
A first glance at the U2F protocol

Mickaël Bergem et Florian Maury
mickael.bergem@ponts.org

florian.maury@ssi.gouv.fr

1 ParisTech
2 ANSSI

Abstract Usage of Second-Factor Authentication (2FA) solutions con-
stitutes a valid answer to the threat against weak credentials, such as
passwords. Yet many 2FA schemes are vulnerable to prominent web
threats such as phishing attacks.

The Universal Second Factor (U2F) protocol, specified by the FIDO
Alliance, offers phishing-resistant 2FA solution, optionally based on hard-
ware secure elements. Some well-known websites already use this authen-
tication scheme, including Google, Dropbox and Github. Unfortunately,
the U2F protocol still lacks independent reviews.

This study is a first attempt at assessing the actual security brought by
the U2F authentication scheme. It confirms that, protocol-wise, most of
U2F security goals are achieved. Yet, we found that some of the specified
security measures benefit only from an experimental implementation
and that some recommendations from the U2F specifications are not yet
followed.

This paper draws a picture of the security brought by U2F and ultimately
compares the protocol with some 2FA schemes: Short Message System
(SMS) codes, Time-based One-Time Password (TOTP) and TLS client
authentication using certificates.

1 Introduction

Using strong passwords is often difficult for end-users. Even then they
can still be stolen, resulting in possibly long-term compromise of the user
accounts. A solution to this issue is multi-factor authentication schemes,
which combine several security checks to verify the identity of a user.
Strong checks are based simultaneously on something the user knows
(such as a password) and something the user possesses (such as a hardware
token).

Multi-factor authentication schemes using mobile phones as a second-
factor are now frequently used. Online banking is a typical use-case. Most
are based on SMS codes or TOTP generation algorithms [11]. Other
popular non-mobile based solutions include usage of dedicated tokens
shipping secure hardware elements (e.g. smartcards).

2 A first glance at the U2F protocol

While some of these solutions considerably improve the security of the
authentication process, users may still fall for phishing attacks. Indeed,
users of such solutions may unwittingly enter their credentials and their
second-factor code on an attacker-controlled phishing website. Doing so
opens way for various attacks described, for reference, in section 2 of this
document. Then, section 3 sheds light on how these attacks apply to SMS
and TOTP-based authentication schemes.

The FIDO Alliance [1] specified the U2F protocol to mitigate such
threats. It empowers websites and applications with a phishing-resistant
second-factor solution for end-user security. A presentation of the U2F
protocol is provided in section 4.

At the time of writing, only Google, Dropbox and Github offer a
U2F authentication support. Only few public presentations explained the
protocol [12]. Also, to the best of our knowledge, no independent security
analyses of the U2F protocol were published.

This paper presents the results of our first crack at assessing the
actual security of the U2F protocol. During our study, we noted that most
U2F security goals are fulfilled. Even so, our laboratory experiments also
showed that some security measures were not implemented as specified or
advised by the protocol specifications. As such, section 5 illustrates the
consequences of the lack of a notification system upon completion of a
cryptographic operation. We also uncovered during these experiments a
possible issue with some token at the USB level. Then, section 6 discusses
the efficiency and state of deployment of U2F built-in TLS Man-in-the-
Middle (MITM) mitigation mechanism. In the light of the previous sections,
section 7 finally compares U2F security to the one brought by the TLS
client authentication scheme using certificates.

Our findings and conclusions were shared with the FIDO Alliance.
When available, their feedback is included in the relevant section.

2 Threat model and web attacks

In this section, a brief overview of the web attacks that are relevant to
this paper is provided for internal reference.

Cross-Site Scripting (XSS)

XSS attacks are performed by off-path attackers that may remain
passive once the attack payload is planted. XSS attacks originate from the
injection by a malicious third party of foreign code that is executed, client-
side, within the context of a legitimate web application. Consequences

M. Bergem, F. Maury 3

are the loss of user experience control. The injected code may emulate or
actually perform virtually any user action. XSS exploits generally allow
the attacker to steal sensitive user data. Among these data can be listed
password-based credentials, some second-factor authentication scheme
credentials or some HTTP session tokens.

U2F specifications exclude this attack by assuming that the web
browser acts as a trustworthy agent of the user. This hypothesis is discussed
in section 7 where U2F is compared with TLS client authentication using
certificates.

Cross-Site Request Forgery (CSRF)

CSRF attacks are performed by off-path attackers interacting with
their victims. The principle is for attackers to automate user actions within
the context of a legitimate web application. Victims might not even be
aware that actions are performed on their behalf. To do so, attackers abuse
the victims’ user agents (e.g. the web browsers) so that authenticating
information (e.g. the credentials or the session tokens) are automatically
appended to arbitrary actions on a given web application. Attackers may
also abuse the user agents so that they use an authenticated TLS channels
to carry out the actions.

Phishing attacks

Simple phishing attacks Simple phishing attacks are performed by
off-path attackers interacting with their victims. They rely on social
engineering to capture credentials. For this, the attackers persuade the
victims that a displayed website is genuine. Then, they entice the victims
into entering their credentials on this website, hosted at a different Uniform
Resource Locator (URL) than the legitimate website. The credentials can
be stored by the attacker and then be replayed afterwards. For this attack
to work, the authentication scheme must not involve any element ensuring
the freshness of the stored credentials, such as challenges, time-constrained
credentials or a ledger of already used one-time credentials.

This attack is mostly relevant to simple password-based authentication
schemes. None of the 2FA schemes detailed in this paper are vulnerable
to simple phishing attacks. This description purpose is to emphasize the
notable differences between these simple attacks and the phishing attacks
with real-time forwarding.

4 A first glance at the U2F protocol

Phishing attack with real-time forwarding Phishing attacks with
real-time forwarding are performed by off-path attackers interacting with
their victims and the legitimate website. This variation of the phishing at-
tacks is used when the authentication scheme involves a element providing
freshness insurance to the authenticating party.

