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Abstract. Product vendors sometimes develop their own cryptographic
algorithms to either protect their intellectual property or ensure informa-
tion confidentiality (data or communications). Many of these algorithms
have been proven to contain critical weaknesses which defeat their purpose,
weaken security and might expose customer data or systems.
Most research on home-made algorithms is usually done through reverse-
engineering of the hardware or software parts implementing these cryp-
tographic primitives. This article tackles a different approach on an
unknown and simple algorithm.
During the study of an embedded system firmware, the author was not al-
lowed to tamper with the targeted product. With hardware-based attacks
or research out of the equation, this article proposes a first-hand account
on how black-box cryptanalysis was performed on a custom algorithm
in order to retrieve a 40 MB firmware from an 18 MB compressed and
encrypted image.
The author discloses approaches, methods, ideas and tools developed
throughout the part-time 6-weeks process, and discusses explored ideas
and attacks which proved to be either successful or dead-ends.
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1 Introduction

1.1 Disclaimer

While initially describing the study of obscure systems, cryptanalysis [9]
(as a discipline) has a strong mathematical connotation. This paper does
not tackle much of the mathematical challenges the cryptanalysis of
modern cryptography poses. It is rather a collection of considerations and
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techniques used to attack an unknown encryption/scrambling algorithm
(an index table may be found at section 6.3).

Therefore, in the context of this article, cryptanalysis shall be viewed
as the historical discipline of retrieving cleartexts, whatever the means
and however weak the algorithm is. Do not expect a revolutionary attack
on a complex cryptosystem, rather a glimpse of a thought process.

The focus of this article is to provide a first-hand account on the
effort such a cryptanalysis requires, as well as dismiss claims that at-
tacking custom-made cryptography is infeasible or requires extraordinary
resources.

As such, while identifying details were left out, the algorithm principles
have been preserved.

1.2 State of the art in black-box cryptanalysis

Nowadays, black-box cryptanalysis is usually performed on ciphertext with

prior knowledge of the algorithm. This is mainly due to the various reverse-
engineering opportunities of available products, hardware or software.
Well-known examples include:

– digital rights management (DVD, etc.);
– access control systems (various NFC technologies);
– Wi-Fi encryption (WEP, WPA+TKIP);
– cellular communications (A5/1 and A5/2 stream ciphers).

Many other examples exist where proprietary cryptography was studied
and successfully attacked [7]. This also includes the recovery of firmware
images [1].

However, all of these examples involved access to the algorithm details
before an attack could be performed on ciphertexts.

Historically, ciphertext-only attacks with no prior access to algorithm
details have been devised by rival governments when eavesdropping foreign
diplomatic communications. While access to algorithm details would still
be seeked through various intelligence means, it was not uncommon to
attack foreign cryptography on the basis of intercepted communications
only. Unlike the well-known case of the Enigma machine, cryptanalysis of
the German Lorenz cipher during World War II was made without access
to the physical machine [8]. At approximately the same time, the Japanese
Purple code was also broken by the american National Security Agency
without needing access to the device itself. A second attempt to break the
Purple code with modern techniques was even made by the NSA more
recently [5].
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Similarly, early paid television services have had their scrambling
mechanism attacked. Some of their scrambling algorithms have even been
cryptanalyzed without having access to a legitimate decoder or algorithm
details [2][3].

This article is an account of a similar attempt on present-day secret
proprietary algorithm used for firmware encryption.

1.3 Embedded systems security

Security research is common on current embedded products in order to
find and patch vulnerabilities. Such a work may or may not be the result of
a collaborative effort with the product vendor. As such, different amounts
of information are available to the researcher, who in turn tries to get
access to as many information as possible, possibly up to design documents
and source codes.

In many cases, source code access is either not possible for multiple
reasons or simply not desirable. The researcher often turns to black box
analysis to:

– study device communications, via traffic captures and protocol fuzzing;
– study its internal mechanisms, via reverse-engineering of the device

firmware.

To protect those, sometimes vendors still consider the development and
use of secret, unproven, home-made scrambling systems or cryptography
a worthy investment. Beyond firmware encryption/intellectual property
protection, it is not uncommon to find this kind of algorithm in proprietary
communication protocols. The rising trend in « smart » devices (the
« Internet of Things ») brings its round of similar attempts at bogus
security measures. Performance considerations worsen the problem, as
vendors try to implement « optimized » algorithms to run decently on
limited hardware resources.

1.4 Context

As part of security research on a particular embedded system, a team of
several people split the task between various efforts, one being focused on
the firmware itself.

To obtain the firmware image, multiple paths may be considered. Here
are the main options:

– asking the vendor;
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– downloading an image file hoping it is not scrambled;
– retrieving the firmware legitimately from the device;
– exploiting a software vulnerability to extract or study the firmware

from the device;
– exploiting an hardware vulnerability to extract or study the firmware

from the device.

