
Innovations in symmetric cryptography

Joan Daemen

STMicroelectronics, Belgium

SSTIC, Rennes, June 5, 2013

1 / 46



Outline

1 The origins

2 Early work

3 Rijndael

4 The sponge construction and Keccak

5 Conclusions

2 / 46



The origins

Outline

1 The origins

2 Early work

3 Rijndael

4 The sponge construction and Keccak

5 Conclusions

3 / 46



The origins

Symmetric crypto around ’89

Stream ciphers: LFSR-based schemes
no actual design
many mathematical papers on linear complexity

Block ciphers: DES
design criteria not published
DC [Biham-Shamir 1990]: “DES designers knew what they were doing”
LC [Matsui 1992]: “well, kind of”

Popular paradigms, back then (but even now)
property-preservation: strong cipher requires strong S-boxes
confusion (nonlinearity): distance to linear functions
diffusion: (strict) avalanche criterion
you have to trade them off

4 / 46



The origins The banality of DES

Data encryption standard: datapath

5 / 46



The origins The banality of DES

Data encryption standard: F-function

6 / 46



The origins Cellular automata based crypto

A different angle: cellular automata

Simple local evolution rule, complex global behaviour
Popular 3-bit neighborhood rule:

a′i = ai−1 ⊕ (ai OR ai+1)

7 / 46



The origins Cellular automata based crypto

Crypto based on cellular automata

CA guru Stephen Wolfram at Crypto ’85:
looking for applications of CA
concrete stream cipher proposal

Crypto guru Ivan Damgård at Crypto ’89
hash function from compression function
proof of collision-resistance preservation
compression function with CA

Both broken
stream cipher in [Meier-Staffelbach, Eurocrypt ’91]
hash function in [Daemen et al., Asiacrypt ’91]

8 / 46



The origins Cellular automata based crypto

The trouble with Damgård’s compression function

9 / 46



The origins Cellular automata based crypto

The trouble with Damgård’s compression function

9 / 46



Early work

Outline

1 The origins

2 Early work

3 Rijndael

4 The sponge construction and Keccak

5 Conclusions

10 / 46



Early work

Salvaging CA-based crypto

First experiments: investigate cycle distributions
The following rule exhibited remarkable cycle lengths:

γ: flip the bit iff 2 cells at the right are not 01

Invertible if periodic boundary conditions and odd length

11 / 46



Early work

Salvaging CA-based crypto

First experiments: investigate cycle distributions
The following rule exhibited remarkable cycle lengths:

γ: flip the bit iff 2 cells at the right are not 01

nonlinear, but unfortunately, weak diffusion

11 / 46



Early work

Salvaging CA-based crypto, second attempt

Found invertible 5-bit neighborhood rules with good diffusion
Turned out to be composition of γ and following rule

θ: add to bit the sum of 2 cells at the right modulo 2

Idea: alternate γ (nonlinearity) and variant of θ (mixing)

12 / 46



Early work

Salvaging CA-based crypto, second attempt

Found invertible 5-bit neighborhood rules with good diffusion
Turned out to be composition of γ and following rule

θ: add to bit the sum of 2 cells at the right modulo 2

diffusion much better but still slow

12 / 46



Early work

Salvaging CA-based crypto, third attempt

Abandon locality by adding in bit transpositions:
π: move bit in cell i to cell 9i modulo the length

Round function: R = π ◦ θ ◦ γ

13 / 46



Early work

Salvaging CA-based crypto, third attempt

Abandon locality by adding in bit transpositions:
π: move bit in cell i to cell 9i modulo the length

full diffusion after few rounds!

13 / 46



Early work

Resulting designs

Round function composed of specialized steps
γ: non-linearity
θ: mixing
π: transposition
ι: addition of some constants for breaking symmetry

Designs directly resulting from this
Cellhash (1991): hash function
Subterranean (1992), StepRightUp (1994) and Panama (1997):
hash/stream cipher modules
3-Way and BaseKing (1993-94): block ciphers

Theoretical basis: DC and LC
Supporting concepts introduced in [PhD Thesis Daemen, 1995]

branch number
correlation matrices
wide trail strategy

14 / 46



Rijndael

Outline

1 The origins

2 Early work

3 Rijndael

4 The sponge construction and Keccak

5 Conclusions

15 / 46



Rijndael

March 1995: last month at COSIC, after PhD defense

Blowfish [Schneier, 1993]

F function:

8-to-32-bit Sboxes

Derived from key

My impression
Great potential
Only 4 TLU and 3 additions
Very high diffusion

Cryptanalysis contest in 1994
Won by Serge Vaudenay

Exploiting collisions
In S-box: weak keys
In F-function
Published [Vaudenay, 1996]

But can it be fixed?
Yes, it can!

