
USBiquitous: USB intrusion toolkit

Benoît Camredon
benoit.camredon@airbus.com

Airbus Group

Abstract. The USBiquitous project is a set of open source tools to
interact with USB communications. It is composed of a hardware part
embedding a Linux system with a bespoke kernel module, and a set of
userland scripts and libraries, each designed to tackle a specific problem
linked to USB communications. Emulating a USB host, device, or simply
performing a man in the middle attack between a host and a device can
then be done with a few lines of code in a userland script.

1 Introduction

1.1 Context

USB devices are everywhere: keyboards, mice, USB keys, webcams, WiFi
adapters, phones... and USB interfaces are appearing on every equipment
of our every day life [9]. The situation is not going to change with the
Internet Of Things (IOT) development.

In industrial settings, USB interfaces are already widespread. Every
new car already has one or more USB plugs, that can be used either to
get electrical power to recharge our phones, iPods... or simply to play
music. In can also be used to retrieve logs or to update firmware. USB is
an all-purpose interface and even the most change-averse individuals are
forced to adopt this standard.

Naturally, this interface is a security attack target and more and more
tools exist to assess the robustness of systems using this interface [2, 5],
that make it mandatory to improve our USB tools to protect systems
against this not new, but nevertheless growing attack vector.

To conduct audits on systems having USB interfaces, we needed to
have a good understanding of this protocol, and the low level layers of
the Linux kernel that implement it. On this journey to understanding the
USB protocol, we have developed the USBiquitous framework, as a means
to experiment while learning.

This framework has accumulated enough useful features to become an
effective tool during audits of systems that include a USB interface.

158 USBiquitous

1.2 Framework design
More than a tool, USBiquitous (USBq) is a framework that can be easily
adapted to suit several needs.

It is composed of four parts:
– A hardware part, named USBq Board, that has several USB interfaces,

and runs a Linux operating system
– A Linux kernel module, named USBq Core, running on the USBq
Board

– A userland library, which provides users with the framework of the
USBq API, to be used to write applications

– Userland applications, named USBq Apps, which perform a specific
task, using the USBq API
The USBq Board can be:

– connected to a host and act as a USB device
– connected to a device and act as a USB host
– connected between a host and a device and act as a USB proxy

USBq USBqUSBq

Fig. 1. USBq modes

Used together, the USBq Core and USBq Board forward USB commu-
nications in both directions between a USB entity (host or device), and an
USBq App, through the userland USBq API, where that can conveniently
be manipulated (see figure 2).

The task of the USBq APP depends on the problem to tackle. In
device emulation it could be to assess the robustness of the targeted host
USB stack, or simply to emulate a keyboard acting as a USB rubber
ducky [12]. In proxy mode, it could be to perform USB communications
recording, to allow offline investigations, or to apply mutations to fuzz a
USB driver. In host mode, it could be to analyze responses from the USB
device to fingerprint its USB stack.

The userland part is free to focus on the specific problem it is intended
to resolve while abstracting away low level USB details.

B.Camredon 159

USBq
Core

USBq
Core

USBq
Userland

Fig. 2. USBq design

1.3 State of the art

Playing with USB communications is not something new and nowadays
several opensource tools are already available.

Facedancer The facedancer [2–4] is the most famous one. It is a bespoke
USB hardware device that can be configured to perform USB device
emulation or USB host emulation, but not both at the same time. It is a
very powerful tool as it allows implementing very easily a host or a device
using provided python libraries.

The umap [16] tool, is based on the facedancer and can be used to fuzz
USB stacks or detect which kind of USB devices can be handled by the
host.

Because the facedancer cannot be used as a device and a host at the
same time, it is not possible to use it as a Man in the middle tool. However,
there is a project [14,15] based on two facedancers to perform a MITM,
but it has many performance issues.

USBSniffer USBSniffer [20] is the closest project to USBq in terms of
design, but not in terms of objectives. It was developed in 2010 for the
Google summer of code, but it is now inactive.

USBSniffer is a Linux kernel module running on a BeagleBone black [1]
that implements a USB driver and emulates a USB device using the
GadgetAPI [5]. Both components are used to forward USB communications
from a device to a host. Then usbmon [19] and tcpdump are used to
generate a PCAP file of the USB communication.

USBq tries to go further and isn’t limited to sniffing only.

USBProxy USBProxy is a C++ userland program running on a Bea-
gleBone black [1] and using GadgetFS [6] to emulate a device and the

160 USBiquitous

libusb [8] to communicate with a USB device. It is possible to add
plugins to interact with USB communications.

2 Background

This part outlines USB standard concepts and can be skipped, if they are
already known. It is based on several sources [21,22].

USB (Universal Serial Bus) is a protocol defining how a host and a
device shall communicate. It was designed to standardize the connection
between a computer and its peripherals, and to replace all older interfaces
such as serial or parallel ports.

The first USB standard 0.8 was published in 1994. The latest is USB
3.1 issued in 2013. However, even if USB3 devices are prevalent, lots
of USB2.0 devices are still in use. Each standard defines (among other
things) the maximum theoretical speed of the communication. For now,
USBq is limited to USB2.0 standard.

2.1 Tiered-star topology

The architecture of USB consists of a host and a multitude of downstream
USB ports, and multiple peripheral devices connected in a tiered-star
topology. The host controller contains the root hub, on which several
devices can be connected, including other USB hubs (see figure 3).