Unfortunately, none of those are available:

– no proprietary information is to be exchanged;
– the device is lent for a short duration by the manufacturer;
– the device cannot be tampered with;
– the device should be returned in pristine and working condition.

These restrictions rule out any kind of hardware manipulations, such
as extracting firmware data directly from the NAND flash chips. Yet this
specific manipulation was considered, but deemed too risky after seeing
how the SoC, flash chips and contact pads are protected under a heavily
glued heatsink (see figure 1).

Fig. 1. The target system PCB with a prominent, glued heatsink. Undocumented visible
connectors provide no useful signals.

After assembling the unit back together, members of the team go on
with fuzzing it, while the author focuses on retrieving the firmware by
other means.

For the sake of this article, the different product models can be grouped
as follows:
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– M1, M2, M3, M5 and M6 form model group A;
– M4, M7 and above form model group B.

Models from the latter group have significant differences in the hard-
ware platform. The available unit is model M6, with later tests done on
model M3, whose differences are irrelevant to this paper.

Firmware updates images are available for all models, with five revisions
at the time of the study (including a major revision). Downgrading the
device to an older revision is officially supported, and the original firmware
revision is also available for download. Images for group A are about 18
MB in size, while those for group B are about 50 MB.

It is then decided to have a look at these firmware upgrade files as
they stand a good chance of containing the full image.

Unfortunately, these images do not load into reverse-engineering tools
as they seem to be encrypted.

1.5 Specific constraints

Modern techniques often involve knowledge of the attacked algorithm and
use some of its properties to retrieve information about the plaintext. This
information is usually retrieved through reverse-engineering of the software
or hardware parts implementing the target algorithm. This approach is
not possible due to our constraints.

This paper thus focuses on ideas, approaches, methods and tools
developed while attacking the encryption with no prior knowledge:

– the algorithm is entirely unknown;
– the target platform architecture is unknown;
– the hardware configuration is unknown (including possible security

modules);
– the software platform seems to include open-source libraries (SSL

libraries), as observed by using the product;
– no remote code execution was achieved on the device yet, excluding

dynamic analysis or firmware extraction;
– no oracle is available to get feedback from the firmware update process.

The product could very well run an embedded Linux distribution on a
general-purpose CPU as well as a bare-bone proprietary operating system
on a custom-designed system-on-chip.
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1.6 Initial problem and resources considerations

While the practical case on which this article is based ends up being a
success, readers shall keep in mind the following considerations:

– the ideas developed in this paper are probably not suitable for strong
cryptographic algorithms: a detail feels dangerously off from the be-
ginning, hinting at a weak algorithm;

– even with a weak algorithm, there is no guarantee of succeeding in
recovering a plaintext image;

– no knowledgeable help could be obtained;
– what is observable does not necessarily reflect the algorithm designer’s

intent: a very complex proprietary algorithm may result in observed
properties which were not initially expected.

A particular emphasis is made on the last consideration.

To achieve decryption, the following resources were used:

– six weeks of part-time research amounting to probably 3 weeks of
full-time work on the project;

– a single man effort, with contributions from two colleagues;
– a single desktop workstation for computations;
– lots of sweet and caffeine in various forms.

These weeks of effort had a noticeable effect on the author’s health
and sanity, with sleeping and eating disorders occurring over an extended
period of time.

2 Exploring file formats

The first step in analyzing firmware updates is figuring out the file format:

– Is it a binary file? Is it executed on the device?
– Is it a filesystem? Is it well-known or custom-made?
– Is it compressed? Is it encrypted?
– Does it contain metadata? A digital signature? Parameters?

Immediate actions are to quickly check whether obtaining a usable
binary file looks feasible. Two main steps help achieve that:

– entropy analysis of every firmware update available, for all models in
case some differences showed up;

– file format and header reconstruction, which helps postulate various
hypotheses which would then be tested.
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2.1 Entropy

Entropy analysis [10] is known to help discriminate various types of data
(text, binary code, images), as well as their possible status (plaintext,
encrypted, compressed). The compression algorithm may sometimes be
identified by this method [4].

Figure 2 shows the result on firmware updates from both product
model groups.

Fig. 2. Binwalk entropy analysis on the first 17 MB of the update file for model M6
(group A, bottom) and M7 (group B, top).

Group B models exhibit a very high and uniform entropy average
(around 0.98), possibly indicating the use of strong cryptography or com-
pression. However, group A models exhibit a far lower average entropy
(0.78) with clear fluctuations. Two areas near the end of the file have a
higher entropy, possibly revealing the use of compression or encryption on
some parts of the firmware. Also, the beginning and the end of the file
show more fluctuations than the largest area between the 10% and 80%
filelength marks.

These fluctuations could indicate that more diverse data types are
located at these locations, while a single type lies in the largest chunk.

