
application/x-www-form-urlencoded MIME Type [4] which break the
payload. This could look like a dead cause, but reading the MDN docu-
mentation [12] about <form> tag and interesting attributes can be found.
To change the previous request MIME Type to text/plain, the enctype
attribute [2] can be used in the HTML <form> tag.

v Request Payload

GET http://rogue-web-server:5000 HTTP/1.1

Foo: x=Mizu

Fig. 8. Simple form with Client-Side Desync payload using text/plain encoding.

6.2 Prepare the rogue web server

To perform this exploit chain, it is necessary to setup a rogue
server which will have one route that return the malicious JavaScript
content and another that deliver the exploit payload to the victim.
To do so, PoC can be found on the following github repository:
https://github.com/kevin-mizu/Werkzeug-CVE-2022-29361-PoC

6.3 Perform the final exploit chain

Finally, sending the exploit URL to the victim will perform everything
described earlier and execute the XSS. In addition, each time a new page
is opened containing the same script file, the XSS will be triggered. This
leads to a full compromise of the website thanks to the cached malicious
javascript file in the user’s browser. A complete video of the exploit can
be found here: https://www.youtube.com/watch?v=HIWafpbMcbA

Conclusion

We have demonstrated an efficient Client-Side Desync attack on
Werkzeug WSGI. This attack allows to perform XSS on a vulnerable
instance without any requirements. Moreover, even if the challenge was
to find an exploit with no requirements, this full chain attack could be
performed in a much more easier way if other vulnerabilities are already
present in the web application.

While this paper only focus on vulnerability research on Werkzeug
which is only used in development server, it would be interesting to conduct
the same research on production WSGI.

https://github.com/kevin-mizu/Werkzeug-CVE-2022-29361-PoC
https://www.youtube.com/watch?v=HJWafpbMcbA

Abusing Client-Side Desync on Werkzeug

Acknowledgements

I would like to thank Remi GASCOU (@podalirius_) for helping me

on vulnerability report stages and reviewing this paper.

References

. Cors access control allow origin. https://developer.mozilla.org/en-US/docs/

Web/HTTP/Headers/Access-Control-Allow-Origin.

enctype form attribute. https://developer.mozilla.org/en-US/docs/Web/API/
HTMLFormElement/enctype.

Pallets projects. https://github.com/pallets.

4. Post requests mime-types. https://developer.mozilla.org/en-US/docs/Web/

10.

11.

12.
13.

14.

15.
16.

17.

18.

19.

HTTP/Methods/POST.

Samesite cookie attribute. https://developer.mozilla.org/en-US/docs/Web/
HTTP/Headers/Set-Cookie/SameSite.

. abergmann. Issue 2546: Http request smuggling inside the development server.

https://github.com/pallets/werkzeug/issues/2546.

James Kettle (Qalbinowax). Browser-powered desync attacks: A new frontier in
http request smuggling. https://portswigger.net/research/browser-powered-
desync-attacks.

Ramin Frajpour Cami. Werkzeug open redirect cve-2020-28724. https://nvd.
nist.gov/vuln/detail/CVE-2020-28724.

ImreC. Issue 2380: Http request smuggling inside the development server. https:
//github.com/pallets/werkzeug/issues/2380.

Web Server Gateway Interface. What is wsgi? https://wsgi.readthedocs.io/
en/latest/what.html.

Kevin GERVOT (Mizu). Werkzeug request smuggling cve-2022-29361. https:
//nvd.nist.gov/vuln/detail/cve-2022-29361.

Mozilla. Developer network docs. https://developer.mozilla.org/en-US/.

PalletsTeam. Werkzeug 0.11.6 open redirect fix. https://github.com/pallets/
werkzeug/commit/556bdcb13516617335c10efdedf3c1bd50b31b6d.

PortSwigger. Lab: Client-side desync. https://portswigger.net/web-security/
request-smuggling/browser/client-side-desync/lab-client-side-desync.
Pallets Projects. Flask. https://flask.palletsprojects.com/.

Python. http.server - http servers. https://docs.python.org/3/library/http.
server.html.

tangbinyeer. Issue 4507: Flask 2.1.0 can’t handle request method properly when
sending post repeatedly with an empty body. https://github.com/pallets/
flask/issues/4507.

ThiefMaster. Issue 822: dev server sets wrong http__host when path starts with a
double slash. https://github.com/pallets/werkzeug/issues/822.

Werkzeug. Commit introducing the vulnerability. https://github.com/pallets/
werkzeug/commit/9a3a981d70d2e9ec3344b5192f86fcaf3210cd85.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Origin
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Origin
https://developer.mozilla.org/en-US/docs/Web/API/HTMLFormElement/enctype
https://developer.mozilla.org/en-US/docs/Web/API/HTMLFormElement/enctype
https://github.com/pallets
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/POST
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/POST
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite
https://github.com/pallets/werkzeug/issues/2546
https://portswigger.net/research/browser-powered-desync-attacks
https://portswigger.net/research/browser-powered-desync-attacks
https://nvd.nist.gov/vuln/detail/CVE-2020-28724
https://nvd.nist.gov/vuln/detail/CVE-2020-28724
https://github.com/pallets/werkzeug/issues/2380
https://github.com/pallets/werkzeug/issues/2380
https://wsgi.readthedocs.io/en/latest/what.html
https://wsgi.readthedocs.io/en/latest/what.html
https://nvd.nist.gov/vuln/detail/cve-2022-29361
https://nvd.nist.gov/vuln/detail/cve-2022-29361
https://developer.mozilla.org/en-US/
https://github.com/pallets/werkzeug/commit/556bdcb13516617335c10efdedf3c1bd50b31b6d
https://github.com/pallets/werkzeug/commit/556bdcb13516617335c10efdedf3c1bd50b31b6d
https://portswigger.net/web-security/request-smuggling/browser/client-side-desync/lab-client-side-desync
https://portswigger.net/web-security/request-smuggling/browser/client-side-desync/lab-client-side-desync
https://flask.palletsprojects.com/
https://docs.python.org/3/library/http.server.html
https://docs.python.org/3/library/http.server.html
https://github.com/pallets/flask/issues/4507
https://github.com/pallets/flask/issues/4507
https://github.com/pallets/werkzeug/issues/822
https://github.com/pallets/werkzeug/commit/9a3a981d70d2e9ec3344b5192f86fcaf3210cd85
https://github.com/pallets/werkzeug/commit/9a3a981d70d2e9ec3344b5192f86fcaf3210cd85

	Abusing Client-Side Desync on Werkzeug