To perform this attack, the phishing website acts simultaneously as a
server and as a client. From the legitimate website perspective, the phishing
website is the workstation of the victim. From the victim perspective,
the phishing website is the legitimate website. When an authentication
procedure is initiated by the victim, the phishing website forwards all
the messages and credentials it receives to the legitimate website. If the
challenge is sent in-band (e.g. the legitimate website sends back to the
phishing website a challenge), the phishing website returns it as is to
the victim. If the challenge is sent out-of-band to the victim and sent
back to the website by the victim, the phishing website forwards it to the
legitimate website. At the end of this procedure, the victim provided to
the phishing website all the credentials required to authenticate to the
legitimate website.

TLS MITM

TLS MITM operations are performed by online entities interacting
with both ends of the intercepted connections: the client, which is the
user agent, and the server, which is the web application requested by the
client. The MITM may impersonate both ends of the secure channel. To
impersonate the TLS server, the MITM needs to present a TLS certificate
accepted by the user agent. The user may also force acceptance of the
certificate by the user agent. The interception can be performed at the
network level or thanks to a specific TLS client configuration, such as the
deliberate use of a corporate TLS proxy server.

Forgery attacks

Forgery attacks are a particular form of MITM attack, over secure or
insecure channel. They pertain to the ability for an attacker to impersonate
a user, by altering observed communications. This definition notably
includes the replacement of tokens in a challenge/response authentication
scheme.

M. Bergem, F. Maury 5

Forwarding attacks

Forwarding attacks are a particular form of MITM attack, over se-
cure or insecure channel. They pertain to the ability for an attacker to
impersonate a user by replaying previously intercepted messages.

Parallel session attacks

Parallel sessions are initiated by off-path attackers without interaction
with their victims, after an initial on-path traffic interception. Parallel
sessions attacks are performed by attackers capable of inferring the user
credentials for a new and possibly unrelated session with a specific website,
thanks to the captured data.

3 SMS and TOTP authentication schemes security

assessment

Many websites using 2FA rely either on SMS codes or on TOTP. In this
section, the two schemes are presented, along with a security assessment
of their usual implementations.

3.1 2FA based on TOTP

In this authentication scheme, the second-factor is either a hardware
or a software module, called a token. The module contains a secret shared
with the website. In typical deployments, the secret is generated by the
website during the token registration procedure and the user types the
secret in the token or takes a picture of a barcode representation of the
secret. It is worth noting that in these deployments, the user takes no part
in the secret generation procedure. As such, the randomness of the secret
cannot be augmented by the user.

During the authentication procedure, the user is expected to type a
TOTP read on the token in a web form. The TOTP is generated by the
token, using the shared secret and a value derived from the current time.
During the credentials verification procedure, the website computes its
own version of the TOTP using the same input sources and compares
the results with the user-submitted TOTP. Both values can only match
during a limited time frame. Matching values would therefore seem to
indicate that the user holds a registered token.

It is worth noting, though, that the TOTP is not bound to any technical
information specific to the (user, website displaying the authentication

6 A first glance at the U2F protocol

form) tuple. As illustrated by figure 1, the user might type the TOTP
on a phishing website (step 3), thus providing the attacker with a valid
TOTP for the legitimate website. The attacker would then send the
user credentials and the captured TOTP to the legitimate website, thus
impersonating the user (step 4).

example.net

1

2

example.com

3
victim attacker example.com

2FA

Code

4

Figure 1. Phishing attack on example.com, allowing replay of the TOTP

A countermeasure could be to bind the TOTP to the website URL
as perceived by the user agent. This solution is however impractical as
TOTP tokens are generally devices with no access to any interface that
would allow them to know the URL of the website currently displayed to
the user.

3.2 SMS-based 2FA

In this authentication scheme, the second-factor is the user mobile
phone.

During the registration procedure, the phone number is associated to
the user account. During the authentication procedure, the phone number
is retrieved from the account meta-data. Both procedures ensure the user
holds the mobile phone by sending a SMS to the phone number. The SMS
contains a value indistinguishable from random that the user is expected
to read and type in a web form. The verification procedure is completed
by comparing the user-submitted value with the value sent to the phone
number.

It is worth noting that this authentication scheme is vulnerable to
mobile network eavesdropping [10]. It also assumes that the mobile phone
is sane and that no fraudulent applications are snooping on the received
SMS.

The SMS-based 2FA scheme is also susceptible to phishing attacks, as
illustrated by the figure 2. When the user receives the random value (step
3) and types it in on the phishing website (step 4), the attacker learns it,

M. Bergem, F. Maury 7

replays it to the legitimate website (step 5), and ultimately impersonates
the user.

example.net

1

3

example.com

5

2

2FA

Code

victim attacker example.com4

Figure 2. Phishing attack on example.com, against a SMS-based 2FA scheme

3.3 Considerations on replay attacks and parallel sessions
attacks

Some implementations of the TOTP-based and SMS-based 2FA
schemes allow the authentication code to be submitted multiple times to
the legitimate website during a short time frame. Incentive to do so might
be to limit authentication procedure failures for users connected through
unreliable networks. Doing so open ways to parallel session attacks. In-
deed, an attacker who captured a valid code might be replaying it in an
unrelated session initiated during the short time frame.

The point for the attacker to mount a parallel session is that this
session lifetime is not constrained by any user actions. As such, even if
the user logs out, the parallel session remains valid.

4 A primer on the U2F protocol

4.1 The U2F registration and authentication procedures

The U2F authentication scheme relies on the usage of strong public
key cryptography signatures. According to the protocol specifications, the
private key may be hold within a software token or a hardware token. When
using an external device, the cryptographic operations can be requested
over USB, NFC or Bluetooth.

Usage of a token requires first the device to be registered to an existing
account at each Relying Party (RP). A RP is basically a web application
defined by its origin 3. The definition of a RP is actually broader in

3. A web origin is composed of the protocol scheme (e.g. http or https), the domain
name of the web application and the web server TCP port.

8 A first glance at the U2F protocol

the U2F specifications. It encompasses for instance some related mobile
applications. This broad definition, which relies on the U2F AppID and

Facets features, is left out of the scope of the current paper.