Also, a 0.78 average entropy could be characteristic of executable code,
which may suggest that the firmware is not strongly encrypted.
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2.2 Header identification

Opening the firmware update in any hexadecimal editor reveals plaintext
data, suggesting the presence of a formatted header (see figure 3).

Fig. 3. Header fields identified visually. Chunk sizes and hashes can be seen overlayed
in green and red (darkest colors).

The relevant model part number is mentionned a few times, as well as
a copyright string, both in plaintext form. They might help the update
program determine whether the proper update is being flashed to the
device.

Also, four 6-character field names have two occurrences each. Their
first occurrence is preceded by 8 bytes for each. Four of these bytes turn
out to be the size of the data section following their second occurrence.

The first two data sections contain short plaintext data or are simply
empty. The last section is identified as a signature, sits at the end of the
firmware update and is sufficiently long to hold a MAC value, but not
much more. The bulk of the firmware is thus located in the third data
storage section, which begins immediately.
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2.3 Main data storage section

The main data section starts with 92 unknown bytes, yet they do not vary
across firmware revisions nor models. The following section contains weird
ASCII values, ending with a long string of 0x2D values. This section is
actually a build timestamp/release string obfuscated with a ROT13 pass.
The actual purpose of the ROT13 use is still unknown.

Right after this ROT13 section, 120 bytes of data look much dif-
ferent from the next ones, which have far more null values that the
rest of the header. Among those 120 bytes, a sharp eye can identify
the 32-byte SHA256 hash value of an empty string (e3b0c44298fc1c14

9afbf4c8996fb924 27ae41e4649b934c a495991b7852b855). The four
bytes immediately preceding the hash are NULL, which may reveal a new
size field.

As three SHA256 hashes fit in 120 bytes, with 24 bytes left, there is
room for a 32-bit size field and an additional 4-byte value. Indeed, the
other 4-byte values fit the description of a size field: adding all three fields
gives precisely the size in bytes of the remainder of the main data section.

Therefore, these three data chunks seem to be stored in the main
data section of the firmware update file, with the last chunk being empty.
Notably, this chunk of data is not empty among models from group B.

Unfortunately, those SHA256 hashes do not match any subset of the
stored data.

From this manual analysis, many parts of the firmware update header
can be reconstructed. Figure 4 shows the resulting documentation. A few
fields are identified by reverse-engineering the firmware update application,
but the software does not parse them further than the first 144 bytes
(0x90), while some can be identified further along. Parsing of those fields
is probably done on the device itself.

Identified fields are then compared across product models and firmware
revisions, to help mark fields whose values are either static or changing.
Some fields have their value depend solely on the firmware revision, sharing
it across models. Some other fields have their value change completely
between models, even from the same group.

2.4 Hypotheses and initial thoughts

A summary of firmware update c.01 for model M6 is shown in figure 5.
Two interesting data chunks are identified: a very small one, and a

large one occupying the bulk of the firmware update file. The latter is
likely to contain the firmware image.
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Fig. 4. Header fields as retrieved from the manual file analysis. Bold text highlights
variable contents between revisions and models.

Analysis with automated tools, such as binwalk, does not identify a
known compression algorithm or data type.

Consequently, the recovery efforts then focus on firmware updates for
models from group A, as they do not seem strongly encrypted.

At this point, a few hypotheses are formulated on the identified data
chunks:

– one of the chunks must contain executable code, as well as other
plaintext data we should obtain by using the device (GUI strings, web
pages);
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Fig. 5. Firmware update file format summary. Firmware image is expected to be found
within chunk #2.

– the chunks could be flashed « as-is », as there seems to be strong
integrity mechanisms in place;

– identified SHA256 hashes must correspond to the output after properly
processing data chunks, indicative of either (or both) compression or
encryption;

– downgrading ability, format similarities and varying header values
across firmware revisions must mean the update file is self-sufficient,
and that the updater software is backward compatible.

We were then left with two data chunks, of which we assumed to have
the SHA256 values of their corresponding plaintext. The recovery efforts
then focus on each chunk, as recovering the smallest one could eventually
help recovering the largest chunk.

Up to this point, the recovery efforts lasted for a single day.
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3 Initial intuition, trial and errors

3.1 Finding code patterns

Not knowing whether the binary data is in plaintext, compressed, or
somehow encrypted form, a colleague suggested to try and match code
patterns.

Finding instruction opcodes A statistical analysis can be performed
on byte groups of varying length, to match the results to those of typical
CPU architecture instruction sets.

This task is quite difficult, especially with variable-length instruction
sets.

Although it was briefly explored, initial results proved too uncertain to

properly match any given architecture.

Function calls Byte sequences related to function calls/returns or func-
tion prologue/epilogues can be searched for, and matched against those of
known architectures. A match would also help identify the underlying CPU
architecture. One would find roughly the same proportion of call instruc-
tions than that of return instructions. The same goes for prologue/epilogue
patterns (matching combinations of push/pop instructions).