HOST

ROOT
HUB

DEVICE
DEVICEHUB

DEVICEHUB HUB

HUB

HUB HUB DEVICE

DEVICE

DEVICEDEVICE

DEVICE HUB

DEVICE

Fig. 3. USB Topology

B.Camredon 161

Up to five USB hubs can be linked in series to handle a maximum of
127 devices.

2.2 USB communication

USB communications always happen between a host and a device1. The
host manages traffic on the bus, and the device responds to requests from
the host.

In order to communicate, hosts and devices use unidirectional pipes,
called endpoints, to send or receive data. The host sends data to the
device using an OUT endpoint, while it receives data using an IN endpoint
(see figure 4).

IN Request

IN Data

OUT Data

OUT ACK

Fig. 4. IN/OUT communication

Each device has a list of endpoints that it is able to use. Each has a
set characteristics that are communicated to the host using an endpoint
descriptor structure.

The USB communication is done in two main steps: the enumeration
process which is used to determine USB devices capabilities, and the data
exchange.

2.3 Transfer Type

Because several devices with completely different purposes and require-
ments can be connected to a host, four types of data transfer have been
defined:

– Control Transfers commonly used for command and status operations.
For example, they are involved in the enumeration phase, allowing the
host to learn about device capabilities. All devices must be able to
handle this type of data transfer

1 There is not device to device communication

162 USBiquitous

– Interrupt transfers allow sending short messages, with a guaranteed
latency and error detection. It is commonly used with HID USB
devices, such as keyboards and mice

– Bulk transfers allow sending or receiving large messages, handling error
detection but without any latency guarantees. They are commonly
used in mass-storage USB devices

– Isochronous transfers used for messages requiring bounded latency,
but no guarantee of delivery. They are commonly used for webcam
and audio USB devices

The transfer type is part of attributes of an endpoint, and as such is
included in the endpoint descriptor.

2.4 USB Descriptors

The USB standard allows several completely different devices to connect
to a host through an identical protocol and wiring. Because several
peripherals can be connected on a same port, sharing the same interface,
protocol shall define a learning phase in order to discover its functionalities,
called the enumeration process.

Fig. 5. Main USB Descriptors

B.Camredon 163

Device descriptor Each USB device has one device descriptor, compris-
ing information such as its product ID, vendor ID, class ID, the number
of configurations... The operating system uses the information in this
descriptor (among other things) to load to most appropriate driver.

s t r u c t u sb_dev i ce_desc r i p to r {
__u8 bLength ; // Size of the Descriptor in Bytes (18 bytes)
__u8 bDescr iptorType ; // Device Descriptor (0 x01)
__le16 bcdUSB ; // USB Specification Number which device complies too .
__u8 bDev iceC las s ; // Class Code (Assigned by usb. org)
__u8 bDeviceSubClass ; // Subclass Code (Assigned by usb .org)
__u8 bDev iceProtoco l ; // Protocol Code (Assigned by usb .org)
__u8 bMaxPacketSize0 ; // Maximum Packet Size for Zero Endpoint
__le16 idVendor ; // Vendor ID
__le16 idProduct ; // Product ID (Assigned by Manufacturer)
__le16 bcdDevice ; // Device Release Number
__u8 iManufacture r ; // Index of Manufacturer String Descriptor
__u8 iProduct ; // Index of Product String Descriptor
__u8 iSer ia lNumber ; // Index of Serial Number String Descriptor
__u8 bNumConf igurat ions ; // Number of Possible Configurations

} __attribute__ ((packed)) ;

Listing 1. Device Descriptor

Configuration descriptor Each USB device can have one or more
configurations depending on its functionnalities. However, only one can
be active at the same time. For example, a USB device can have a mode
where it can be upgraded, and a mode in which it provides its standard
functionality. It is up to the operating system to choose the configuration
it wants to enable. Most USB devices only have one configuration.

s t r u c t u s b _ c o n f i g _ d e s c r i p t o r {
__u8 bLength ; // Size of Descriptor in Bytes
__u8 bDescr iptorType ; // Configuration Descriptor (0 x02)
__le16 wTotalLength ; // Total length in bytes of data returned
__u8 bNumInterfaces ; // Number of Interfaces
__u8 bCon f i gu ra t i onVa lue ; // Value to use as an argument to select this

configuration
__u8 i C o n f i g u r a t i o n ; // Index of String Descriptor describing this

configuration
__u8 bmAttr ibutes ; // self powered , remote wake up ...
__u8 bMaxPower ; // Maximum Power Consumption in 2mA units

} __attribute__ ((packed)) ;

Listing 2. Configuration Descriptor

SetConfiguration The host requests the device to use a specific configura-
tion using the CTRL OUT message SetConfiguration.

Interface descriptor For each configuration descriptor, one or more
interface descriptors can exist. Each interface descriptor represents a
device feature. For example in a webcam, an interface can represent the
video feature, while another will represent the audio one.

