
ProTIP : You Should Know What to Expect
From Your Peripherals

Marion Daubignard, Yves-Alexis Perez
marion.daubignard@ssi.gouv.fr
yves-alexis.perez@ssi.gouv.fr

ANSSI

Abstract. Rogue peripherals are not reserved to elite attackers with
physical access to the machine anymore: practical tools are regularly
published and virtualization has led to widespread use of remote services
provided by third-parties.
In this paper, we advocate for a new more systematic approach in analyz-
ing PCIe device security. Related works comprise attacks, from proof of
concepts to more systematic tools, and the IronHide fuzzing device. But
to our knowledge, no formalization or methodical analysis has yet been
published. To fill in this gap, we introduce ProTIP, a Prolog Tester of
Information Flow in PCIe networks. This open-source tool implements
a model comprising all PCIe components, the CPU, I/OMMU and sys-
tem RAM. It uses the constraint solving ability of the Prolog engine to
enumerate all possible transactions between components.
ProTIP naturally rediscovers all problems listed previously in the litter-
ature, including the need for Access Control Services in switches and
their limits. It also highlights two subtleties: firstly, a race condition
enabling an attacker to arbitrarily answer read requests and secondly,
that I/OMMUs base their access right check on an ID that can change.
While the tool currently models specification-conformant behaviors and
rogue endpoints, it is meant to be extended, e.g. with potential specific
defects of given hardware, to evaluate the severity of their security impact.
Thus, we believe ProTIP can quite efficiently be combined with other
tools such as IronHide.

1 Motivation of Our Approach

This paper1 initiates a new approach to systematically characterize the
security issues raised by PCI Express peripherals.

1.1 Rogue Peripherals: an Underestimated Threat ?
While it is widely acknowledged that peripherals form a very concrete
threat to computer security, it remains commonplace to think that only

1 An updated version of this paper (with the URL of the tool) is available on the
conference website (https://www.sstic.org/2017/presentation/protip/).

198 ProTIP : You Should Know What to Expect From Your Peripherals

attackers with physical access to equipments can make use of rogue
peripherals. We argue that this point of view is simplistic.

First of all, hardware is rarely meant to remain in its initial state of
deployment. Indeed, for practical reasons, hardware relies on firmware to
support all kinds of execution environments. Firmware is a very low-level
software embedded in hardware components. It is often meant to be
updatable, on both functional and economical accounts. As a result, even
a trusted and perfectly sound device can become malicious. This should
be factored in a pragmatic security analysis. The BadUSB attack [12]
has acted as a spectacular reminder of this fact a couple of years ago.
The extreme difficulty to efficiently protect oneself against such attacks
has renewed interest in the topic. Even so-called controlled information
systems massively use USB devices, which tends to make the former
remotely accessible. We do not dive into details about USB sticks here,
since this is not the topic of our research. In our work, we rather focus on
PCI Express (PCIe) devices, which have been shown to suffer from the
same problems. Indeed, in [13], Perez et al. pave the way to the remote
exploitation of a faulty firmware to gain control of a Network Interface
Card (NIC), and then control its host using a Direct Memory Access
(DMA) operation to write in system RAM.

Secondly, the current tendency is to extensively use services hosted
in datacenters and clouds of various kinds. These solutions rely on
virtualization technologies to efficiently share hardware amongst end users,
which get access to virtual machines. Service providers have to let users
remotely use their hardware by design. In this context, attackers with
no physical access to the servers obviously qualify. Providers have to
guarantee customers that they can safely ignore that other – potentially
ill-intended – customers are hosted on the same machine. In order to
hamper the consequences of their potential compromission, peripherals
should be compartmentalized. This security goal seems as desirable as
user isolation. Providers are aware of the threats, as illustrates a recent
publication of Google Cloud Platform [6]. Perhaps less popular but still
relevant, multi-level security systems such as the Xen-based solution
Qubes [16] or deployments based on Linux-KVM also have to address
the same security concerns when it comes to compartmentalization and
defense in depth.

1.2 PCI Express Devices and Why They Matter
PCIe is often advertised as a bus protocol, because it was designed to be
fully compatible with its predecessor, the PCI bus protocol. While PCI

M. Daubignard, Y.-A. Perez 199

really deals with components on buses, PCIe components form a switched
fabric of peer devices. They communicate with each other by sending
packets routed by the switches interconnecting them. PCIe peripherals
are called endpoint devices. The CPU and memory controller of the
system RAM in a board do not directly send PCIe packets on the fabric:
they do not have PCIe interfaces. Instead, their demands go through a
root complex, which translate them into PCIe packets sent in the fabric2

(Figure 1). The fact that a PCIe endpoint device can communicate with
the memory controller of system RAM without intervention of the CPU
is the reason why DMA is efficient. Indeed, the CPU does not waste time
scheduling the slow interaction with the peripheral. This architectural
choice has a serious security impact though. In layman’s terms, the
Memory Management Unit (MMU) in the CPU remains out of the loop
during DMA transactions; hence, it cannot enforce memory access rights.
As a result, the whole memory can be read or written by a rogue device.
This can be prevented by separating the address space of the peripherals
from that of the system memory. In other words, peripherals need to
use their own virtual addresses. This requires a component dedicated to
performing address translations and access right checks. This is the role
of the I/OMMU, placed between peripherals and system RAM.