While data entropy is somewhat similar to that of binary code from

various architectures, this approach proved unsuccessful.

3.2 One more hypothesis

After failed attempts at directly identifying executable code, a new hy-
pothesis is tested.

The plaintext data is likely to be either some form of binary executable
code, some data files, or parameters. Such data is likely to be structured:
common executable formats have a well-defined header, whose structure
and values do not vary that much between compilations. The same is true
for other data types.

Therefore, we are likely to find a format header or container structure
which probably does not vary much between firmware updates.

3.3 Initial discovery

After the firmware update header, data from chunk #1 immediately shows
a lot of null values, as can be seen in figure 6: chunk #1 data starts at
0x1E0.
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Additionally, most bytes have a very low number of bits set. This
seems to confirm the previous hypothesis that data might be structured
and have bitfield values or flags stored first.

Fig. 6. Chunk #1 binary data differences between consecutive minor revisions of model
M6. Note how the same number of bits are set in each 4-byte word.

Binary differences between two consecutive minor revisions reveal
another interesting detail: there is the same number of bits set for each
corresponding 4-byte group.

This observation leads to a major discovery: if the stored data is
actually structured, it is unlikely that the format markers differ by much.
Bits should then be stored at the same position. Since it is not the case,
there are yet precisely the same number of bits set for each 4-byte group,
the content has probably been scrambled at least by a bitwise
rotation of some sort.

This is first verified manually by calculating bitwise rotations differ-
ences on little-endian 4-byte words, as shown on figure 7.

So the scrambling system is likely to use bitwise rotations to obfuscate
data from chunk #1, as we are able to get perfect matches of the first
data bytes by applying a specific rotation to an update revision compared
to another.

Up to this point, two days of effort had been spent in the analysis.
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Fig. 7. Whiteboard with initial discovery of bit-shifting similarities across firmware
revisions.

3.4 Comparing update revisions

The previous finding means that one might be able to match some if not
all data from an update revision to another, by simply applying the same
bitwise rotation to each 4-byte word.

Comparing SHA256 hashes from the update headers between various
models and revisions reveals that chunk #1 data could be the same within
the same major firmware revision. Figure 8 shows that all minor revisions
of the b.xx and c.xx branches respectively have identical hashes.

Fig. 8. SHA256 hashes found in headers from update files for different versions and
models.

Therefore, if our earlier hypothesis—that SHA256 hashes are those of
cleartext data—is true, it should be possible to perfectly match chunk #1
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data found among those minor revisions, both in cleartext and encrypted
form.

Ciphertext match does not necessarily mean the encryption has been
broken yet, as the bitwise rotation may be applied as a final pass. However,
if this is the only pass, it is then possible to fully decrypt the data. In any
case, being able to match ciphertext from an update to another can still
prove useful.

Figure 9 shows what the decryption approach would be in such an
event.

Fig. 9. Decryption approach for chunk #1 in the event bitwise rotation is the only
scrambling pass.

Unfortunately, applying the same bitwise rotation to the full chunk #1
data only yields a partial match: data ceases to match after an arbitrary
length (see figure 10).

The bitwise rotation distance changes after a given length, hence
revealing that the scrambling process works with 4-byte aligned blocks
of arbitrary sizes. Repeating the bitwise rotation allows identification of
4 blocks of different sizes with different rotation parameters for the full
chunk.

Note that the first two blocks include large amounts of consecutive
NULL bytes. As these NULL bytes are insensitive to bitwise rotation, it
is impossible to determine how many blocks span across those.
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Fig. 10. Block boundary detection in chunk #1 at 0x1F018 due to a sudden content
mismatch.

3.5 Bruteforce

Testing all 31 possible bitwise rotations on chunk #1 finally reveals some
plaintext, indicating that no other scrambling has been applied to data.
The first block reveals the ELF magic value, while the last block reveals
ELF section names and some compilation string artefacts.

As shown in figure 11, two blocks are left with no identifiable plaintext
in any of their rotated counterpart. This leaves 312 = 961 combinations
(compared to the initial 314 = 923521 combinations), allowing a bruteforce
attack on chunk #1 to recover the plaintext. Candidate plaintexts would
be tested against the SHA256 hash found in the update header, granted
our initial hypothesis is correct.

All 961 candidates are generated with their SHA256 hash, and a match
is found for chunk #1, validating all previously stated hypotheses.

A valid ELF binary follows a small, custom header. This also reveals
that the underlying architecture is a MIPS CPU.

3.6 Chunk #1 analysis

Reverse-engineering the recovered chunk #1 ELF reveals interesting details.
The binary has three main modes of operation:

– parsing headers with a format matching the one found before the ELF
magic;

– uncompressing a blob to an arbitrary memory location, with a variant
of an LZ compression algorithm;
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Fig. 11. Block decryption bruteforce for chunk #1.