164 USBiquitous

s t r u c t u s b _ i n t e r f a c e _ d e s c r i p t o r {
__u8 bLength ; // Size of Descriptor in Bytes (9 Bytes)
__u8 bDescr iptorType ; // Interface Descriptor (0 x04)
__u8 bInterfaceNumber ; // Number of Interface
__u8 b A l t e r n a t e S e t t i n g ; // Value used to select alternative setting
__u8 bNumEndpoints ; // Number of Endpoints used for this interface
__u8 b I n t e r f a c e C l a s s ; // Class Code
__u8 b I n t e r f a c e S u b C l a s s ; // Subclass Code
__u8 b I n t e r f a c e P r o t o c o l ; // Protocol Code
__u8 i I n t e r f a c e ; // Index of String Descriptor Describing this interface

} __attribute__ ((packed)) ;

Listing 3. Interface Descriptor

Each interface can have several alternate settings, all describing the
same function. These settings are mutually exclusive, only one is active at a
time. Each setting has an interface descriptor and subordinate descriptors
as needed. For instance, devices that use isochronous transfers can have
alternate interface settings to be able to use more or less bandwidth.

SetInterface For devices that use several alternate interface settings, this
CTRL OUT message allows the host to choose a specific one.

Endpoint descriptor For each interface descriptor, one or more endpoint
descriptors can be used. Each endpoint will be used for the data transfer
between the host and the device.

The following information can be found in this descriptor

– ID of the endpoint
– Direction of the endpoint (is it used to send data from the host, or to

receive data from the host)
– Endpoint attributes including the kind of communication used (control,

interrupt, bulk or isochronous)
– Maximum message size used by the endpoint
– Polling interval of transfers

s t r u c t usb_endpo int_desc r ip to r {
__u8 bLength ; // Size of Descriptor in Bytes (7 bytes)
__u8 bDescr iptorType ; // Endpoint Descriptor (0 x05)
__u8 bEndpointAddress ; // Endpoint Address
__u8 bmAttr ibutes ; // Transfer , synchronization , usage type
__le16 wMaxPacketSize ; // Maximum Packet Size
__u8 b I n t e r v a l ; // Interval for polling endpoint data transfers

} __attribute__ ((packed)) ;

Listing 4. Endpoint Descriptor

B.Camredon 165

String descriptor String descriptors are optional and are used to pro-
vide human readable information about the device, such as its name or
information about its manufacturer.
s t r u c t u s b _ s t r i n g _ d e s c r i p t o r {

__u8 bLength ; // Size of Descriptor in Bytes
__u8 bDescr iptorType ; // String Descriptor (0 x03)
__le16 wData [1] ; // Supported language

} __attribute__ ((packed)) ;

Listing 5. String Descriptor

Other descriptors Other descriptors can exist that are class specific or
vendor specific.

3 USBq Board

The USBq Board is the hardware component of the USBq Framework. It
runs Linux, and includes the USBq Core linux module.

It must have several USB ports available, including one port that can
be used in USB Host mode, in order to communicate with a USB device,
and one port that can be used in USB device or OTG [18] (On-The-Go)
mode, in order to communicate with a USB host.

Originally, the development of USBq started on a IGEPv2 board [7]
and was continued on a BeagleBone Black [1], because of its more active
community. From a USBq point of view, there should be no difference
between these boards, or others that provide features described earlier in
this section.

4 USBq Core

4.1 Design

The USBq core is a Linux 4.1 kernel module running on top of GNU/Linux
OS.

The general architecture described in the figure 6 is developed below.

Software The USBq core is composed of two elements:

– A driver part in charge of the communication with USB devices called
USBq driver

– A gadget part in charge of the USB device emulation called USBq
gadget

166 USBiquitous

Fig. 6. USBq general design

While these parts are located in the same kernel module, they have
no direct link and could be split. For the rest of the article, they will be
considered as distinct modules.

This segmentation design objective allows using:

– only the driver part, and simulate a host in userland
– only the gadget part, and simulate a device in userland
– both parts, and act in MITM mode

4.2 Internals design

USBq core uses the USB driver API in order to handle communications
with USB devices, acting as a USB Host, and uses the GadgetAPI in
order to emulate a USB device. While these two API are different, our
design of both elements shares the same base: an implementation driven
by endpoints.

Endpoints API As described in the previous section, USB devices expose
one or more endpoints through which communications are performed. The
Endpoints API of the USBq Core kernel module exposes a consistent

B.Camredon 167

interface to represent endpoints of a device, abstracting differences in the
kernel’s Gadget and Device APIs.

Within the USBq Core kernel module, every endpoint is represented
as a structure composed of several functions pointers:

– send_usb: Used to send a message to the USB controller
– recv_usb: Called by the kernel (Gadget or Device API) when a USB

message is received from the USB controller
– send_userland: Used to send a message to the userland program
– recv_userland: Called by the kernel when a USB message is received

from the userland program

Whatever the kind of USB endpoints involved in the communication
(control, interrupt, bulk or isochronous), their corresponding structures
are composed of these main functions, in both driver and gadget parts.
This endpoint structure is the USBq vision of the real endpoint device.

A very simplified example of an endpoint communication is described
below:

// Called when a USB message comes from USB controller
i n t recv_usb (s t r u c t ep_t ∗ep , msg_t ∗msg) {

r e t u r n ep−>send_user land (msg) ;
}

// Called when a USB message comes from userland
i n t r ecv_use r l and (s t r u c t ep_t ∗ep , msg_t ∗msg) {

r e t u r n ep−>send_usb (msg) ;
}

Listing 6. Endpoint Algorithms

Initialization USB device endpoints characteristics are exchanged during
the enumeration phase in the configuration descriptor of the device. This
descriptor is parsed by the Linux kernel and forwarded by the USBq
driver to to the USBq gadget with a NEW_DEVICE message (see 4.2). This
descriptor is needed to create endpoint structures at USBq level.