During the registration procedure of a U2F token, illustrated by figure 3,
the RP sends a challenge 4 (step 1) to the FIDO client (i.e. the web browser).
The FIDO client hashes the challenge with various data, including the
origin of the authentication web page. The origin is also hashed as a
separate value. Both hashes are then sent to the token (step 2). Using
these information, the token generates a RP-specific keypair 5 (step 3).
It then sends back three information (step 4): the generated public key,
a private key identifier, called the key handle, and a signed proof of
ownership of the associated private key. The FIDO client forwards them
and some metadata to the server (step 5). The registration is successful if
the proof of ownership is verified by the server (step 6). The verification
steps involve a consistency check of the metadata sent by the FIDO client
and the use of the registered public key to verify the signature of the proof
of ownership.

U2F Token
FIDO Client

(Browser)
Relying Party

(Website)

CDATA = SHA256(C + Origin O + metadata)

APPDATA = SHA256(O)

R = [Kpub + h + S = Sig(CDATA + APPDATA + KPub + h + metadata)]

challenge C

Generates:
● key K

pub

● key K
priv

● key handle h

Verifies then
stores:
● key K

pub

● handle h

R + CDATA

1

C

3

4

5

2

6

5

Figure 3. U2F registration process

The registration process may occur multiple times, allowing users
to associate multiple tokens to their accounts. This may be of use, for
instance, to avoid users from locking themselves out of their accounts if
they lose their only token.

4. A challenge can theoretically either be a nonce or a random value. U2F specifica-
tions recommend the use of a random value with at least 64 bits of entropy.

5. The keypair is generated with the NIST P-256 curve. Signatures are performed
using this keypair and ECDSA.

M. Bergem, F. Maury 9

U2F Token
FIDO Client

(Browser)
Relying Party

(Website)

CDATA = SHA256(C + 0 + metadata M2)

h + APPDATA=SHA256(O)

R = [M3 +S = Sig(CDATA + APPDATA + metadata M3)]

C + h + metadata M1

Get K
priv

 with

handle h, and
if the origin
matches, signs
the challenge.

Checks
signature
with K

pub

Set Cookie

R + h + CDATA

1

2

3

4

5

6

Figure 4. U2F authentication process

Once a token is registered to an account, this token can be used for
authentication purposes, as illustrated in the figure 4. The authentication
procedure consists of the following steps:

– The user is authenticated by the RP first, using another authentica-
tion scheme. The typical scenario involves the user entering a login
and password in a web form;

– Once these credentials are verified at the server-side, the RP sends
to the FIDO client a challenge and the key handles registered for
the user account (step 1);

– The FIDO client hashes the challenge with some additional infor-
mation and forwards the resulting digest to the U2F token along
with the key handles 6 and the hash of the RP origin (step 2) ;

– The token recovers the private key thanks to the key handle and
uses it to sign the digest and some additional data, such as a counter
used for anti-replay purposes (step 3);

– The signed blob and the metadata are then sent back to the FIDO
client (step 4);

– The FIDO client forwards them back to the RP (step 5) for veri-
fication of the signature using the previously registered public key
(step 6).

A U2F keypair is bound to a specific RP, during the registration
procedure. As such, a token must refuse to sign with a keypair issued for
a different origin. This refusal is illustrated by the figure 5. The origin

6. More precisely, the FIDO client first sends one probe to the token for each key
handle. This way, the token can tell the FIDO client which key handle was emitted by
the probed token and which key handles were generated by some other tokens. Once
the correct key handle is identified, the actual signing request is sent.

10 A first glance at the U2F protocol

check ensures that the public keys and key handles issued for a given RP
cannot be exercised by a different RP, such as a phishing website.

Another attack scenario that U2F mitigates is illustrated by the figure
6. It involves attackers trying to forward a U2F-signed authentication
response sent to their phishing website. Indeed, the received signature is
generated using a keypair specific to the phishing website. The genuine
website would therefore be unable to verify the signature sent to the
phishing website with the public key they know for the victim’s account.

U2F token FIDO client

Phishing website

Genuine website
C

h
a
ll

en
g
e

C
+

K
ey

h
a
n

d
le

s
K

HC
+

K
H

Originphishing

+ C + KH

Invalid KH
for this origin

1

2

3

4

Figure 5. The attacker forwards the key handles and challenge from the genuine website.
The token refuses to use these key handles when they come from the phishing website.

5 Parallel signing

The U2F security reference document [2] specifies that transaction
non-repudiation is not a Security Goal (SG) of U2F. Another protocol,
called Universal Authentication Framework (UAF), is specified by the
FIDO Alliance to do so. In particular, the UAF protocol requires the use
of a secure display and transaction confirmation while the U2F protocol
does not. The UAF protocol is left out of the scope of this study.

This section does not present an attack against the U2F protocol.
Instead, it merely illustrates an attack scenario that would affect a RP
implementing, against the specification recommendations, transaction
non-repudiation with U2F tokens.

M. Bergem, F. Maury 11

U2F token FIDO client

Phishing website

Genuine website

C
h

a
ll

en
g
e

C
g

e
n

u
in

e
+

K
ey

h
a
n

d
le

s
K

H
g

e
n

u
in

e

C
g
en

u
in

e
+

K
H

p
h
is

h
in

g

Originphishing

+ Cgenuine

+ KHphishing

U2F response

U
2F

re
sp

on
se

U
2
F

re
sp

o
n

se

E
rr

o
r:

in
va

li
d

si
g
n

a
tu

re

1

2

3

4

5

67

Figure 6. The attacker forwards the challenge from the genuine website and provides
the key handles for the phishing website. The token signs the challenge but the genuine
website rejects the signature.

We demonstrated this attack scenario in a proof-of-concept laboratory
experiment. During these tests, we were also able to identify some practical
issues and some deviations from the recommendations provided by the
U2F specifications.

5.1 The case of two pages asking for a U2F interaction

General principle of parallel signing requests The parallel signing
attack scenario involves two U2F-enabled web pages loaded from different
origins. For this scenario, it is worth noting that it is irrelevant whether
the two web pages are displayed in different browser instances, in different
tabs or even within a single tab with the help of HTML iframes.

One of the web origins involved in the attack needs to be under the
control of the attackers. This can be a website of the attackers or a XSS-ed
waterhole 7.

