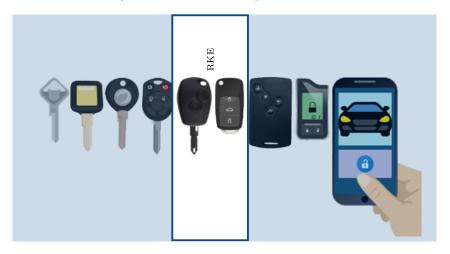
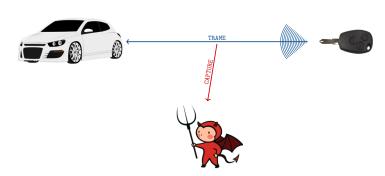
From Academia to Real World: a Practical Guide to Hitag-2 RKE System Analysis

Ryad BENADJILA¹ Mathieu RENARD² José LOPES-ESTEVES² Chaouki KASMI²

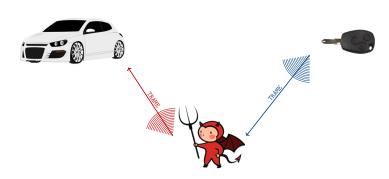
1 ryadbenadjila@gmail.com 2 ANSSI, prenom.nom@ssi.gouv.fr

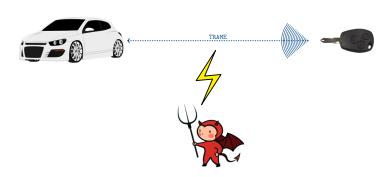
8 juin 2017

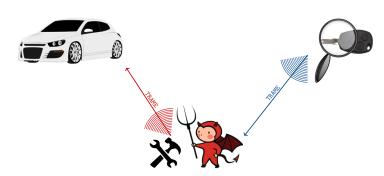

Symposium sur la Sécurité des Technologies de l'Information et des Communications

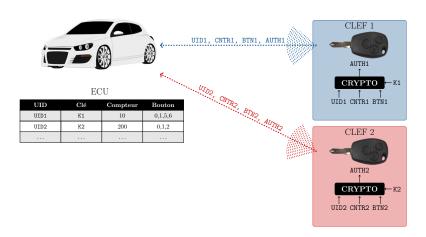


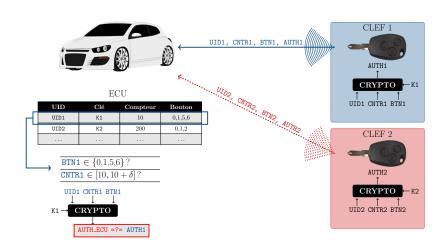
■ RKE :

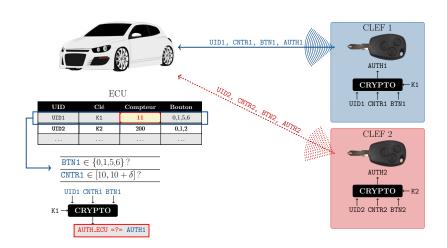

1. Communication mono-directionnelle entre la clé et l'ECU.


- 1. Communication mono-directionnelle entre la clé et l'ECU.
- 2. Menaces: capture,


- 1. Communication mono-directionnelle entre la clé et l'ECU.
- 2. Menaces: capture, rejeu,




- 1. Communication mono-directionnelle entre la clé et l'ECU.
- 2. Menaces: capture, rejeu, brouillage,

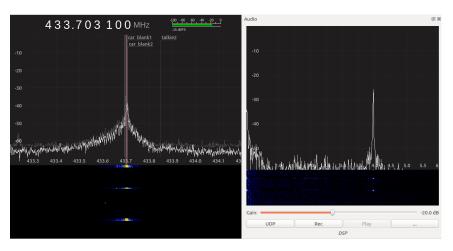


- 1. Communication mono-directionnelle entre la clé et l'ECU.
- 2. Menaces: capture, rejeu, brouillage, spoofing, ...

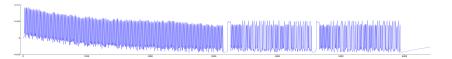
Usenix 2016: attaques sur les RKE

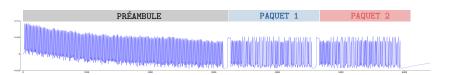
- Article Usenix 2016 « Lock It and Still Lose It On the (In)Security of Automotive Remote Keyless Entry Systems ».
- Deux attaques présentées :
 - Volkswagen bonne cryptographie mais clés partagées par tous les véhicules depuis les années 2000!
 - 2. PCF7946 transpondeur de Philips/NXP utilisant l'algorithme Hitag-2. Une nouvelle attaque a été présentée.