During USB communications the host can choose to enable or disable
a set of endpoints of a specific interface, in order for instance to increase
or decrease bandwidth allocated to the device. USB messages linked to
this functionality have to be intercepted to reflect the list of USBq enabled
endpoints:

– SetConfiguration, allows enabling a set of interfaces
– SetInterface, allows enabling set of endpoints (and therefore disable

others)

168 USBiquitous

Fig. 7. Endpoint Communication

Depending on the module side (the gadget or the driver), endpoints
OUT or IN respectively will be requested to send data during initialization,
while others will wait for userland communication.

USB reception USB messages reception is in general done in a completion
handler that has to be run in an uninterruptible context. Because userland
communication is network based, it is not possible to use it in that kind
of context. So, the completion handler uses a workqueue to dispatch
processing of incoming data to a worker thread, which communicates with
USBq API.

USBq protocol Communication between USBq Core kernel module
and the USBq API (userland) are performed using a protocol that is
specific to the USBq framework. This protocol is used to transfer USB
communications but also to send meta-data.

Meta-data Three kinds of meta-data messages are exchanged between
the core and the userland. The first one is a NEW_DEVICE message used
to inform the gadget part that a new device has been connected. This
message can be sent either by the device driver when it detects a device
connection, or by a userland script to emulate a new device connection.
It embeds information about the connected device, similar to the ones
located in a full configuration descriptor message. It is necessary for the
core to know which configurations, interfaces and endpoints the device is

B.Camredon 169

composed of. Using meta-data to send features of a device allows fuzzing
of the real USB message embedding this kind of information.

The second message is a RESET message used to inform the gadget
part of the device disconnection.

Finally every USB data message is acknowledged using an ACK message.

USB data Every USB message exchanged between a host and a device,
is encapsulated in a USBq message specifying the endpoint used by this
message. The message content is then embedded without any modification.

4.3 Gadget module

The gadget module emulates a USB device using the Linux GadgetAPI [5].
A gadget module has to register with this API using the kernel

usb_gadget_probe_driver function taking a usb_gadget_driver struc-
ture. This parameter is mainly composed of function pointers:

– bind: called to start the USB device emulation
– setup: called when a control message is received from the host

Thus those functions are implemented by USBq gadget to interact
with USB communications for the device emulation.

Setup function Because the USB communication is driven by the host,
the setup function is called as soon as a control request is received. Those
requests can be:

– GetDescriptor to request a specific descriptor such as device, config-
uration, or string descriptor

– SetConfiguration to enable a specific device configuration
– SetInterface to activate a specific alternative interface
– ...

Some of those requests ask for specific device information, such as
GetDescriptor and are IN requests, others are used to configure the USB
device such as SetConfiguration or SetInterface and are OUT requests.

Sometimes, some USB control requests need to carry data that is not
embedded directly during the setup called. An additional request is then
necessary to retrieve the missing data.

The setup function is called in an uninterruptible kernel context,
imposing the use of a workqueue in order to perform network exchanges.

170 USBiquitous

USB communication At the gadget level, the USB communication is
done with the kernel usb_request structure that has to be filled depending
on the endpoint transfer type, either for sending data (IN) or receiving
data (OUT). Sending is done with the kernel usb_ep_queue function, and
reception is done by a callback specified in the usb_request. This function
is wrapped inside the USBq send_usb function (see 4.2) for gadget relative
USBq endpoints.

MUSB The kernel GadgetAPI is implemented on the top of MUSB
which is a USB controller provided by the Linux kernel. It is is responsible
for the interface with the USB OTG hardware.

Fig. 8. Architecture

While the GadgetAPI allows to easily develop USB devices, it suffers
from some limitations and constraints linked to the use of MUSB. These
are described below.

Control request The setup (described in 4.3) is called when a control
request has been sent by the host to the emulated device. Unfortu-
nately, MUSB does not forward all those requests to the GadgetAPI (and
thus to the gadget driver). For instance SET_ADDRESS, CLEAR_FEATURE,
SET_FEATURE requests are not forwarded.

IN requests from a non control endpoint For non control endpoint, there is
no function such as setup. So, from a USB device point of view, it is not
possible to know exactly when a host is ready to receive information. The
device has first to send its data, which will be consumed whenever the
host is ready to do so. Unfortunately, these pending IN requests can have
an impact on the way USBq works as will be described later (see 4.4).