This attack relies on the instrumentation or at least the detection
by the attackers of which page is loaded by the victim’s browser from
the origin that is not directly under the attackers’ control. By doing so,
the attackers are capable of synchronizing two U2F operations, each one
taking place from their own websites. The nature of U2F operation is

7. A waterhole is a web location commonly visited by the victim. Attackers may
trap such locations, waiting for the user to access it to bootstrap the next step of their
attack.

12 A first glance at the U2F protocol

irrelevant to this attack as there is currently no difference from the user
experience perspective between registration operations and authentication
requests. Actually, as illustrated by the figure 7, the token has no way of
telling which application asked the kernel to send an Application Protocol
Data Unit (APDU) nor if this application is a FIDO client or any other
unrelated sender.

HTTP

Raw HID

APDU

U2F Token

FIDO Client

Relying Party 1

Relying Party 2

HTTP

USB device
prober

USB Probe

Kernel

Figure 7. Message flow and APDU sender confusion

At some point in time, the two web pages will synchronously, thanks to
the attackers’ influence, ask for the U2F token to sign a challenge for their
own websites. According to the specifications, user consent is mandatory
for each cryptographic operation (SG-7). The problem is the user has
no way of telling for which of the two simultaneous U2F solicitations his
consent is requested first.

By manipulating the user into giving his consent to an arbitrary U2F
operation of the attackers’ choice, the attackers can achieve various results:

– The Denial of Service (DOS) of some U2F token implementations,
which can only store a limited number of keypairs within the token.
By repeatedly tricking the user, the attackers could fill these tokens
with unique keypairs per origin under their control, until the token
is full.

– A transaction non-repudiation violation, as illustrated by the case-
study presented in section 5.2.

User awareness of parallel signing requests In the previously de-
scribed scenario, the user consent is diverted to satisfy the U2F requests
from the website that does not have focus or that is hidden from the
user. One could think the user would be alerted by his user consent not

M. Bergem, F. Maury 13

triggering any response from the displayed website. Yet, several reasons
might justify their lack of suspicion:

– The U2F token used in our experiment ended up presenting some
USB connector defects causing it to be undetected by USB hubs
upon insertion. This is a problem because the user consent, for our
token, is given by inserting it in the USB port. The average user
might not be able to tell whether a U2F operation was performed
for the wrong website, or if the token simply malfunctioned.

– Some applications send probes to new USB devices [15]. In our case,
libmtp [3], a library used, for instance, with digital cameras, probed
our U2F token. This sometimes placed our token in a state where it
was unable to answer signature requests. We did not investigate the
situation but we guess that the probe consumed the user consent.
Again, the user might not be able to tell whether the token was
solicited by a random probing application, or by the browser for an
unexpected website.

– U2F signing requests emitted by the browser have timeouts. The
user might think that the delay was reached. They might then renew
their consent for the currently displayed operation.

5.2 A case-study attack: transaction non-repudiation

Material used to implement the experiments The scenario de-
scribed in this section was reproduced in laboratory. Our proof of concept
used the following material:

– A USB U2F token;
– Two specially-built test websites using the Django U2F module with

the underlying Yubico U2F Python library [4];
– Valid and legitimate certificates emitted by a public CA for test

domains under our control;
– The Chrome browser, version 45;
– Ubuntu 15.10 as the operating system.

Case-study: CSRF protection and banking transaction non-
repudiation Users might use U2F for 2FA to their bank website to
improve the security of the login procedure.

Some 2FA schemes, such as SMS, are then commonly reused for
transaction confirmations on these websites. For instance, it is a common
practice to send a transaction confirmation code by SMS, and to have the
user type it in a web form to validate a money transfer. According to the

14 A first glance at the U2F protocol

U2F specifications, U2F should not be used to perform such transaction
confirmations. This section illustrates the risk of doing it anyway.

Under the hypothesis that the user is already authenticated on the
bank website, an attacker can force the user into confirming a transaction
protected using U2F as the sole protection mechanism, by performing the
following steps:

1. Present to the user, in a browser tab, a page allegedly asking for U2F
authentication on an attacker-controlled website;

2. In the background, open an iframe with the order confirmation in it;

3. Entice the user into activating the U2F device, allegedly on the dis-
played website, while the first U2F request sent to the token is the
one for the order confirmation.

Such a scenario might lead the user to confirm the transfer order
without noticing.

This demonstration illustrates why the FIDO Alliance rightfully forbids
the use of U2F for transaction non-repudiation. Among other security
measures, which U2F deliberately lacks, a secure display is paramount to
provide the What You See Is What You Sign (WYSIWYS) property, and
thus a strong transaction non-repudiation property.

This kind of attack does not necessarily exist with SMS and TOTP
transaction confirmation schemes. Indeed, in both of these cases, the user
must interact with the browser tab that has focus (i.e. that is displayed),
in order to type in the one-time code. As long as the displayed web page is
genuine and is not trapped (that is that there are no hidden/transparent
frames, like those used in click-jacking attacks) the user knows exactly in
which website the one-time code is typed in.

5.3 Countermeasures to parallel signing requests

The U2F specifications forbid the use of the protocol for transaction
confirmation. Even so, the impact of the above scenario would be more lim-
ited if some additional safe-guards were implemented. It is very important
to note that implementing these additional safe-guards do not completely
secure the usage of U2F for transaction non-repudiation. They merely
improve the user experience and the user’s ability to detect suspicious
situations.

Regarding the threat generated by faulty tokens, we recommend that
browsers implement the optional infobar that is already mentioned in
the protocol specifications. This could be done with already available

M. Bergem, F. Maury 15

frameworks, such as the HTML5 Web Notification API. Doing so would
not prevent the parallel signing attacks but would at least warn the user
about unexpected signature requests.

Concerning probing applications that are unrelated to the U2F protocol,
we recommend that the U2F HID protocol be updated to add some form of
format checks. By doing so, undesirable probes could no longer be mistaken
with U2F messages. This could be achieved by adding some magic numbers
in the U2F frames sent to the tokens, by implementing a simple checksum
or any other format check that would allow U2F token to sort out whether
a message is a valid U2F message. The FIDO Alliance considered this
protocol evolution recommendation. In the end, they rejected it on the
basis that this is more of an implementation problem than a protocol one.