– acting as an ELF image loader and jumping to its entry point.

Oddly enough, it looks like this binary is executed on the device and
gets the decrypted chunk #2 as an input, decompresses and runs it. The
binary could act as a bootloader and be used to load the firmware image
into memory.

The compression algorithm is then reimplemented to mimic the binary
implementation, including corner cases and error conditions. However,
the chunk #2 data needs to be fully decrypted before being able to fully
uncompress it.

3.7 Trial and error

While bruteforce was an option for chunk #1 (even with the initial 923521
combinations), this seems a very unlikely possibility on chunk #2 due to
the potentially large number of blocks. A rough estimate gives more than
2000 blocks with the observed mean block size of 8 KB.

Chunk #2 also displays a valid ELF header at the beginning, after a
similar custom header. However, identifiable data quickly surfaces in the
few kilobytes immediately after the ELF header:

– large data areas padded with 0xFF values;
– an embedded filesystem image, with structures similar to directory

entries;
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– corrupted web content (HTML pages and GIF images).

Binwalk successfully identifies a very limited number of images, though
they are split across multiple storage blocks of the filesystem and are not
yet fully recoverable.

The chunk #2 data is still compressed at this point. Due to how LZ
compression works, early bytes will probably be left unaffected before the
compression dictionnary fills with enough context. However, control bytes
are inserted every 8 bytes, corrupting contents.

Quickly enough, the compression mechanism is sufficiently active to
deter naive recovery attempts. Also, block boundaries for the encryption
algorithm become less and less clear as binary data is much more difficult
to identify. It is then required to recover all block boundaries as well as the
rotation distance for each of these blocks before being able to uncompress
the firmware.

As could be expected, contrary to the chunk #1 data, no two firmware
updates share identical SHA256 hashes. Identifying block boundaries is
not feasible using the same comparison technique.

About two weeks of part-time work had been spent on recovering the

chunk #1. The next sections will cover how the actual recovery was

performed on the 18 MB chunk #2.

4 Hypotheses, heuristics and validation

Two major parameters are still unknown:

– how the bitwise rotation distance is chosen;
– how the block size is determined.

Given the size of the chunk #2 data, these parameters cannot be
guessed by bruteforce alone.

4.1 Refining hypotheses and using them to find strong
heuristics

Given the previous findings regarding the chunk #1 executable, one can
safely assume compressed, cleartext chunk #2 data is processed by a
similar (if not identical) binary running on the device itself. The following
hypotheses may then be formulated:

– decryption must occur before any further processing;
– downgrade support means the decryption binary must either apply a

common algorithm for every revision or identify the target revision;
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– firmware update files must be self-sufficient to yield correct decryption
parameters.

Careful comparison between update revisions and across different
models reveals the following facts:

– rotation distance varies based on version number only, as the same
values are used for chunk #1 data across different models;

– block sizes vary by both version number and model; however as no
identical SHA256 is found across models, the latter may be unimpor-
tant;

– block sizes do not vary between minor firmware revisions for the same
chunk #1 data.

Therefore, block sizes and rotation distances could be determined by:

– two hard-coded, data- and version-dependent lists of values;
– a value generation algorithm seeded by information within the update

file header;
– the cleartext data itself, or a value derived from the cleartext data

(possibly its hash value).

It is highly unlikely that hardcoded lists of values are used for each
version, as they should be either determined from the start of the product
lifecycle, or pushed in advance for upcoming upgrades by the previous
ones. This process seems very unlikely for a device with both downgrade
support and the ability to skip major revisions.

The next efforts are focused on recovering how both block sizes and
rotation distances are determined. At that point, only a handful of these
values have been determined: 4 blocks for chunk #1 data, and only 2
blocks for chunk #2 data.

4.2 Expanding the sample size

To get a better idea of the various block sizes and rotation parameters, it
is useful to gather as much actual values as possible, sorted by revision
number and model.

Fortunately, chunk #1 data for model M1 is 560 KB long. As multiple
versions share the same data, the same comparison technique can be used
between minor revisions to identify block boundaries.

Within two minor revisions 22 and 24 blocks can be identified, with
confirmed lengths varying between 128 and 15712 bytes (blocks starting
or ending in byte arrays neutral to bitwise rotation are ignored as their
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boundary cannot be precisely determined). No obvious correlation pattern
can be identified with such a small sample size.

Rotation parameters to fully decrypt chunk #1 cannot not be brute-
forced. Indeed, only five blocks are recovered based on string values, leaving
17 to 19 unknown parameters, far too much to guess accurately. Again,
the sample size for both block size and rotation parameter is insufficient
to detect any noticeable correlation.