B.Camredon 171

Endpoint statically defined In a USB device, endpoint characteristics such
as transfer type, address, and direction are fixed inside the hardware and
cannot be changed. In the same way, MUSB has a statically defined set
of endpoints structure with their address, direction and maximum packet
size.
/* mode 2 - fits in 4KB */
s t a t i c s t r u c t musb_f i fo_cfg mode_2_cfg [] = {
{ . hw_ep_num = 1 , . s t y l e = FIFO_TX , . maxpacket = 512 , } ,
{ . hw_ep_num = 1 , . s t y l e = FIFO_RX , . maxpacket = 512 , } ,
{ . hw_ep_num = 2 , . s t y l e = FIFO_TX , . maxpacket = 512 , } ,
{ . hw_ep_num = 2 , . s t y l e = FIFO_RX , . maxpacket = 512 , } ,
{ . hw_ep_num = 3 , . s t y l e = FIFO_RXTX , . maxpacket = 256 , } ,
{ . hw_ep_num = 4 , . s t y l e = FIFO_RXTX , . maxpacket = 256 , } ,
} ;

Listing 7. MUSB Endpoints table

When a device is implemented using the GadgetAPI, endpoints that it
can use must exist in this table.

For instance, if a gadget driver needs an IN endpoint 3 with packet size
of 512 bytes and the MUSB endpoint 3 is a IN endpoint with a packet size
of 256 bytes, MUSB will automatically adjust the endpoint address and
assign the first available endpoint that meets the required characteristics.

In a classical device development, this address modification is not a
problem. However, if the emulated USB device has to match a real device
hardware (because it will forward the communication to this device for
instance), it becomes a problem. It still possible to use a translation table
only if the translated address is not referenced in the communication data
of another endpoint...

Gadget specificity The gadget module will first initialize its communi-
cation module and wait for the initialization packet2 describing the device
that it has to emulate. As soon as this packet is received, it builds its
endpoints list and starts the USB device emulation.

Descriptors requests will be received through its setup function, and
forwarded to userland. Because the setup function is executed in a kernel
uninterrupted context, a workqueue will handle the requests forwarding.

If SET_CONFIGURATION or SET_INTERFACE requests are received, the
gadget module will enable the corresponding interfaces and will activate
their endpoints. Non control OUT endpoints will then be requested, in
order to be able to receive data from host. Non control IN endpoints are
data coming from the device and then will be received from the userland,
before being forwarded.

2 NEW_DEVICE packet

172 USBiquitous

As previously explained in 4.3, requested endpoints addresses can
be modified by MUSB. To avoid this modification, the original kernel
function3 used to match endpoints has been rewritten. Nevertheless, there
is a risk that no corresponding endpoint can be found. To reduce the risk
the MUSB endpoints table (see listing 7) has been modified to be more
generic. If no endpoint is found, it will not be possible to emulate the
USB device.

4.4 Driver Module
The driver module is responsible for the communication with USB devices
that will be plugged on the USBq board. Its task is to forward USB
communications to userland, and userland communications to the USB
peripheral.

USB host controller registration To handle USB devices, a Linux
USB driver needs to register to the Linux USB host controller. This
registration is done by calling the kernel usb_register function taking a
usb_driver parameter, mainly composed of:
– The name of the driver
– A probe function: called when a new corresponding device is plugged

on the board
– A disconnect function: called when the device is disconnected
– A usb_device_id table, used to determine what kind of devices can

be handled by the driver

The usb_device_id table defined by USBq driver, allows matching
USB devices by their characteristics such as:
– Their ProductID/VendorID
– Their USB class (HID, MassStorage...)
– ...

It is also possible to match all USB devices choosing a non-zero value
in the driver_info attribute, which is what our driver does.
/* table of devices that work with this driver */
s t a t i c s t r u c t usb_device_id d r i v e r _ t a b l e [] = {

{ . d r i v e r _ i n f o = 64} ,
{} /* Terminating entry */

} ;
MODULE_DEVICE_TABLE (usb , d r i v e r _ t a b l e) ;

Listing 8. Matching all USB devices

3 usb_ep_autoconfig

B.Camredon 173

Probe function The probe function of the driver is called for every USB
device interface because an interface describes a device function such as
audio or video. Some devices can have several interfaces and therefore be
handled by several drivers. Our device module must handle all interfaces
of all USB devices.

The probe function takes a parameter : the usb_interface structure
that it may handle. This structure contains all the information relative
to endpoints contained in this interface. When the function is called,
the USB host controller has already exchanged information (especially
configuration descriptor) with the USB device, to know which driver to
load. It is up to the driver to perform again this exchange.

USB communication At driver level, the USB communication is
done with the URB (USB Request Block) structure [17]. It has to be
filled differently depending on the endpoint nature (control, bulk, inter-
rupt or isochronous) and direction (IN or OUT). Sending is done with
usb_submit_urb, and receiving is handled by a callback specified in the
URB structure.

Driver specificity Some limitations of the gadget part (see 4.3) have
consequences on the driver development. Indeed, because IN requests are
not received by the gadget part, the USBq driver needs to send them
to the USB peripheral, in order to allow it to send information4. The
drawback of this approach is that USBq may query a device for data when
the host has not yet done so.

When the driver detects that a new device is connected (its probe
function is called), it sends device features to userland with a NEW_DEVICE
packet. Whereas when it detects a device unplugged (its disconnect
function is called) it sends a RESET packet.

4.5 Communication with userland

Every USB message coming from the device or from the host will first go
through its corresponding driver, then will be forwarded to the userland,
then will go through the other driver. Userland is then a mandatory
crossing point between the two parts of the USBq core.

The communication mechanism between the kernel and userland pro-
grams has been abstracted to be easily upgradable in the future. During

4 USB communication are driven by the host

174 USBiquitous

the development of USBq, userland programs have been developed outside
the BeagleBone black on a classical PC. A network communication channel
between USBq core and userland was implemented to simplify testing.