CPU Memory

Root complex

PCIe
endpoint

IOMMU

Memory

controller

Fig. 1. Simple PCI Express topology (based on work c© Mliu92 CC-BY-SA-4.0)

Being an extremely efficient communication protocol, PCI Express
is generally used by network interfaces and graphics cards. In addition
to that, Thunderbolt devices support PCI Express and are available on
the fronts of a lot of commodity computers. Efficient tools and proofs of

2 To simplify here, we consider one CPU, one memory controller and one root complex,
but there can be several instances of each on a given machine.

200 ProTIP : You Should Know What to Expect From Your Peripherals

concepts demonstrating potential threats posed by PCIe peripherals have
kept surfacing regularly in the last few years. When in 2010 DMA attacks
were rated difficult to carry out and reserved to high-skilled attackers,
efficient and available tools now turn them into a practical attack scenario
that the knowledgeable majority can perform successfully. The NSA
playset features Slotscreamer [3], an inexpensive device based on the PLX
USB3380 component converting USB commands into PCI DMA read and
write requests. This concept was built on by Ulf Frisk who has developed
PCILeech [4,5], a stable framework to dump the target system memory
in a reliable and fast manner. Inception [11] is another tool using DMA
writes to allow to log into target machines using an arbitrary password.
Closely related to PCIe, Thunderbolt has been proven to be vulnerable to
the same attacks [14]. Besides, as a Non-Volatile Memory Express device
is basically flash memory attached to a PCIe bus, Ramtin Amin has also
been quite creative in its use of the JTAG to relay DMA transactions to
the controller of such a device [1].

1.3 Towards a Systematic Analysis of Information Flow in
PCIe Fabric

The PCIe standard defines a three layer protocol providing integrity and
efficiency guarantees. As all standards, the PCI-SIG specification is rather
involved and it can prove difficult to make sense of some requirements.
Complexity of the design, backward compatibility issues and the cultural
gap between hardware and software communities make it likely that there
are some unintended consequences when it comes to security. To work
towards a thorough assessment of security issues with PCIe devices, we
propose a formal model of possible communication between devices and the
rest of the system, to compute all possible flows, including unexpected ones.
We have identified four important entities, namely, the CPU, the PCIe
network components, the system RAM and the I/OMMU, and abstracted
away the rest. Our model is implemented in ProTIP, our Prolog Tester
of Information flow in PCIe networks. It currently encompasses legitimate
flows – in the sense that it models behaviors conformant to the PCI-SIG
specification – and traffic generated by rogue endpoints. It is meant to be
extended to capture the specification at a better granularity.

The first goal of the formalization is to understand how to mitigate
the harm caused by a rogue peripheral. We mentioned the I/OMMU
earlier, but, unsurprisingly enough, ProTIP highlights a few reasons
why they are not the panacea they are said to be. Switches need to
implement filtering functionalities called Access Control Services (ACS).

M. Daubignard, Y.-A. Perez 201

Moreover, the standard introduces Address Translation Services, which
enables devices to bypass an activated I/OMMU. This feature, designed
for performance reasons, obviously violates the guarantees provided by
a perfectly configured I/OMMU. The effects of ATS can be thwarted
by a careful configuration of ACS in switches and the root complexes.
ProTIP enables to characterize configurations offering the best possible
compartmentalization.

The tool can also be extended to evaluate the impact of non-conformant
or bugged device implementations. We see it as a complementary approach
to tools such as IronHide, a PCIe endpoint device able to emit all kinds
of PCIe requests to fuzz its counterparts. IronHide was developed by
Fernand Lone Sang et al. [7, 9], who were the first to unearth security
concerns raised by ACS and ATS. Such a device is needed to test out
scenarios found by ProTIP in a real setting.