16 / 46



Rijndael

March 1995: a month in Limbo; the Spark!

Mixing ◦ S-box

Both invertible

4 TLU and 4 XORs

smuggled my idea out of
COSIC …

S-boxes
just take a single one
optimize nonlinearity
criteria defined by DC and LC

Linear mixing layer
optimize diffusion

Clearly big potential!

Challenge: finding right S-box and
mixing layer

17 / 46



Rijndael

March 1995: a month in Limbo; the Spark!

Mixing ◦ S-box

Both invertible

4 TLU and 4 XORs

smuggled my idea out of
COSIC …

S-boxes
just take a single one
optimize nonlinearity
criteria defined by DC and LC

Linear mixing layer
optimize diffusion

Clearly big potential!

Challenge: finding right S-box and
mixing layer

17 / 46



Rijndael

March 1995: a month in Limbo; the Spark!

Mixing ◦ S-box

Both invertible

4 TLU and 4 XORs

smuggled my idea out of
COSIC …

S-boxes
just take a single one
optimize nonlinearity
criteria defined by DC and LC

Linear mixing layer
optimize diffusion

Clearly big potential!

Challenge: finding right S-box and
mixing layer

17 / 46



Rijndael

March 1995: a month in Limbo; the Spark!

Mixing ◦ S-box

Both invertible

4 TLU and 4 XORs

smuggled my idea out of
COSIC …

S-boxes
just take a single one
optimize nonlinearity
criteria defined by DC and LC

Linear mixing layer
optimize diffusion

Clearly big potential!

Challenge: finding right S-box and
mixing layer

17 / 46



Rijndael

March 1995: a month in Limbo; the Spark!

Mixing ◦ S-box

Both invertible

4 TLU and 4 XORs

smuggled my idea out of
COSIC …

S-boxes
just take a single one
optimize nonlinearity
criteria defined by DC and LC

Linear mixing layer
optimize diffusion

Clearly big potential!

Challenge: finding right S-box and
mixing layer

17 / 46



Rijndael

Two years earlier …

Summer 1993: COSIC gets some classified contract work
Supervisors decide to put on it:

Joan Daemen and Vincent Rijmen

18 / 46



Rijndael

The road to Rijndael

Switch back to autumn 1995
I decided to contact Vincent to work out my ideas

this lead to the following results

SHARK [SHARK, FSE 1996]

link with maximum distance separable (MDS) codes
S-box: multiplicative inverse in GF(28) [Nyberg, 1994]

Square [Square, FSE 1997]

more efficient thanks to byte transposition layer
state bytes arranged in a 4× 4 square

BKSQ [BKSQ, Cardis 1998]:
support for non-square states

NIST AES call in autumn 1997
we defined Rijndael using these ideas and submitted it

19 / 46



Rijndael

AES finalists: speed on Pentium

Percentage executed by the time Rijndael finishes:

20 / 46



Rijndael

Rijndael (team) after AES selection

October 2, 2000: NIST announces Rijndael will be AES
Security of AES

most heard criticism: too simple to be secure
several times announced broken, false alarms
current status: some dents in armor due to academic attacks

biclique attacks [Khovratovich, Rechberger, Bogdanov, 2011]
up to a factor 4 more efficient than exhaustive key search

Follow-up work with Vincent, some highlights
Rijndael book at Springer, the reference of block cipher design
new insights in differential propagation in AES-like functions
LC and DC statistics of random mappings
Pelican-MAC: 2.5 times faster than AES CBC-MAC

21 / 46



The sponge construction and Keccak

Outline

1 The origins

2 Early work

3 Rijndael

4 The sponge construction and Keccak

5 Conclusions

22 / 46



The sponge construction and Keccak Compression function and domain extension

See how mainstream hash functions were going

Mainstream hash functions have two layers:
Fixed-input-length compression function
Iterating mode: domain extension

Merkle-Damgård iterating mode: very simple and elegant

Yes, but can we have collision-resistance preservation?

23 / 46



The sponge construction and Keccak Merkle-Damgård strengthening!

The iterating mode

Merkle-Damgård with strengthening

Yes, but what about security when being used as a MAC?