The USBq device driver is bound on an UDP port and waits for data.
The gadget driver component uses an UDP socket to send its messages
coming from the host to the userland.

4.6 Limitations

The USBq core has several limitations. The first one is due to lack of time:
isochronous packets are not yet handled, preventing the use of many USB
devices such as webcams, or audio cards.

As was previously mentioned, there are many constraints linked to
MUSB implementation choices.

– Some requests are not forwarded to the GadgetAPI, and thus cannot
be handled. If a device uses them, it will probably not work.

– MUSB does not send IN requests for non control endpoints... so USBq
has to generate them and can possibly do so with the wrong timing.
Although no problems related to this issue were encountered yet, it is
not entirely unlikely that this could impact certain USB devices.

– MUSB has a predefined set of statically defined endpoints. Even if
with the modifications made to MUSB (see 4.3) to make endpoint
allocation more flexible, there subsists a risk that the requirements of
some USB devices will not be met and prevent them from working.

Finally, the design decision to handle USB communications in userland
and the associated overhead could interfere with the proper functioning
of devices that depend on tight timing constraints.

5 USBq userland

While the core kernel module is written in C, the userland part used to solve
the problem can be written in any language. It was an objective of this
project to easily develop, adapt or change the logic part of USBq, without
any needs of module recompilation. The userland part is completely
separate from the core part.

Usually the userland part will receive messages from one part of USBq
core, will process and forward them to the other part. However, because
there is no direct link between both parts, it is also possible to communicate
with only one of either the driver or gadget sides. In this case, userland
programs can completely emulate either a device or a host.

B.Camredon 175

The userland part does not need to run on the same hardware as the
core (although that remains a possibility). It is then possible to develop
network based userland script, to implement network USB devices.

USBq API The USBq userland component referred to as the USBq API
provides a unified framework to implement a proxy, device or host. It is a
set of Python classes used to:

– Dissect, create and modify USB descriptors based on bespoke scapy
classes [13]

– Handle communication between userland scripts and the kernel core
– Provide skeletons to implement hosts, devices and proxies

Several userland programs (USBq APP) have been developed to fit
general needs, based on this API.

5.1 Proxy

Proxy programs are USBq APP that make the link between the driver and
the gadget module, in other words between a USB device and a USB host.
They receive messages from one side and forward them to the other side.
They are used as MITM programs and can act on the communication to:

– Forward it
– Modify it
– Store it
– Block it
– ...

Fig. 9. Proxy Emulation

All proxy programs have a common base allowing them to receive and
send data to and from the USBq core. Only a few hooks are necessary to
interact with USB messages.

176 USBiquitous

def hookDevice (s e l f , data) :
""" Called each time a device message is received """
r e t u r n data

def hookHost (s e l f , data) :
""" Called each time a host message is received """
r e t u r n data

Listing 9. Proxy API

Because all proxies use a common communication interface with the
USBq core, they can be chained to provide several functionnalities.

Fig. 10. Chained Proxy

Dissect This program is used to inspect packets’ content and forward
them without any modification. The output can be configured to provide
more or less information:

– Display management packets or not
– Dissect USB descriptors
– Display hexadecimal payload

It is mainly used to understand or debug a USB communication, either
between a real USB device and host, or between an emulated device and
a host. The example 10 is the protocol dissection of a USB device using
an unknown protocol.

FixLowSpeed The BeagleBone black used is a high speed board. There
are some problems when a low speed device is forwarded through a

B.Camredon 177

./ dissect .py --server -ip beagle -- dissect
< Ci0 : GetDesc r i p to r d e v i c e [sz : 1 8]
> Ci0 : Device D e s c r i p t o r v i d : 1130 p id : 202 maxpkt : 8 l e n : 18
< Ci0 : GetDesc r i p to r c o n f i g u r a t i o n [sz : 9]
> Ci0 : C o n f i g u r a t i o n D e s c r i p t o r n i n t f : 2
< Ci0 : GetDesc r i p to r c o n f i g u r a t i o n [sz : 5 9]
> Ci0 : C o n f i g u r a t i o n D e s c r i p t o r n i n t f : 2

I n t e r f a c e D e s c r i p t o r ifnum : 0 a l t : 0 c l a s s : h id nep : 1
HIDDescr iptor
Endpoint D e s c r i p t o r EP1IN I n t e r r u p t i n t : 1 pkt : 8 l e n : 7
I n t e r f a c e D e s c r i p t o r ifnum : 1 a l t : 0 c l a s s : h id nep : 1
HIDDescr iptor
Endpoint D e s c r i p t o r EP2IN I n t e r r u p t i n t : 1 pkt : 8 l e n : 7

< Co0 : S e t C o n f i g u r a t i o n 1
< Ci0 : GetDesc r i p to r s t r i n g [sz : 2 5 5]
> Ci0 : S t r i n g D e s c r i p t o r [Tenx Nonstandard Devic] l e n : 46
< Co0 : SetIDLE
< Ci0 : GetDesc r i p to r HID REPORT [sz : 1 0 7]
> Ci0 : HIDReportDescr iptor
< Co0 : SetIDLE
< Ci0 : GetDesc r i p to r HID REPORT [sz : 8 7]
> Ci0 : HIDReportDescr iptor
< Co0 : data : ’USBC\x00\x00\x04\x00’
< Co0 : data : ’USBC\x00@\x02\x00’
< Co0 : data : ’\x00\x00\x01\x00\x00\x00\x08\x08\x00\x00\x00\x00’
< Co0 : data : ’USBC\x00\x00\x04\x00’
< Co0 : data : ’USBC\x00@\x02\x00’

Listing 10. Missile protocol dissection

high speed device, because from a hardware point of view, the device is
presented to the host as a high speed device, but its descriptors describe
a low speed one.