The second motivation behind ProTIP is to provide insight on how to
implement safe peripheral compartmentalization, especially in virtualiza-
tion settings. Hardware is made available to userland programs through
drivers. They execute complex tasks and deal with lots of corner cases,
while classically enjoying high privileges. Therefore, they are infamously
known to be susceptible to contain all kinds of exploitable bugs. This
accounts for the efforts meant to implement or integrate drivers while
enforcing the principle of least privilege. The Linux userland framework
VFIO [17] or virtual machines dedicated to running drivers illustrate these
efforts. These solutions are based on the principle of PCI device delegation,
or PCI passthrough, which is basically the idea of allowing access to the
raw PCIe device to a less privileged entity. Quite obviously, performance
also motivates the will to run less privileged drivers: it lessens the number
of costly context-switches. We have established that low-privileged, unfet-
tered access to PCIe devices threatens the system integrity. Thus, we aim
at characterizing fair restrictions to impose in order to enforce security.

To do so, ProTIP has to model the consequences of accesses to PCI
configuration space. It partly does so already, since it supports the is-
suance of some configuration requests by the CPU, and their impact on
the configuration of the PCIe fabric. This approach has highlighted quite
an important subtlety, which is fully documented in the specification but
seems rarely used in commodity OSes. A device is indexed by an identifier
(called a BDF, for Bus, Device and Function, and also refered to as an ID
in the rest of the paper), which is used by the I/OMMU to reference it.
However, this identifier is not fixed, and it can legitimately be changed by
a configuration request. This identifier impacts routing in the fabric, and

202 ProTIP : You Should Know What to Expect From Your Peripherals

changing it virtually changes the topology of the fabric. We have checked
that it can be done coherently. This allows a device to assume the identity
of another one, and thus to enjoy its memory access rights. The reconfig-
uration of a device ID requires access to both its configuration space and
that of the switch routing requests to it. Consequently, we do not expect
that real-life deployments even use this delegation configuration, let alone
rely on compartmentalization properties brought by such a configuration.
However, it is supported in some distributions such as Xen in permissive
mode and possibly in NetBSD. To be fair, both distributions warn against
dangers of PCI passthrough. Details are provided in section 5.3.

In our opinion, little known facts like these make the case for the need
for a more systematic approach such as the one we propose. It provides
valuable insight as to safe practices to implement compartmentalization.
To our knowledge, this is the first work in this perspective.

2 Prologue to the Formal Introduction of ProTIP

2.1 About Choosing Prolog to Implement our Model

We were not particularly versed in Prolog before starting this project. We
expect that some readers are not familiar with this language. We explain
briefly how it works and why it serves our purpose well.

Brief Overview of Prolog Prolog is very different from usual pro-
gramming languages, such as imperative or functional languages. It is a
declarative language used for constraint logic programming. It does not
apply functions or procedures to compute an output given some inputs.
It rather works with logical statements.

A basic Prolog workflow is as follows. The user writes a knowledge base,
which is a list of logical formulas; namely, facts or ways to deduce them
from one another. Then, the Prolog engine is queried, after launching the
interpreter and loading the base manually. A query is a logical predicate
provided by the user, and the engine is supposed to find out its truth value.
It is possible that the engine never terminates, and it is far from being a
detail, but we omit this possibility here. Possible answers of the engine
depend on the presence of variables in the query. In their absence, output
is simply true or false. Otherwise, the engine enumerates the set of values
which can be taken by variables so that the query holds, or false if there
are none. This process relies on unification, which offers a way to solve
SAT problems in a complete manner: when terminating, the algorithm
finds all possible solutions.

M. Daubignard, Y.-A. Perez 203

Prolog has only one data type, terms. Terms are built from atoms,
variables and numbers, which can of course be composed together. Any-
thing can be used to define an atom: they have no predefined meaning.
The only difference between atoms and variables is syntactic: the latter
start by an upper-case letter or an underscore. Figure 1 shows an example
of knowledge base, where good or evil are atoms, while Character is a
variable.

evil (bowser).
friend (yoshi , mario).
friend (peach , mario).
friend (wario , bowser).
brother (luigi , mario).
good (mario).
good (OtherCharacter) :- friend (OtherCharacter , Character), good (

Character).
lifepts (X) :- X in 0..7.
damage (X) :- X in 1..9.
life (mario ,X) :- lifepts (X).
damages (bowser ,Y) :- damage (Y), Y# <3.
damages (bowser ,Y) :- damage (Y), Y# >=7.
mario_survives (X,Y) :- life (mario ,X), damages (bowser ,Y), Y#=<X.

Listing 1. Example of Prolog program

It comprises clauses, one per line. The first six are facts, all formed
on the same pattern: an atom taking arguments, called a functor, is
applied to other atoms. The seventh clause is a rule. A rule is of the form
conclusion :- things_to_satisfy. In the program above, the only
predefined symbols used are :-, to separate both parts of a rule, and the ,
symbol, which is a logical and. The rule captures that a character who is
the friend of a good character is a good character, and this is expressed by
a conjunction. Notice that in a clause, all occurences of the same variable
refer to the same thing. The Prolog engine, when trying to use the clause,
instantiates all occurences of the same variable with the same value.

