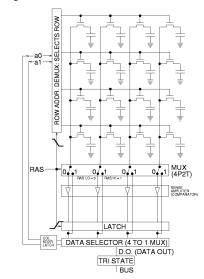


RowHammer in 15'


Nicolas RUFF nruff+sstic15@google.com Google

Life of an electron

SRAM: static RAM

DRAM: dynamic RAM

http://en.wikipedia.org/wiki/Static_random-access_memory#/media/File: SRAM_Cell_(6_Transistors).svg http://en.wikipedia.org/wiki/Dynamic_random-access_memory#/media/File: Square_array_of_mosfet_cells_read.png Google

Life of an electron

SRAM

Uses a lot of die space (4 to 6 transistors per bit)

Fast random access time

Static (conserve state unless powered off)

Used for L-1 L-2 caches

DRAM

Excellent storage density (1 capacitor + 1 transistor per bit)

Slow access (full row access)

Leaky (capacitor discharges in ~N ms)

Used for external memory (Synchronous DRAM)

Life of an electron

DRAM discharge: mitigated by regular refresh

• Usually every 64ms

CMOS Setup Utility - Copyright (C) 1985-2005, Am Memory Configuration	
MCT Timing Mode	[Manual]
CAS#Latency (TCL)	[4.0]
Min RAS# Active Time(TRAS)	[12 CLK]
RAS# Percharge Time(TRP)	[4 CLK]
RAS#to CAS#Delay(TRCD)	[4 CLK]
ROW to ROW Delay(TRRD)	[Auto]
ROW Cycle Time(TRC)	[Auto]
Bank Interleaving	[Enabled]
CMD-ADDR Timing Mode	[2T]
SoftWare Memory Hole	[Enabled]

What if?

You access a value too often? Bit-flip(s)!

• Including in adjacent rows

Why? Nobody knows for sure ...

• Condenser discharge. Power glitch. Tunnel effect. You name it.

What if?

Known for years for the hardware industry

• Cf. JEDEC specifications

Re-discovered by software people

<u>https://github.com/CMU-SAFARI/rowhammer</u>

Eventually exploited by Google as a generic privilege escalation

• <u>http://googleprojectzero.blogspot.ch/2015/03/exploiting-dram-rowhammer-bug-to-gain.html</u>

Exploitation

Short version

- Fill memory
- Flip a PTE bit
- Profit!

Flipping fast

• CLFLUSH (userland, cannot be disabled by CRx/MSR or microcode update - as of today)

Unexplored ways

- Non-temporal hints (MOVNT*)
- Other cache-control instructions (MFENCE/SFENCE, ...)

Exploitation

The devil is in the details

- Guessing physical memory layout
- Flipping the right bit
 - Affected locations tend to be geographically stable (die defect)
- Double hammer vs. single hammer

Mitigations

ECC + Linux MCE policy

• Can correct 1-bit and detect 2-bit errors

Double refresh rate

Software monitoring cache miss with perf counters

pTRR / TRR: [pseudo] Targeted Row Refresh

• Specified by DDR3/DDR4 standards

MAC (Maximum Activate Count)

TODO

Other memory access vectors?

- DMA
- GPU memory
- Hidden cache-bypassing instructions?

Vendor-specific mitigations?

• Dell RMT ("Reliable Memory Technology")

Embedded devices?

• ARM, MIPS, PPC, microcontrollers, ...

Damaging physical memory?

http://en.wikipedia.org/wiki/Hot-carrier_injection

References

Original research

<u>https://github.com/CMU-SAFARI/rowhammer</u>

Google research

- <u>http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html</u>
- https://github.com/google/rowhammer-test

Vendor(s) statements

- <u>http://support.lenovo.com/us/en/product_security/row_hammer</u>
- <u>http://azure.microsoft.com/blog/2015/03/16/microsoft-azure-uses-error-correcting-code-memory-for-enhanced-reliability-and-security/</u>
- <u>http://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20150309-</u> rowhammer
- http://h20564.www2.hp.com/hpsc/doc/public/display?docId=emr_na-c04593978