First the bInterval attribute of endpoint descriptors is used to specify
the polling interval of certain transfers. The units are expressed in frames,
thus this equates to either 1ms for low/full speed devices and 125µs for
high speed devices. This bad interpretation results in a very high latency
for a mouse for instance.

Then the bMaxPacketSize attribute of device descriptor has to be 64
for a high speed device, but in case of a low speed device forwarding this
value is equal to 8. This difference does not have any impact on a Linux
targeted host, but the device is simply not recognized on a Windows one.

The FixLowSpeed userland program fixes both values to be well inter-
preted by the targeted host.

The decision has been taken to not integrate this modification directly
in the core but rather in userland to have the choice to apply it or not.
It could be useful for example to detect if the targeted host is running
Windows or Linux for instance.

Pcap writer In usual situations, USB communications can be inves-
tigated with a VMware virtual machine or the USBMon Linux kernel

178 USBiquitous

module [19]. But it implies that we can modify the USB host, and this
turns out to sometimes be impractical or impossible.

The pcap_writer program was developed to work around this problem.
It stores all packets forwarded from one part to another in a PCAP file,
in order to perform offline investigations.

Because the core is running at driver and gadget level, above USB
controllers and hardware, USB acknowledgment messages do not reach
the driver layer and are either intercepted by the controller or by the
hardware. Even if those messages are not useful for the USB commu-
nication understanding, they are needed by many analyzing tools such
as wireshark. Nevertheless, the content of those packets is predictable
(acknowledgment without data), therefore the pcap_writer program adds
them to the pcap file.

USB Firewall The purpose of this program is to restrict access to the
USB host stack to only authorized USB devices. The filtering is done on
the first packet between userland and core: the NEW_DEVICE packet. It
contains the following descriptors:

– Device descriptor
– Configuration descriptor
– Interface descriptors
– Endpoint descriptors

This is sufficient for instance to only allow HID or MassStorage devices,
or to filter on the ProductID/VendorID. Because filtering is done on this
NEW_DEVICE packet and not on a forwarded real USB communication
(because USB transfer has not yet started), if information does not match
an authorized device, the protected host will not see any USB connection
at all.

USBMutation The purpose of this program is to apply random modifi-
cations on a forwarded USB communication.

In order to assess the robustness of a USB driver, it is possible to
implement a USB device emulation to attack it, which can be time
consuming because it is necessary to understand all USB exchanges. It is
also possible to forward the data between a real USB device and its driver
and make modification on the fly. Even if the former should lead to better
results, the latter has the advantage of being very easy to implement
and being driver independent. This latter method is implemented by
USBMutation.

B.Camredon 179

Keylogger This program forwards keyboard communications to a host
and logs all the keystroke. This capture can then be replayed with the
keyboard device script described below. It interprets all the scancodes to
determine the original input text.

This program is easy to understand for non technical people and is
thus useful for demonstration purposes.

5.2 Device Emulator

The USBq design allows full userland device emulation, and its API allows
users to focus on their specific objective.

Fig. 11. Device Emulation

Device emulators can either directly communicate with the USBq core
gadget, or through one or more proxy programs.

MassSto rage In te r face = I n t e r f a c e (d e s c r i p t o r s =[Endpoint (1 ,BULK, IN , 5 1 2) , Endpoint (1 ,BULK,OUT
, 5 1 2)] , c l s =8, s u b c l s =6, proto =80)

c l a s s Ev i lMassStorage (USBDevice) :
""" Triggers vulnerability in Windows 8.1, found by QB """
@classmethod
def c reate_arg_subparse r (c l s , p a r s e r) :

p a r s e r . add_argument ("--vid" , "-v" , metavar="ID" , d e f a u l t=0x64 , type=i n t , he lp="VendorID
to set")

def __init__ (s e l f , a rgs) :
i d e n t = D e v i c e I d e n t i t y . f r om_ i n te r f a ce (MassSto rage In te r face)
i d e n t . d e v i c e . idVendor = a rgs . v i d
i d e n t . i n t e r f a c e [0] . bNumEndpoint = 0
super (Evi lMassStorage , s e l f) . __init__ (args , i d e n t)

i f __name__ == "__main__" :
p a r s e r = Ev i lMassStorage . c reate_arg_parse r ()
a rgs = p a r s e r . parse_args ()

mass = Ev i lMassStorage (a rgs)
mass . i n i t ()
mass . run ()

Listing 11. Windows 8.1 Vulnerability

The code presented in 11 triggers a vulnerability discovered by Quark-
sLab [11] on Windows 8.1 with a few lines of code.