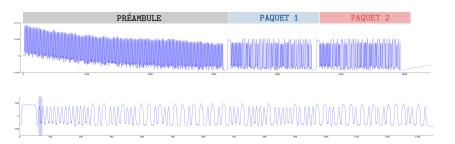
Usenix 2016: attaques sur les RKE

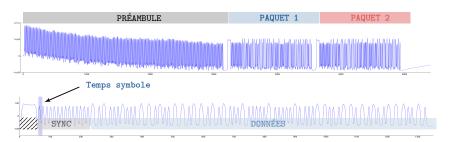

- Objectif : reproduire l'attaque sur PCF7946.
 - 1. Capturer et décoder des trames radio.
 - 2. Implémenter l'attaque sur Hitag-2 pour retrouver la clé secrète.
 - 3. Forger des trames valides.
- Contraintes : black-box.
 - Ne pas casser la voiture!
 - Pas d'attaque matérielle sur le transpondeur PCF7946.

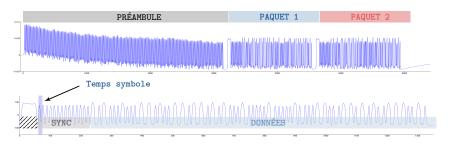
Analyse des signaux radiofréquences


- Nous devons déterminer :
 - La fréquence de la porteuse et la bande passante.
 - La modulation.
 - Le codage canal.
 - La structure des paquets.
- Analyse *white-box*, informations connues.


Paramètre	Valeur
Fréquences	ISM 433 MHz
Modulation	ASK/FSK
Codage canal	Manchester/NRZ
Format des trames	Usenix 2016


Démodulation : analyse spectrale




■ Modulation utilisée : modulation d'amplitude (ASK).

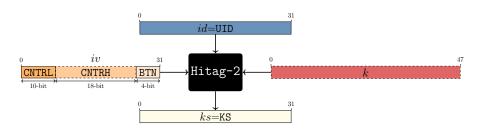
Résultats:

- Modulation ASK.
- Codage de Manchester.
- Observation des invariants pour remonter aux données.
- Utilisation de la somme de contrôle.

16-bit	, 32-bit	4-bit	10-bit	32-bit	2-bit	8-bit	
SYNC 0x0001	UID	BTN	CNTRL	KS	10	CHK	
104-bit							

L'algorithme Hitag-2

- Stream cipher Philips (NXP) de la fin des années 90.
- Reverse engineering matériel en 2007.


L'algorithme Hitag-2

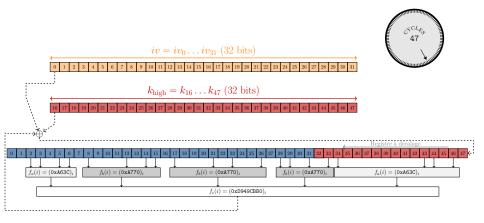
- Stream cipher Philips (NXP) de la fin des années 90.
- Reverse engineering matériel en 2007.
- Utilisation dans un contexte RKE :

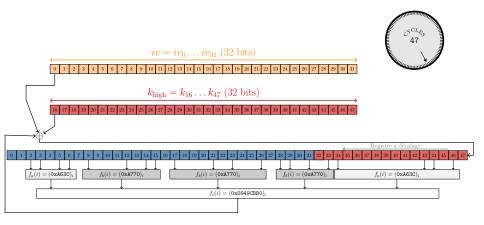
L'algorithme Hitag-2

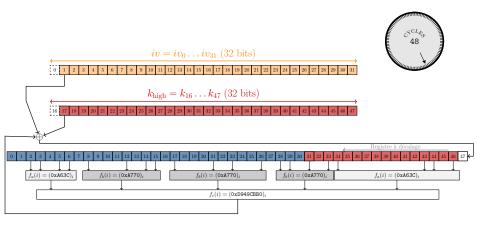
- Stream cipher Philips (NXP) de la fin des années 90.
- Reverse engineering matériel en 2007.
- Utilisation dans un contexte RKE :