We agree that ultimately this is an implementation problem. Yet, we
also think that the USB protocol itself is lacking some stepping stones
allowing a USB device to unequivocally identify a frame sender and a
frame payload purpose. As such, we think that a protocol taking advantage
of the USB transport should assist the USB device into identifying if a
frame is well-formed and meaningful. Should this information be lacking,
the FIDO Alliance might need to drop support of tokens for which user
consent is given by token insertion in a USB port. Indeed, in the long run,
these tokens may contemplate only two options:

– Accept that they can be victim of accidental or deliberate DOS
“attacks” from random software;

– Ignore “malformed requests” and violate the requirement to handle
one single request per user consent.

The first choice bears no security risk but users might think that the
product is broken. The second choice, however, would introduce a security
risk (e.g. some forms of oracles) for the users of such tokens.

6 TLS man-in-the-middle resistance

The U2F specifications refer to a channel binding security measure
to thwart TLS MITM attacks. For this purpose, specifications published
on May 14, 2015 use an experimental alteration of the TLS protocol,
known as TLS Channel ID. This variation was documented in an expired
Internet-Draft [9] at the IETF. Newer versions of the U2F specifications
will probably refer to its spiritual heir, the Token Binding mechanism,
specified by the tokbind IETF working group [5].

The TLS Channel ID extension support is optional according to the
U2F specifications. Lack of support of said extension does not impede

16 A first glance at the U2F protocol

most security goals of U2F. However, supporting it may grant additional
protections against some attack scenarios involving a TLS MITM. It is
worth mentioning that TLS MITM are very powerful attackers. In most
cases, vulnerability to such attacks is an acceptable risk.

This section provides more details about TLS Channel ID. It then
presents the results of our conformance testing of the experimental imple-
mentation of TLS Channel ID by the Chrome Web Browser, version 45,
and the Google Accounts website.

6.1 TLS Channel ID inner working

TLS Channel ID alters the TLS handshake protocol by specifying a
new TLS extension. As illustrated by the figure 8, this new extension
is negotiated, as usual, in the Client Hello (1) and Server Hello (2)
messages. This extension carries no data and is used for signaling purposes
only. If both TLS end-points signal their support of TLS Channel ID, a
new message, called EncryptedExtensions (7) is sent by the TLS client
after the TLS Change Cipher Spec (6) message and before the Finish

(8) message.

EncryptedExtensions create a new framework for sending extension
data protected simultaneously by the negotiated cipher suite and by the
TLS handshake integrity mechanism. For TLS Channel ID, the data sent
inside the EncryptedExtensions message is the public key of a unique
keypair 8 generated per (TLS client, TLS server) tuple. This keypair is
generated upon first visit of an origin and is kept within the client configu-
ration (e.g. the browser profile) for later use. The EncryptedExtensions

message also contains a proof of ownership of the private key of this key-
pair. The proof covers all previously exchanged messages during the TLS
handshake, similarly to the standard CertificateVerify message [17].

The same end-points-specific keypair is reused upon TLS session
resumption or any new full TLS handshake. While the public key, and
thus the TLS Channel ID, remains constant across several TLS sessions,
the proof of ownership is different during each handshake. It thus provides
a constant and reliable identifier of the TLS client: the public key. This
identifier prevents forwarding attacks since the proof of ownership is
unique to each TLS transaction, at least thanks to the server nonce, the
server certificate and the optional ServerKeyExchange message. As such,
a TLS MITM cannot impersonate the TLS client without knowledge of
the private key associated to the TLS Channel ID.

8. The keypair is generated using NIST P-256 curve. It is exercised with ECDSA.

M. Bergem, F. Maury 17

Client Server
1 ClientHello with TLS Channel ID extension

2 ServerHello with TLS Channel ID extension

3 Certificate

4 ServerHelloDone

5 ClientKeyExchange
6 ChangeCipherSpec

7 EncryptedExtensions (TLS Channel ID)
8 Finished

9 ChangeCipherSpec

10 Finished

11 GET /login

12 200 HTTP/1.1... U2F challenge data

13 POST /authn + U2F signature covering TLS Channel ID

Figure 8. The TLS Channel ID Messages and U2F Messages

18 A first glance at the U2F protocol

Attackers could perform a TLS MITM, where they would impersonate
the server identity, using a fake-yet-valid certificate. This would allow
them to learn the TLS Channel ID public key, since they would know
the cipher key to decrypt the EncryptedExtensions message. However,
attackers would not be able to perform a parallel session attack using this
information. Indeed, the parallel sessions TLS handshakes would have a
different TLS transcript, thus preventing replay of the proof of ownership
read from the decrypted EncryptedExtensions message. Attackers would
not be able to forge such a proof either. Indeed, knowing the TLS Channel
ID public key and potentially several proofs of ownership of the private
key is of no use to infer the client TLS Channel ID private key when
using correct ECDSA implementations and the NIST P-256 curve. Thus,
attackers cannot impersonate the client by reusing the TLS Channel ID
public key in a parallel session because they cannot prove ownership of
the private key to the legitimate server.

TLS Channel ID used alone is vulnerable to a downgrade attack. As
illustrated in figure 9, attackers posing as the TLS server can simply
advertise to the legitimate client lack of support of TLS Channel ID from
the server. Simultaneously, attackers posing as the client can advertise
lack of support of TLS Channel ID to the legitimate server. Without this
signaling, both legitimate end-points will think that TLS Channel ID is
not supported by the other party. The legitimate client will not send the
EncryptedExtensions message and the TLS server will not expect one
from the client.

FIDO
Client

TLS
MITM

Relying Party
(TLS Server)

TLS Channel ID?

No, I don’t
support it

No TLS Channel
ID support

OK, no TLS
Channel ID!