24 / 46



The sponge construction and Keccak Indifferentiable from a Random Oracle!

The iterating mode

Enveloped Merkle-Damgård

Yes, but we often need long outputs, e.g., see PKCS#1, TLS, …

25 / 46



The sponge construction and Keccak Brilliant!

The iterating mode

Mask generating function construction

This does what we need!

26 / 46



The sponge construction and Keccak The remaining problem: designing a compression function

The compression function

Let’s put in a block cipher

Yes, but collisions are easy so collision-resistance preservation …

27 / 46



The sponge construction and Keccak OK, OK, add a feedforward

The compression function

Block cipher in Davies-Meyer mode

That’s it!

28 / 46



The sponge construction and Keccak Some elegance and simplicity was lost along the road …

What we end up with

Remains to do: building a suitable block cipher …

29 / 46



The sponge construction and Keccak Refactoring

Keccak Team to the rescue!

Michaël Peeters, Guido Bertoni, Gilles Van Assche and Joan Daemen

30 / 46



The sponge construction and Keccak Refactoring

Do we really need a block cipher?

No diffusion from data path to key
(and tweak) schedule

Let’s remove these artificial barriers…

That’s an iterative permutation!

31 / 46



The sponge construction and Keccak Refactoring

Do we really need a block cipher?

No diffusion from data path to key
(and tweak) schedule

Let’s remove these artificial barriers…

That’s an iterative permutation!

31 / 46



The sponge construction and Keccak Refactoring

Do we really need a block cipher?

No diffusion from data path to key
(and tweak) schedule

Let’s remove these artificial barriers…

That’s an iterative permutation!

31 / 46



The sponge construction and Keccak Refactoring

Let’s re-factor the hashing mode

Goal: hashing mode that is sound and simple
with good level of security against generic attacks
calling an iterated permutation rather than a block cipher

Remaining problem: design of iterated permutation
round function: good approaches known
asymmetry: round constants

Advantage of permutation compared to block ciphers:
less barriers ⇒ more diffusion
no more need for efficient decryption
no more worries about key schedule

32 / 46



The sponge construction and Keccak The sponge construction

The sponge construction

Arbitrary input and output length
Parameters: width b, rate r and capacity c with b = c+ r
Proven sound in indifferentiability framework [Maurer et al, 2004]

abandoning property preservation paradigm
security against generic attacks

33 / 46



The sponge construction and Keccak The sponge construction

Permutation-based hash function

Hashing

34 / 46



The sponge construction and Keccak The sponge construction

Permutation-based hash function

Hashing

Salted hashing

34 / 46



The sponge construction and Keccak The sponge construction

Permutation-based hash function

Hashing

…Can be as slow as you like it!

34 / 46



The sponge construction and Keccak The sponge construction

Permutation-based mask generating function

Key derivation function in SSL, TLS
Full-domain hashing in public key cryptography

electronic signatures RSA PSS [PKCS#1]
encryption RSA OAEP [PKCS#1]
key establishment RSA KEM [IEEE Std 1363a]

35 / 46



The sponge construction and Keccak The sponge construction

Permutation-based MACing

0 f f

Key

…

Padded message

f ff

MAC

No more need for HMAC [FIPS 198] for sponge

HMAC plugs security hole in SHA-1 and SHA-2

36 / 46



The sponge construction and Keccak The sponge construction

Permutation-based (stream) encryption

0 f f

Key IV

f

Key stream

Keystream generation

37 / 46



The sponge construction and Keccak The sponge construction

Permutation-based authenticated encryption

0 f f

Key

…

Padded messageIV

f

Key stream

ff

MAC

Authentication and encryption in a single pass!

Secure messaging (SSL/TLS, SSH, IPSEC …)
Duplex construction [Duplex, SAC 2011]

generic security equivalent to sponge construction
other applications include reseedable PRNG

38 / 46



The sponge construction and Keccak The sponge construction

Keccak: the Seven Permutation Army

(5× 5) lanes

up to 64-bit each

Our SHA-3 submission
Sponge calling one of 7 permutations:

25, 50, 100, 200, 400, 800, 1600 bits
toy → lightweight → fastest

repetition of a simple round function
lightweight and flexible
inspired by Subterranean, etc.
innovative, operating on a 3D state

large safety margin
number of rounds: 24
best attacks known: 5 rounds [Dinur,
Dunkelman, Shamir, 2012-13]