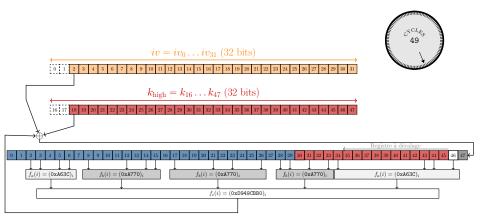
L'algorithme Hitag-2: phase d'intialisation

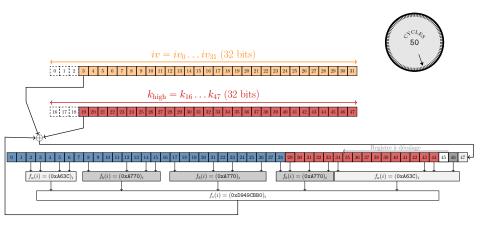
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

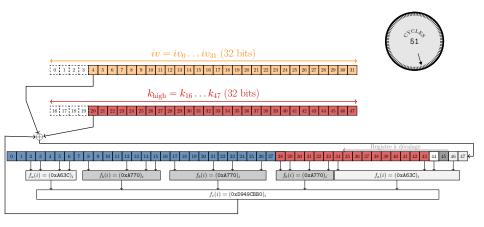

État interne Hitag-2 (48 bits)

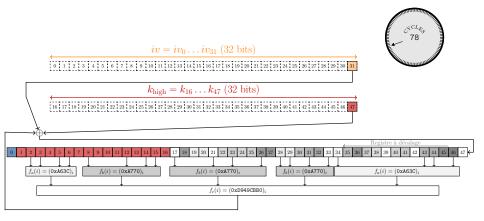

L'algorithme Hitag-2: phase d'intialisation

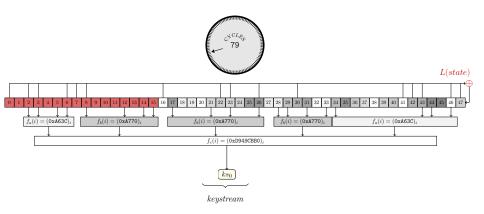




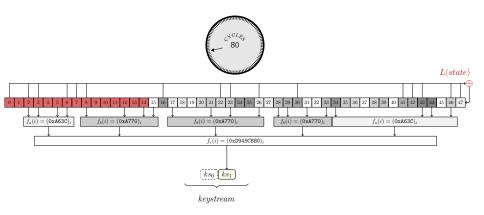

État interne Hitag-2 (48 bits)

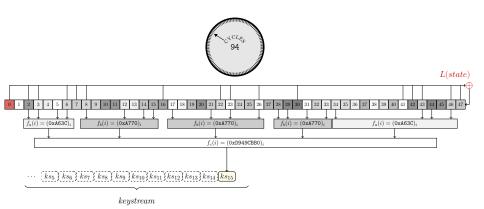


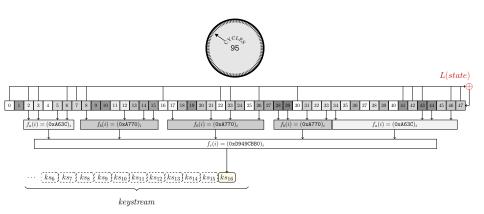



79

$$iv = iv_0 \dots iv_{31}$$
 (32 bits)


$$k_{\text{high}} = k_{16} \dots k_{47}$$
 (32 bits)


L'algorithme Hitag-2: phase nominale


L'algorithme Hitag-2: phase nominale

L'algorithme Hitag-2 : phase nominale

L'algorithme Hitag-2: phase nominale

L'algorithme Hitag-2 : attaque par corrélation

- Introduite par l'article de Usenix 2016 :
 - Retrouve la clé avec 4 à 8 trames.
 - Réduit fortement l'espace de recherche des clés.
 - Scoring des candidats lié au keystream observé.

L'algorithme Hitag-2: attaque par corrélation

- Introduite par l'article de Usenix 2016 :
 - Retrouve la clé avec 4 à 8 trames.
 - Réduit fortement l'espace de recherche des clés.
 - Scoring des candidats lié au keystream observé.
- Problème de CNTRH inconnu :
 - A priori à zéro en sortie d'usine.
 - Les auteurs proposent d'estimer l'âge du véhicule.

Implémentation de la cryptanalyse par corrélation

- Test sur des trames émulées.
 - Notre implémentation fonctionne.
 - La clé est retrouvée en quelques minutes.