Figure 9. Illustration of trivial downgrade attack against TLS Channel ID

U2F can complement and leverage TLS Channel ID to prevent all forms
of TLS MITM. According to the specifications, when a client supports TLS
Channel ID and performs a handshake with a server that does not support
TLS Channel ID, the U2F messages contain a U2F-signed specific entry:
cid_pubkey with a string value unused. If TLS Channel ID is signaled by
both parties, the string value contains instead the TLS Channel ID as
seen by the TLS client. The legitimate server that supports TLS Channel

M. Bergem, F. Maury 19

ID is expected to check the cid_pubkey value. If this value is incorrectly
signed, if it is different from the TLS Channel ID that is expected for
this client 9, or if the connection does not use TLS Channel ID and the
cid_pubkey values unused, a TLS MITM is detected.

It should be noted at this point that the U2F specifications does not
mention that the server should perform this verification. This requirement
is somewhat implicit. We recommended to the FIDO Alliance and Google
to add to future versions of the specifications a check-list of the verifications
a U2F-enabled server should do. They submitted this recommendation to
the other members of the consortium for revision.

6.2 TLS Channel ID support as implemented

TLS Channel ID is currently standard in the U2F protocol. All U2F
messages carry U2F-signed information regarding support (or lack thereof)
of TLS Channel ID by the client.

At the time of writing, in the web context, only recent Chromium and
Chrome browsers support TLS Channel ID, and only Google Accounts
website (and some Google test websites) advertise TLS Channel ID support
during the TLS handshakes.

To test the effectiveness of TLS Channel ID as implemented by Google
browsers and websites, we set up a TLS proxy performing a TLS MITM
between those two components. For this, we used the OWASP Zed Attack

Proxy [6]. This proxy lacks TLS Channel ID support, thus effectively
performing a downgrade attack against TLS Channel ID. By reading and
replaying all TLS messages with this proxy, we were able to read the
HTTP stream, including the U2F messages sent by the browser.

This experiment resulted in two main observations. We first noted that
Chrome and Chromium implementations do not implement TLS Channel
ID support signaling within U2F messages as specified by the FIDO
Alliance. Instead of returning a signed cid_pubkey string equal to unused,
these implementations return a signed empty string. This discrepancy
could lead to future interoperability problems. When we contacted Google,
they told us they will fix this in the near future. It is worth noting, though,
that since only Google browsers and Google websites support TLS Channel
ID at the time of writing, the impact of this finding is very limited.

The second observation from our experiment was that we were able
to successfully authenticate to our Google test account using U2F and

9. The TLS Channel ID must be sent to the web application running the website by
the TLS server end-point at each request. This allows the website to compare it with
the user-submitted U2F-signed TLS Channel ID.

20 A first glance at the U2F protocol

Chrome or Chromium, while going through the TLS proxy. This happened
in spite of the browser support of TLS Channel ID and in spite of the
U2F-signed support signal. We contacted Google and the FIDO Alliance to
warn them about the success of this downgrade attack. They answered that
Chrome support of TLS Channel ID is currently experimental and still
buggy at times. Thus, even if Google websites could detect such downgrade
attacks, they decided neither to enforce the use of TLS Channel ID nor
to use it to protect against such TLS MITM 10. They also mentioned that
TLS Channel ID would prevent legitimate use of corporate TLS proxies
and they were not ready to keep U2F users from accessing Google services
when such proxies were in use.

We think these arguments are perfectly understandable. Yet, the net
result is that the only TLS Channel ID server-side implementation at the
time of writing does not verify the value of cid_pubkey to prevent TLS
MITM for most clients 11. As such, security assessment of U2F deployment
should consider that U2F does not prevent any form of TLS MITM at
the time of writing. Following the acceptable level of security risks, this
might or might not be a problem, since attackers capable of performing
TLS MITM are considered quite powerful.

7 Comparison of U2F and TLS client certificate

authentication schemes

7.1 Comparison criteria

To compare U2F with TLS authentication using client certificates, no
standard framework was defined, to the best of our knowledge. Google
already performed a comparison of several authentication schemes in prior
art [12], without formally specifying their framework. Unfortunately, TLS
authentication using client certificates was left out of Google comparative
analysis.

For these reasons, we arbitrarily choose to compare these two authen-
tication schemes with the following criteria list: phishing attack resistance,
TLS MITM attacks resistance, web application protection before authen-
tication, centralized revocation capability, ease of use, protocol maturity,
implementation maturity, and unlinkability of accounts.

10. Google websites are protected against most TLS MITM attacks thanks to HTTP
Strict Transport Security (HSTS) and public key pining. These protections are disabled
when certificates from private CA are used. This is the case with corporate TLS proxies.

11. Google activated on our test account an experimental server-side check that
effectively prevented the attack. This check is activated for Google employees’ account.

M. Bergem, F. Maury 21

Most criteria are self-explanatory. Unlinkability of accounts relates to
a privacy threat for users owning several accounts identified by unrelated
pseudonyms. When evaluating an authentication scheme, a privacy risk
exists if an authenticating party or several colluding parties can identify
or suspect that a list of accounts at that authenticating party are owned
by a single user because of the authentication scheme.

7.2 Assumptions used for the comparison

We assume that Software Security Module (SSM) 12 are not used for
either authentication scheme. As such, private keys for the TLS authenti-
cation scheme are assumed to be stored in a hardware secure element, such
as a smartcard. Similarly, a U2F token with a hardware secure element is
used.

7.3 Survey of the criteria and justifications

TLS MITM resistance The TLS CertificateVerify message is
bound to one TLS handshake between two specific endpoints. The server
nonce, the server certificate and the optional ServerKeyExchange message
are supposed to prevent replay of captured messages by a TLS MITM.
These elements are not always present in a TLS handshake, though. This
is the case during a TLS session resumption, for instance. This led to
the triple handshake attack [13], which demonstrated a forgery attack

enabled by a mix of several TLS features. Several TLS vendors imple-
mented a workaround to temporarily thwart this attack. Conscientious
system administrators also disabled some of the rarely-used features that
are required to perform the attack.

U2F effectively prevents forgery attacks, forwarding attacks and parallel

session attacks using channel binding, as described in section 6. However,
at the time of writing, support of TLS Channel ID, used in U2F for
channel binding purposes, is still experimental. Only Google Accounts
website and some Google test sites deploy this countermeasure and its
effectiveness is limited to a constrained list of users. This leaves all other
U2F users vulnerable to TLS MITM attacks.