As the comparison method cannot be reliably used on chunk #2 data
because of varying contents between revisions, other ways of confirming
block boundaries are developed.

4.3 Instrumenting compression

The decompression algorithm will fail if it encounters certain particular
invalid control bytes or empty dictionary entries.

This allows using the decompression algorithm to validate its own
input: incoherent data will not be decompressed correctly. This implies:

– bitwise rotation on 4-byte words will corrupt or shift control bytes at
incorrect positions;

– decompression dictionary will slowly fill with incorrect contextual data,
leading to decompression errors later on, sometimes very far from the
current position, depending on data duplicity.

If wrong block sizes or rotation parameters are guessed, decompression
is likely to fail. This fact can be exploited to validate guessed values,
by trying to uncompress the data and having the decompression routine
display offsets where errors have been encountered.

4.4 Finding multiple reliable checks

Block boundaries will end in the middle of stored data, which may be
used as a validity check:

– if an executable binary is located around suspected block boundaries,
disassembling instructions should yield a coherent output, rather than
corrupted or uncommon instructions;

– if a filesystem is discovered, its structure could be reverse-engineered
to help validate coherence of guessed block boundaries and rotation
parameters;

– if files of known format are discovered, they can be used to validate
the decompression output.
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Various data are found that could be used to validate block boundaries
after guessing block size and bitwise rotation distance:

– a data structure first attributed to a NAND flash image format (how-
ever, this turned out to be misleading);

– a proprietary filesystem derived from FAT-like structures;
– a few web pages;
– a few PNG and GIF images;
– multiple X.509 certificates for HTTPS support.

This « almost known » cleartext data helps provide reliable checks
to confirm candidate block boundaries and rotation parameters: either
check for consistency or simply compare with a copy obtained from the
embedded web server. GIF files, web pages and certificates are used in
that regard.

4.5 Unreliable data

A block boundary ends up within an SSL certificate for a different model,
which is still present in the image1. Due to the random nature of such
data, and unavailability of the relevant model, it is impossible to fully
validate this block boundary.

Furthermore, the embedded filesystem image seems to contain forensic
artefacts of deleted data within the web root, which is confusing as these
files could not be retrieved by accessing the web server (as if the filesystem
image had been generated and updated on an actual device).

These uncertainties lead to the decompression progressing or failing
in similar ways given multiple different candidate block boundaries. This
quickly increased combinatorial complexity.

This type of error becomes more and more common as the decom-
pression progresses through binary input data which is not easily identifi-
able/verifiable. Indeed, the decompression dictionary quickly fills, leaving
less and less empty entries, which results in less and less decompression
failures (even from incorrect data).

4.6 Combining steps to discard branches

As described in figure 12, the recovery process outline then becomes as
follows:

1 The fact that generic SSL certificates are shared and hardcoded is a worrying fact
on its own.
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Fig. 12. Chunk #2 decryption approach.

1. guess rotation parameter for the first block, using the ELF magic value,
or bruteforce the rotation distance ;

2. run instrumented decompression on candidate cleartext chunk. De-
compression failure occurs at or after the actual block boundary: de-
compression should then have advanced significantly if the parameters
were guessed correctly;

3. check validation heuristics on candidate uncompressed chunk;
4. try the next candidate rotation parameter or block boundary if valida-

tion fails. Go on to the next block if validation passed.

Advancing decompression along with guessing attempts provides the
following benefits:

– bitwise rotation distance is bruteforced for each subsequent block se-
quentially instead of trying every combination for multiple consecutive
blocks. Doing so contained combinatorial explosion within acceptable
limits;

– compression control codes may be checked for coherence before attempt-
ing decompression, effectively reducing the number of combinations;

– decompression can be attempted on multiple candidate block bound-
aries, with candidates advancing the output further likely being the
correct ones;

– multiple, different heuristic checks may be tested against the last few
uncompressed candidates.
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This approach limits computational requirements progressively by
running the most CPU-intensive tasks on less candidates as they are being
discarded along the way.

4.7 Initial results

This approach yields very interesting results. As shown in figure 13,
multiple block boundaries and rotation parameters can be retrieved.

It becomes evident that the rotation distance comes from a cyclic list
of 24 values. This list is shared across all revisions and models. Only the
starting index differs and it is determined by the version number within
the update file header.

This discovery enables full decryption of model M1 chunk #1, which
ends up having no helpful difference with respect to chunk #2 data
recovery.

At this point however, block boundaries do not seem to be shared
between models or revisions, nor do they look cyclic.

Uncertainties in block boundaries, as well as decompressed data ambi-
guity lead to finding new ways of validating our guesses, as discussed in
subsection 4.9.

Fig. 13. Chunk #2 identified block boundaries and repeating bitwise rotation pattern.