39 / 46



The sponge construction and Keccak The sponge construction

Keccak: the Seven Permutation Army

(5× 5) lanes

up to 64-bit each

First, choose your permutation …
e.g. width = 1600

…then choose the rate and capacity
such that rate+ capacity = 1600

Security-speed trade-offs using the same
permutation:

Rate Capacity Strength Speed
1344 256 128 ×1.312
1216 384 192 ×1.188
1088 512 256 ×1.063
1024 576 288 1.000

39 / 46



The sponge construction and Keccak The sponge construction

NIST SHA-3: a tough competition

ARIRANG

AURORA

BLAKEBlender

BOOLE

CHI

CRUNCHCubeHash

DCH

EDON-R

EnRUPT

ESSENCE FSB

Fugue

Grøstl

JH

LANE

Lesamnta

Luffa

MCSSHA3

MD6

Sgàil

Shabal

SHAMATA

SIMD

Skein

StreamHash

SWIFFTX

Tangle

TIB3

Twister

Vortex

WaMM

HASH 2X

Maraca

Ponic

ZK-Crypt

Waterfall

Sarmal

BMW

SANDstorm

Spectral Hash

DynamicSHA

NKS2D

Abacus

MeshHash

DynamicSHA 2

Khichidi-1

ECOH

LUX

NaSHA

Hamsi

Keccak

SHAvite-3

ECHO
Cheetah

2005 2006 2007 2008 2009 2010 2011 2012

16/06/2009

[courtesy of Christophe De Cannière]

40 / 46



The sponge construction and Keccak The sponge construction

Efficiency of Keccak in hardware

From Kris Gaj’s presentation at SHA-3, Washington 2012:

41 / 46



The sponge construction and Keccak The sponge construction

Long-term effort

Rumours about NIST call for hash functions (late 2005)
forming of Keccak Team
starting point: fixing Panama [Daemen, Clapp, FSE 1998]

RadioGatún [Keccak team, NIST 2nd hash workshop 2006]

variable-length output, streaming oriented
for security claim: sponge functions [Keccak team, Ecrypt hash, 2007]

RadioGatún confidence crisis (2007-2008)
third-party and our own cryptanalysis did not inspire confidence
NIST SHA-3 deadline approaching …
U-turn: design a sponge with strong permutation f: Keccak

October 2, 2012: NIST announces Keccak will be SHA-3
Ongoing work:

tree hashing and Sakura
dedicated keyed modes (CAESAR competition),
protection against side-channel attacks …

42 / 46



Conclusions

Outline

1 The origins

2 Early work

3 Rijndael

4 The sponge construction and Keccak

5 Conclusions

43 / 46



Conclusions

Conclusions: trying to do things right

re-factoring over patching
fresh AES instead of DES-derivative
sponge instead of trying to fix Merkle-Damgård, e.g. Haifa
Keccak structure instead of just a heavier ARX

simplicity over complexity
single S-box in AES instead of several different ones
permutation-based instead of block-cipher based crypto
Keccak: CA-based mappings instead of S-boxes and MDS

result-focused over publication-driven
hard to get design ideas published
examples: original sponge paper, sound tree hashing
turn out to be influential in the long run
…after linear complexity, T-functions, cube attacks etc. have long
been forgotten

44 / 46



Conclusions

Conclusions: team up with critical minds

How to build clean designs?
try out many ideas
throw most of them away
keep the good ones

The process: collaboration and confrontation
in a team with critical minds
overlapping competences rather than complementary
not too much ego please

Great to work with Vincent, Guido, Michaël and Gilles!
Rijndael/AES: ubiquitous by now and security still solid
sponge/duplex: new permutation-based crypto paradigm
Keccak/SHA-3: common sense made it to hashing, at last

45 / 46



Conclusions

Questions?

Thanks for your attention!

Q?
More information on

http://sponge.noekeon.org/
http://keccak.noekeon.org/

46 / 46

http://sponge.noekeon.org/
http://keccak.noekeon.org/

	The origins
	The banality of DES
	Cellular automata based crypto

	Early work
	Rijndael
	The sponge construction and Keccak
	Compression function and domain extension
	Merkle-Damgård strengthening!
	Indifferentiable from a Random Oracle!
	Brilliant!
	The remaining problem: designing a compression function
	OK, OK, add a feedforward
	Some elegance and simplicity was lost along the road …
	Refactoring
	The sponge construction

	Conclusions