Implémentation de la cryptanalyse par corrélation

- Test sur des trames émulées.
 - Notre implémentation fonctionne.
 - La clé est retrouvée en quelques minutes.
- Test sur des trames réelles (CNTRH inconnu).
 - Ne converge pas vers une bonne clé sur les trames décodées . . .

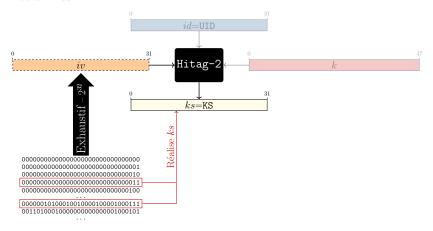
Implémentation de la cryptanalyse par corrélation

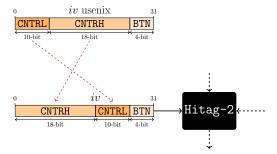
- Test sur des trames émulées.
 - Notre implémentation fonctionne.
 - La clé est retrouvée en quelques minutes.
- Test sur des trames réelles (CNTRH inconnu).
 - Ne converge pas vers une bonne clé sur les trames décodées . . .
 - Nécessité d'un recalage cryptographique.

Le recalage cryptographique

- Comment faire?
 - Accès au véhicule mais accès difficile à l'ECU.
 - Pas de NDA avec NXP donc pas de datasheet ni de SDK.

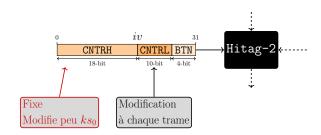
Le recalage cryptographique


- Comment faire?
 - Accès au véhicule mais accès difficile à l'ECU.
 - Pas de NDA avec NXP donc pas de datasheet ni de SDK.
- Accès à des clés vierges programmables contenant le PCF7946!


• Elles utilisent la clé usine par défaut 0x4f4e4d494b52.

Recherche du format de iv

Recherche exhaustive d'un pattern pour les 2^{32} iv qui réalise ks à id et k fixes.



Différences trouvées

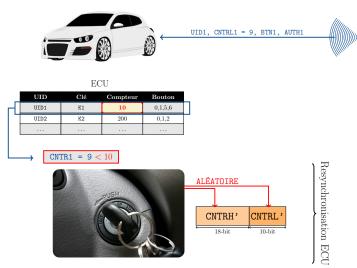
Différences trouvées

Explique pourquoi la cryptanalyse par corrélation fonctionne mal.

Découverte d'une contremesure ECU

ECU

UID	Clé	Compteur	Bouton
UID1	K1	10	0,1,5,6
UID2	K2	200	0,1,2


Découverte d'une contremesure ECU

ECU UID Cl6 Compteur Bouton UID1 K1 10 0,1,5,6 UID2 K2 200 0,1,2

Découverte d'une contremesure ECU

Resynchronisation en champ proche à 125 KHz lors du contact.

Recherche exhaustive optimisée

- \blacksquare Nécessite deux triplets (id, iv, ks):
 - Recherche parmi 2⁴⁸ clés celle qui réalise les deux *keystreams*.
 - \bullet Implémentation d'un $\it brute-forcer$ optimisé et parallélisé sur CPU et GPU en OpenCL.

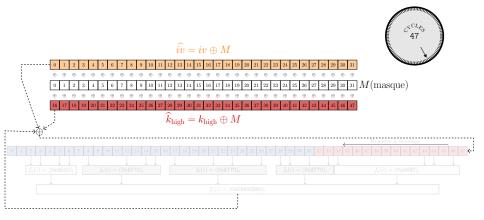
Recherche exhaustive optimisée

- Nécessite deux triplets (id, iv, ks):
 - Recherche parmi 2⁴⁸ clés celle qui réalise les deux *keystreams*.
 - \bullet Implémentation d'un brute-forcer optimisé et parallélisé sur CPU et GPU en OpenCL.
- Testé sur Amazon EC2 :

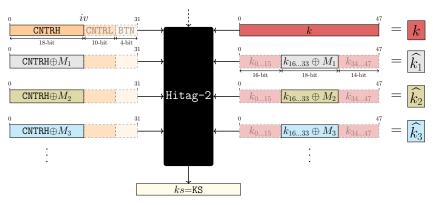
Plateforme	Temps
GeForce GTX 780Ti	18 heures
Instance Amazon EC2 [†]	45 minutes
3 instances Amazon $EC2^{\dagger}$	15 minutes