4.8 Implementation

A small tool is developed specifically to implement our approach (figure
14):

– given an initial rotation distance, it will guess the next block boundaries
recursively by running decompression attempts on multiple candidate
boundaries;
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Fig. 14. Developed tool for block boundary and bitwise rotation parameter discovery.

– decompression is reimplemented in C (from our initial ruby implemen-
tation), to accommodate for some performance issues;

– rotation parameter guessing is reimplemented using the discovered
hardcoded values to speed up boundary discovery and eliminate unre-
liable guesses.

The tool is obviously very specific to the attacked algorithm and
firmware update format.

4.9 Analyzing revision-specific differences

While different firmware revisions contain different data, one could assume
minor revisions would not differ by much.

Even if parts of the executable code change to reflect patches, most
static resources and code will remain the same. This means one should be
able to find identical data within two consecutive minor revisions, granted
the build process is streamlined and produces a similar content layout for
each revision.

Therefore, an attempt is made to recover two consecutive firmware
revisions in parallel. The rationale behind this effort is as follows: as
different versions have different block sizes, block boundaries are likely
to end up in different parts of their contents. This means that for any
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given data block, one will probably be longer than the block containing
the same data from the other revision. It is then possible to leverage this
length difference to cross-validate block boundaries by comparing contents
from candidate blocks of one revision to the longer block from the other
revision.

Fig. 15. Chunk #2 mutual validation approach.

Proceeding this way enables cleartext recovery by alternating the
reference block used for validation between two consecutive firmware
revisions: whichever block ends at the farthest output offset will be used
as reference. This « mutual validation » approach is described in figure
15.

4.10 Final results

The mutual validation between consecutive revisions proves successful
enough to enable the recovery of several hundreds of data blocks.

During the manual recovery of these block boundaries, some statistics
are kept. It becomes obvious that their sizes are also following a cyclic
pattern of 31 values (see figure 16), although they are different for every
firmware revision. Like block boundaries of the chunk #1, it is thought
that the values do not depend on revision numbers, but only data contents.
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Fig. 16. Chunk #2 identified block boundaries across firmware update revisions.

Using both the block size and rotation distance lists to decrypt the
firmware results in a clear text image matching the SHA256 hash found
in the update file header.

This concludes the six weeks of research, with most advances always

occurring only a few days apart. The lack of long period without significant

breakthroughs supported arguments in favor of continuing the cryptanalysis

effort.
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5 Instrumentation considerations

5.1 Planned evolutions, areas of research

While further development was not required, a few evolutions and areas
of research were discussed internally, in case the manual and mutual
validation approach proved insufficient:

– automating the mutual validation process;
– automating binary disassembly as a dedicated validation check;
– spending more effort reverse-engineering the proprietary filesystem to

develop efficient validation heuristics;
– using a third data source for validation, across either three consecutive

minor revisions or between identical revisions for different product
models;

– instrumenting decompression to provide dictionary hit and miss statis-
tics, and devise heuristics based on expected behaviour.

5.2 On multithreading

The developed tools used for bruteforce or block boundary discovery are
not multithreaded.

The author believes spending time on properly multithreading the
process would have shifted focus on irrelevant matters, rather than finding
clever ways of attacking the problem. To an extent, the author recommends
performance issues not be resolved by multithreading before any other
option has been fully explored.

However, some critical steps may hit performance issues, as was the
case with our initial ruby implementation of the decompression algorithm.
One should take extra time to consider whether multithreading would lift
a significant bottleneck or help advance to an ulterior step.

A basic attempt was still made to make use of the Open MP multi-

threading library, although performance was not ultimately an issue for

our needs.

5.3 Statistical methods for data analysis

While simple analysis of block sizes and rotation parameters helped identify
cyclic patterns, a true statistical analysis was not relevant for our data
set.

However, this method should always be considered, and the author
purposedly kept track of various observed properties in case a statistical
study would be required later on.
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6 Final thoughts and industry efforts

6.1 Recovered algorithm and data

The efforts succeeded in recovering a plaintext firmware image from the
update files only. The result is a 42.2 MB ELF file recovered from the
initial 18.1 MB firmware update. The file loads properly in IDA and finally
reveals a custom-designed, proprietary real-time operating system running
on a MIPS architecture.

The encryption algorithm resulted in bitwise rotation performed on
4-byte words, with parameters shared within data blocks of varying sizes
ranging from 128 bytes to 16 KB. Bitwise rotation distance is taken from a
cyclic list of 24 values, shared accross all firmware versions, with a starting
value depending solely on the firmware update version. Block sizes vary
with 31 possible values, also taken from a cyclic list, whose values vary
depending on the firmware update chunk content.

The reader should keep in mind the observed resulting algorithm may
not necessarily reflect the designer’s intent, but might as well be the result
of unintended consequences of an improper design.