It is worth mentioning that the SLOTH attack [14] affected TLS
authentication using client certificates as much as TLS Channel ID and its
spiritual heir, Token Binding. The SLOTH attack demonstrated that the

12. A SSM is functionally equivalent to a Hardware Security Module (HSM). However,
SSM rely only on software to protect the cryptographic material, while HSM store it in
a tamper-proof or at least tamper-evident secure element.

22 A first glance at the U2F protocol

hash algorithms negotiated during early steps of the TLS handshake or
required by the TLS RFCs could lead to the use of weak hash algorithms or
shorten Message Authentication Code (MAC). In both cases, this may lead
to collision attacks. Such hash collisions may allow attackers to perform
a forwarding attack by replaying to the legitimate TLS server captured
CertificateVerify or Token Binding messages. Several implementations
fixed the issue by disabling MD5 for signature purposes. In response, Token
Binding draft also changed the signed value from the tls_unique value
from RFC5929 [7] to the exported keying material from RFC5705 [16].

The SLOTH attack is especially relevant to this authentication pro-
tocols comparison as it illustrates that some TLS attacks affecting the
TLS client authentication scheme using certificates may also affect U2F
because of its reliance on some TLS infrastructures.

Phishing attack resistance: By construction, a phishing attack uses a
different origin than the legitimate website.

In the case of TLS, the CertificateVerify message is bound to
one TLS handshake between two specific endpoints. The certificate sub-
ject, related to the origin, is distinct in the Certificate server mes-
sage sent by the phishing website and in the one sent by the legitimate
server. Thus, the handshake transcripts are different, and so are the
CertificateVerify messages. As such, an attacker cannot, in theory,
replay a CertificateVerify message to impersonate a user. In practice,
the triple handshake and SLOTH attacks, already discussed above, showed
that some combination of TLS features can be used to either avoid sending
the TLS messages causing a transcript variation or to make the transcript
digests collide.

In the case of U2F, keypairs are bound to specific origins. A phishing
website would therefore only receive U2F-signed messages unrelated to
those that the legitimate website would receive.

Web application protection before authentication: TLS client au-
thentication using certificates happens before any application data can
be exchanged. As such, unauthenticated users or attackers are unable
to directly interact with the web application, whatever the number of
vulnerabilities that it contains. On the other hand, lack of support of a
logout feature in all major browsers prevents a TLS-authenticated user
from avoiding a CSRF attack, even after the user stopped interacting with
the web application.

M. Bergem, F. Maury 23

U2F authentication scheme occurs at the web application level, us-
ing web forms and JavaScript. As such, an attacker could completely
circumvent the authentication procedure in the case of a web application
vulnerability exploitable by unauthenticated attacker. On the other hand,
session logout can be implemented by websites taking advantage of U2F.

Centralized revocation capability: Revocation of client certificates
is standardized. Revocation is controlled by the emitting certification
authority. The status of a client certificate is known either by checking for
its presence and revocation date in a Certificate Revocation List (CRL)
or by querying an Online Certificate Status Protocol (OCSP) responder
accredited by the emitting certification authority. These mechanisms are
widely available, at least with Apache and Nginx support.

U2F lacks centralized revocation capability. A U2F keypair is manually
registered at each website. Revocation of a token follows similar procedure,
with the user manually unregistering the token from each website. No
universal insurance can be brought that the user unregistered a token
from all websites it was registered to.

Ease of use: Keypair generation on a smartcard is not part of the
TLS authentication scheme per se. If a user expects to perform such an
authentication, though, a keypair and a certificate are a prerequisite. No
major browser capable of interacting with a smartcard using a PKCS#11
interface is providing a graphical user interface to generate the keypairs
or the certificate signing request 13.

We could assume that the TLS certificate keypair was already generated
and the certificate is loaded on the smartcard by the IT department
of the company offering the website to authenticate to. We think this
assumption is realistic for intranet websites, since this is already a common
practice in corporate workstation smartcard authentication deployments.
Aside from TLS authentication, credit (smart)cards are also delivered
to consumers ready to use. As such, one could easily think of a internet
banking website distributing smartcards within USB key form-factored
reader for authentication of their client to their online banking website.

Even if the smartcard initialization is set aside, TLS authentication
using client certificates is well-known for its usability issues [8]. Most web
browsers provide labyrinthine user interfaces for certificate management.
The matter gets even worse when using a smartcard holding the keypair

13. Such tools exist to store keypairs in the browser SSM.

24 A first glance at the U2F protocol

and certificate, depending on the TLS client, PKCS#11 library and the
operating system of the user.

On the other hand, U2F is almost plug and play 14. Enrollment and
authentication user experience can be customized by each RP with rich
web interfaces.

Protocol maturity: TLS authentication of clients based on certificates
is an authentication scheme specified since SSLv2, back in 1995. Studies of
the TLS protocol are regularly published, yet few of these vulnerabilities
pertain to the authentication of clients using certificates. The notable
exceptions are the triple handshake attack [13] and the SLOTH attack [14]
that were mitigated in most popular implementations.

On the other hand, U2F specifications were published in 2015. Our con-
tribution is, to the best of our knowledge, the first report of an independent
security study whatsoever.

Implementation maturity: Support of TLS client authentication using
certificates is universal, with a support from all major web browsers and
support from most programming language TLS libraries. The code is
deemed mature enough by several popular website administrators to use
it as their main authentication scheme. Examples of websites that use or
used for several years TLS with client certificates authentication (with
the private key stored in a SSM) encompass the StartSSL certification
authority or the French tax administration website for individual tax
payment. It is worth noting though that these examples are the rare
exceptions. Indeed, the usability issues often result in this authentication
scheme being dismissed. As a consequence, the implementation robustness
might be less studied than if it was ubiquitous.

Concerning U2F, client-side support is currently limited to Chrome
and Chromium web browsers, version 41 or higher. On the server-side, no
reference open-source implementation of TLS Channel ID is known to the
authors of this paper. Yubico provides several server-side libraries in several
languages. Their code maturity, their compliance to the specifications and
the size of their underlying community was not assessed during our study.
An experimental patch for Wordpress support of the U2F authentication

14. GNU/Linux users need to insert a new set of rules in their udev configuration to
enable unprivileged users to access the token, exposed as a raw Human Interface Device
(HID) device. Some more customization of the operating system might be required, as
illustrated by the libmtp problem that was presented in section 5.