180 USBiquitous

Keyboard This program acts as a keyboard and sends keystrokes to
the host. It can act interactively, where keypress are received from the
standard input, or read the keys from a file. This file can be manually
created, or be the result of the keylogger proxy program. It can then
become a low cost USB rubber ducky [12].

cat key .txt
{SUPER_RIGHT}1 rcmd . exe
net use r /add toto toto12
net l o c a l g r o u p a d m i n i s t r a t o r s toto /add
keyboard .py --server -ip beagle -i key .txt

Listing 12. Add windows user

Fuzzer USBq can simulate connections or disconnections of USB devices
using NEW_DEVICE and RESETmanagement messages. The fuzzer program
simulates several devices that are connected one after another and sends
invalid USB descriptors in order to fuzz the host USB stack. It is similar
to the fuzzer implemented by umap [16].

Fingerprint Like the Fuzzer program, Fingerprint program simulates
USB devices connected one after another and analyses requests sent by
the host to detect which kind of host USB stack it is communicating with.
It could be improved to fully simulate devices instead of performing the
enumeration process, and make it possible to obtain a deeper view into
the target. It could be used not only to detect the target operating system
but also target the driver version.

Pcap reader This program reads a pcap file from a previous commu-
nication and replays it. Replay is more complicated than only sending
one packet after the other. The steps involved are to determine USB
descriptors of the device that need to be replayed, then to connect to the
host to respond to USB descriptor solicitations (that does not necessarily
happened in the same order as the capture), and then to replay the data
part of the communication.

It can be used for example to solve part of the 2015 SSTIC challenge
(see figure 12).

USBScan The USBScan program is similar to the one developed in
umap [16]. It emulates several classes of USB devices (HID, mass storage,
Ethernet card...) connected one after another and tries to determine which

B.Camredon 181

Fig. 12. SSTIC Challenge

ones can be handled by the host. It is useful to estimate the host attack
surface, and to understand which USB drivers it embeds. For now, only
mass storage and HID classes are handled.

5.3 Host emulator

Just like it is possible to emulate in device in userland, it is also possible
to the same for a host. In this configuration, a valid device is plugged into
an emulated host that will interact with it.

Fig. 13. Host Emulation

Several concepts such as fuzzing or fingerprinting used in device emula-
tion can also be used in host emulation, but for now no USB host devices
have been developed.

5.4 Way forward

USBq suffers from several limitations linked to devices that cannot be
forwarded through the USBq core. Improvement are therefore needed to
handle more USB devices, for example isochronous management.

182 USBiquitous

The communication between the USBq core and the userland could
be changed from UDP to netlink [10]. It would permit to have better
performance if the userland is running on the same board as the core,
while being flexible.

In parallel, many userland scripts are currently in a proof of concept
state, and need to be improved to become robust enduser tools. For
instance USBScan handle only two different classes... it needs to be
completed to get an accurate overview of drivers managed by the host.

5.5 Conclusion

The USBq project provides a modular design allowing the userland imple-
mentation of devices, hosts or MITM USB programs. It is the result of a
growing need of skills in the USB domain.

More than a toolbox it has to be seen as a flexible framework that
can be very easily adapted for future needs and problems, either for
finding vulnerabilities on USB host stacks and drivers, or for pentesting
uncontrolled host.

References

1. Beagle Bone Black. https://www.isee.biz/products/igep-processor-boards/
igepv2-dm3730.

2. Facedancer. http://goodfet.sourceforge.net/hardware/facedancer21/.
3. Facedancer Recon presentation. https://recon.cx/2012/schedule/attachments/

57_recon2012-goodspeedbratus.pdf.
4. Fancedancer Hardware. http://goodfet.sourceforge.net/hardware/

facedancer21/.
5. Gadget API. https://www.kernel.org/doc/htmldocs/gadget/.
6. GadgetFS. http://www.linux-usb.org/gadget/.
7. IGEPv2. https://www.isee.biz/products/igep-processor-boards/igepv2-

dm3730.
8. libusb. http://www.libusb.org/.
9. Moulinex Cookéo USB. http://cookeo.moulinex.fr/cookeo/cookeo-usb.
10. Netlink Sockets. https://en.wikipedia.org/wiki/Netlink.
11. Quarkslab: From fuzzing to bug reporting. http://blog.quarkslab.com/usb-

fuzzing-basics-from-fuzzing-to-bug-reporting.html.
12. Rubber Ducky. http://hakshop.myshopify.com/products/usb-rubber-ducky-

deluxe?variant=353378649.
13. Scapy. http://www.secdev.org/projects/scapy/.
14. TTWE. https://www.usenix.org/system/files/conference/woot14/woot14-

vantonder.pdf.
15. TTWE Github. https://github.com/rvantonder/ttwe-proto.
16. Umap. https://github.com/nccgroup/umap.
17. URB. https://www.kernel.org/doc/Documentation/usb/URB.txt.

B.Camredon 183

18. USB On The Go. https://en.wikipedia.org/wiki/USB_On-The-Go.
19. USBMon. https://www.kernel.org/doc/Documentation/usb/usbmon.txt.
20. USBSniffer. http://beagleboard-usbsniffer.blogspot.fr/.
21. Wikipedia USB. https://en.wikipedia.org/wiki/USB.
22. Jan Axelson. USB Complete fourth Edition: The developer’s guide. 2009.