Reverse engineering of the discovered firmware revealed enormous,
unrolled routines implementing cryptographic primitives believed to par-
ticipate in the update process. Multiple debug symbol names reveal the
algorithm was actually thought as a cryptosystem, with decryption and
encryption routines being explicitly named as such.

6.2 Required effort and resources

As stated in subsection 1.6, the effort spanned over six weeks of part-time
work for a single researcher.

Coworker contributions included reverse-engineering of the ELF bi-
nary contained in the first chunk as well as a reimplementation of the
decompression routine in both Ruby and C, in addition to various tool
optimizations.

The developed tools helped us figuring out block boundaries, which
allowed recovery of plaintext images in less than half an hour of manual
checking. Computations were single-threaded and performed on a Dell
T5500 workstation with 12 GB of RAM and dual Xeon X5650 (6 cores/12
threads each, 2.67 GHz).

In preparation for a similar attempt, the author would like to give
readers the following advices:

– take detailed notes of everything: wikis are great for that;
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– take regular breaks, sometimes for extended periods of time;

– step back and go over your approach on a regular basis to avoid getting
lost in your own misconceptions;

– try to find ways to refine and/or validate hypothesis;

– have your ideas cross-examined by coworkers who are not involved in
your project, keep notes of every suggestion;

– do not take a path without having considered at least one or two other
possible options in case of failure.

6.3 Summary of discussed techniques and ideas

The following tables provide a summary of analysis techniques and ideas
discussed in this article, along with their relevance to the recovery of our
firmware data.

File format identification

Technique/Idea Ref. Comments/Relevance

Entropy analysis 2.1 Helped identify compressed and weakly en-
crypted data

Field delimiter iden-
tification

2.2 Helped recover data-container structure

Well-known value
identification

2.2 Helped identify hashes, timestamps, sizes, etc.

Size-field identifica-
tion

2.2 Helped delimit raw data chunks

Static/variable data
identification

2.3 Helped delimit fields, identify value signifi-
cance, devise hypotheses

Encryption scheme identification
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Technique/Idea Ref. Comments/Relevance

Finding instruction
opcodes

3.1 Unsuccessful attempt at finding executable
code

Matching calling con-
ventions

3.1 Unsuccessful attempt at finding code-like pat-
terns in case the encryption kept symbols
alike

Bitwise binary differ-
ences

3.3 Helped locate bitfields, headers, parameters,
etc.

Comparing multiple
samples

3.4 Helped identify static data BLOBs, enable
statistical analysis, exploit potential similari-
ties

Bruteforce 3.5 Helped recover data without known/identifi-
able plaintext

Reverse-engineering 3.6 Helped identify and implement the compres-
sion algorithm, helped find useful error/corner
cases

Binary data finger-
printing

3.7 Unsuccessful attempt at recovering complete
files from firmware image

Data recovery
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Technique/Idea Ref. Comments/Relevance

Devising strong
heuristics

4.1 Helped develop data validation routines used
for automating exploration

Keeping statistics
and numbers

4.2 Helped identify patterns, cyclic values, helped
prepare further analysis

Chaining decryption
with other processing

4.3 Helped validate decryption, block boundaries,
decompression input

Instrumenting com-
pression

4.3 Helped discard incoherent compression con-
trol bytes

Validating data for-
mats

4.4 Helped validate successful decompression,
helped discard corrupted bruteforced/guessed
candidate blocks

Chaining data valida-
tion

4.6 Helped limit combinatorial complexity

Cross-comparison be-
tween multiple source
data versions

4.9 Helped exploit similarities across data revi-
sions, helped derive validation heuristics

Multithreaded tools 5.2 Unused
Statistical methods
for data analysis

5.3 Unused, though it was strongly considered
and prepared for

Thought process

Technique/Idea Ref. Comments/Relevance

Taking long breaks 6.2 Proved essential to keeping clear thoughts,
ideas and goals

Peer review, sugges-
tions and rubber
duck debugging

6.2 Proved essential to validate and find ideas,
helped ensure the implemented methods were
appropriate and correct

6.4 On the use of home-made cryptography

Most researchers would not bother trying to attack the algorithm directly
when they could afford attacking the hardware directly.

While it is widely recognized that security by obscurity is not a viable
option in the long term, the successful efforts presented herein are a
strong reminder that custom-made cryptography is not a strong deterrent
to reverse-engineering. Even worse, the development and use of such
algorithms tend to provide vendors with a false sense of security, which
ultimately is fatal in environments where security is key.
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Hiding firmwares to deter reverse-engineering ultimately results in the
security community failing to analyze products and get vulnerabilities fixed
through responsible disclosure, while leaving resourceful, malicious actors
able to spend the required effort to succeed. These actors usually have
no incentive to publish their findings or get bugs fixed, leaving legitimate
customers vulnerable.

All of these considerations hold even without considering the fact that
designing a secure cryptographic system can prove very difficult [6].
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