M. Bergem, F. Maury 25

scheme exists. Among the major actors, only Google, Dropbox and Github
advertise some form of server-side support.

Unlinkability of accounts: Most smartcards save the cryptographic
objects (e.g. keys and certificates) within the smartcard memory, which
has very limited storage capacity. Users trying to ensure unlinkability of
their accounts would rapidly need to own several smartcards. Also, users
must be mindful not to send a certificate for a specific website to another
one, as neither the protocol nor the user interface help preventing this.

U2F specifications, on the other hand, allow wrapping of the private
keys within the key handle. The key handle is stored by the server and
is provided to the token in each subsequent authentication request for
unwrapping and signing operations. This allow for a virtually limitless
number of keypairs per U2F tokens. As such, user accounts cannot be
linked across websites using a shared public key or certificate. Users should
however be aware that some tokens do not generate their keypairs from a
fresh random seed. Instead, these tokens use values provided by the RP
and the FIDO client along with a fixed secret value stored within the token
memory. If a user or a group of users were to register several accounts
at the same origin with such a token, all these accounts would share the
same public key, and the server could tell that all accounts use the same
U2F token. These accounts do not even need to exist simultaneously for
this privacy issue to exist.

8 Conclusion

At first glance, our study tends to confirm that the security features
offered by the U2F protocol are superior to the security brought by many
SMS-based and TOTP-based second-factor solutions. This feat comes
from the use of hardware secure elements, a phishing-resistant approach,
the use of strong public key cryptography and an authentication scheme
with distinct public keys per website.

Our conclusion regarding the U2F protocol cannot be definitive as we
did not use any formal verification. It is also worth mentioning that we
left out some elements of the specifications, such as the USB protocol and
the so called AppID and Facets features. In particular, AppID need careful
thinking as their purpose is to indicate to a FIDO client that some websites
and non-web applications are associated to a particular web origin. In
this case, there might be an unstudied security and privacy risk coming
from colluding parties. Finally, it should be noted that our main focus

26 A first glance at the U2F protocol

was not on implementation robustness. As such we did not try to survey
the various tokens nor Yubico’s reference server-side implementations.

At a theoretical level, the web part of the U2F protocol seems sound.
Although we did not mean to test the implementations, our hands-on
verifications of the security properties revealed that some of them still
need some maturation. For instance, this study allowed us to detect
some discrepancies between the reference client implementation and the
specifications. Also, several implementation recommendations are not
followed at the time of writing. Among them are a user interface for
transaction notification and the use of TLS Channel ID.

We contacted the FIDO Alliance and Google about these issues. We
thank them for the quality of their feedbacks, their insight into the
specifications and their willingness to help us further test our findings.

Overall, the U2F protocol seems like a viable second-factor authentica-
tion scheme with phishing-resistant properties. Its ease of use and privacy
features further promotes it for a wide web deployment. Even so, at the
time of writing, our comparison of U2F with the TLS authentication
scheme relying on client certificates indicates that the latter should be
used in environment with the most stringent security requirements.

References

1. FIDO Alliance website. https://fidoalliance.org/. Accessed: 2016-01-07.

2. FIDO Security Reference. https://fidoalliance.org/specs/fido-u2f-v1.

0-nfc-bt-amendment-20150514/fido-security-ref.html. Accessed: 2016-01-07,
Version: 2015-05-14.

3. LibMTP. http://libmtp.sourceforge.net/.

4. Repository of ‘python-u2flib-server‘ by Yubico. https://github.com/Yubico/

python-u2flib-server/.

5. Token Binding IETF Working Group. https://tools.ietf.org/wg/tokbind/.

6. ZAP Proxy. https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_

Project.

7. J. Altman, N. Williams, and L. Zhu. Channel Bindings for TLS. RFC 5929, RFC
Editor, 2010.

8. D. Balfanz. TLS Client Authentication. http://www.browserauth.net/

tls-client-authentication. Accessed: 2016-01-07.

9. R. Hamilton D. Balfanz. Transport Layer Security (TLS) Channel IDs (Inter-
net Draft). https://tools.ietf.org/html/draft-balfanz-tls-channelid-01.
Accessed: 2016-01-07, Draft expired: 2013-12-31.

10. Dmitry Kurbatov. Hacking mobile network via SS7: interception, shadowing and
more. http://secuinside.com/archive/2015/2015-2-7.pdf, 2015.

M. Bergem, F. Maury 27

11. M’Raihi et al. TOTP: Time-Based One-Time Password Algorithm. RFC 6238,
RFC Editor, 2011.

12. Juan Lang and Alexei Czeskis and Dirk Balfanz and Marius Schilder and Sampath
Srinivas. Security Keys: Practical Cryptographic Second Factors for the Modern
Web. http://fc16.ifca.ai/preproceedings/25_Lang.pdf, February 2016.

13. Karthikeyan Bhargavan and Antoine Delignat-Lavaud and Cedric Fournet and
Alfredo Pironti and Pierre-Yves Strub. Triple Handshakes and Cookie Cutters:
Breaking and Fixing Authentication over TLS. https://mitls.org/downloads/

tlsauth.pdf, May 2014.

14. Karthikeyan Bhargavan and Gaëtan Leurent. Security Losses from Obso-
lete and Truncated Transcript Hashes. https://www.mitls.org/downloads/

transcript-collisions.pdf, February 2016.

15. Linus Walleij. Fear and Loathing in the Media Transfer Proto-
col. http://events.linuxfoundation.org/sites/events/files/slides/Media%

20Transfer%20Protocol.pdf, 2014.

16. E. Rescorla. Keying Material Exporters for Transport Layer Security (TLS). RFC
5705, RFC Editor, 2010.

17. T. Dierks and E. Rescorla. On the Use of Channel Bindings to Secure Channels.
RFC 5246, RFC Editor, 2008.