[†]p2.16xlarge : 16 Tesla K80, 128 CPU

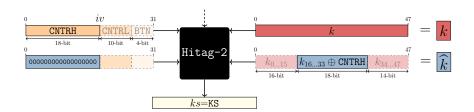
Recherche exhaustive optimisée

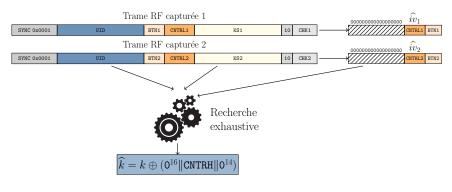

- \blacksquare Nécessite deux triplets (id, iv, ks) :
 - Recherche parmi 2⁴⁸ clés celle qui réalise les deux keystreams.
 - Implémentation d'un brute-forcer optimisé et parallélisé sur CPU et GPU en OpenCL.
- Testé sur Amazon EC2 :

Plateforme	Temps
GeForce GTX 780Ti	18 heures
Instance Amazon EC2 [†]	45 minutes
3 instances Amazon $EC2^{\dagger}$	15 minutes


[†]p2.16xlarge : 16 Tesla K80, 128 CPU

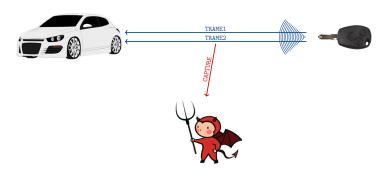
■ Quid de la partie inconnue CNTRH?


■ Compensation par masquage durant la phase de randomisation.


Existence de multiples clés équivalentes produisant le même keystream à iv masqué.

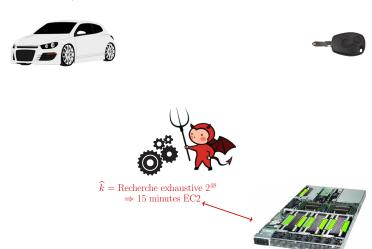
- Existence de multiples clés équivalentes produisant le même keystream à iv masqué.
- Cas particulier où le masque est CNTRH.

- Existence de multiples clés équivalentes produisant le même keystream à iv masqué.
- Une recherche exhaustive avec des \hat{iv} équivalents produit une clé équivalente \hat{k} masquée avec CNTRH.

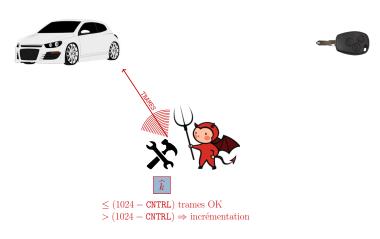


- Existence de multiples clés équivalentes produisant le même keystream à iv masqué.
- Une recherche exhaustive avec des \widehat{iv} équivalents produit une clé équivalente \widehat{k} masquée avec CNTRH.

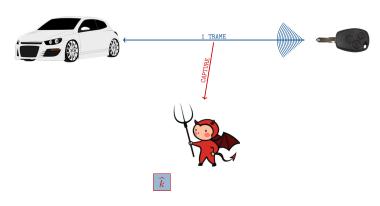
lacktriangle Nul besoin de retrouver la vraie clé k pour forger des trames valides!


Nouvelles attaques 1/2

■ Sans resynchronisation ECU.


Nouvelles attaques 1/2

■ Sans resynchronisation ECU.


Nouvelles attaques 1/2

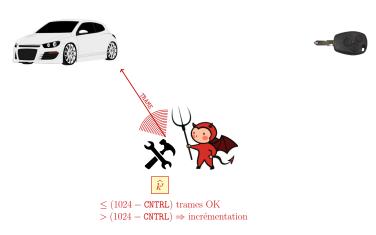
■ Sans resynchronisation ECU.

Nouvelles attaques 2/2

■ **Avec** resynchronisation ECU.

Nouvelles attaques 2/2

■ **Avec** resynchronisation ECU.



Nouvelles attaques 2/2

■ **Avec** resynchronisation ECU.

Conclusion

Résultats:

- Différentes implémentations RKE Hitag-2.
- Contremesure par resynchronisation avec l'ECU.
- Coût de l'attaque = $10 + 90 + 45 \in$.
- 2 trames RF, +1 avec la contremesure ECU.

Conclusion

- Résultats :
 - Différentes implémentations RKE Hitag-2.
 - Contremesure par resynchronisation avec l'ECU.
 - Coût de l'attaque = $10 + 90 + 45 \in$.
 - 2 trames RF, +1 avec la contremesure ECU.
- Cryptographie propriétaire obsolète et cassée à proscrire.