There exists a lot of implementations of Prolog. In fact, it is the object
of two ISO standards. ProTIP has been developed using the SWI-Prolog
implementation [15]. This implementation comprises a module to deal
with finite domains, called CLPFD (for constraint logic programming over
finite domains). It allows to express constraints over integers in a simple
manner and solve them to obtain sets of integers satisfying the constraints.

In the example, lifepts and damage hold for variables ranging over
finite domains. The damages predicate formalizes that bowser can cause
damages below 3 life points or above 7 life points. When mario encounters
bowser, its survival depends on his initial number of life points, which

204 ProTIP : You Should Know What to Expect From Your Peripherals

must exceed the damages actually caused by bowser. This is modeled by
clause mario_survives.

Let us see how our toy example can be used. The interpreter provides
a command-line interface to query the engine. Example queries are listed
in Listing 2. Symbol ?- is the prompt of the interpreter. Each time a
query is performed, the engine tries to find values for variables in the
query so that the formula is true. It answers with a first satisfactory
valuation of variables, and the user presses ; to see the next possible
instantiation of variables. Symbol . marks the end of enumeration. For
the first two queries, the engine just has to match with predicates declared
in the source file. The second query illustrates that not all arguments of a
predicate have to appear as variables in a query. The third query is meant
to show all good characters, and the engine enumerates mario, declared
as good, and yoshi and peach, which are deduced to be good from the
rule3. Eventually, the CLPFD library is put to use in our last query,
meant to evaluate the conditions on which mario can survive a battle
with bowser. We observe that the engine deduces that two scenarios yield
happy endings. This illustrates that it is able to output preconditions on
finite sets of integers which are necessary for a goal to be verified.

?- evil (Who).
Who = bowser .

?- friend (X, mario).
X = yoshi ;
X = peach .

?- good (X).
X = mario ;
X = yoshi ;
X = peach ;
false .

?- mario_survives (Life , Damage).
Life in 1..7 ,
Life #>= Damage ,
Damage in 1..2 ;
Life = Damage , Damage = 7.

Listing 2. Example of queries to the SWI-Prolog interpreter

A very important thing to keep in mind is that this language relies
on what is called the close world hypothesis. This means that all trials
of proofs exclusively use knowledge facts loaded into the engine. This

3 This query ends with false when we have manually excluded all satisfactory values
for X, due to the appearance of good as a rule conclusion.

M. Daubignard, Y.-A. Perez 205

has pros and cons, which can both be expressed by the same statement:
only what is specified is taken into account. In the second example, this
means that luigi is not going to be used as a possible instance of a good
character: there is no occurence of good(luigi) in the base, nor is there
a way to derive anything from brother(luigi,mario).

Of course, this section only illustrates extremely basic principles about
the way the Prolog engine can be used, to provide intuition to a reader
who is not familiar with proof engines and logic programming.

How ProTIP benefits from the Prolog engine We need to formalize
interactions between elements of a network. This means that we need to
model reactions of the elements to triggers. Trigger events consist either
in the reception of data or in the initiation of an interaction. Resulting
events are either the emission of data towards an other element or the
successful termination of a transaction. These events are formalized
by predicates, which are then coupled with physical port numbers in
hop predicates hop(TriggerEvt, InPort, ResultEv, OutPort). When
a hop predicate is true, it captures that TriggerEvt happens at InPort
and that it results in ResultEv for OutPort. In first approximation, the
reader can think of our program as a set of Prolog deduction rules setting
conditions to establish a single predicate, hop(...). We call these hop
rules. Three cases can occur as a result of TriggerEvt:

– if the element does not react to the trigger event, typically when
it drops data, we do not write any rule: no further transaction is
generated. This happens when the input is ill-formed.

– if the element consumes data but does not output anything,
ResultEv is an acceptance event, and OutPort is the physical port
which is the recipient of the data.

– lastly, the element can output some data meant for another physical
port. In such a case, OutPort is the recipient port number and the
emitted data is captured by ResultEv. This is the case when switches
route packets.

The behavior on an element does not have to fit in one rule: for
example, switches consume packets intended for them and can route
others to one of their ports. This is described by several rules.

Hops are good, but what really matters to us is to list all possible
sequences of hops between two points of a network. Provided with hop
rules, the Prolog engine perfectly fits our needs.

206 ProTIP : You Should Know What to Expect From Your Peripherals

2.2 Organization of Tool Presentation

In the rest of the article, we adopt an iterative approach to present our
work and tool. We choose to alternate presentations of PCIe fundamental
concepts with the explanations of how they are formalized in ProTIP and
how results are obtained.

Firstly, we introduce in details how PCIe networks proceed to route
read and write requests, and what the former look like. Secondly, we focus
on fine-grained switches and I/OMMU features that can allow defeating
PCIe peripheral compartmentalization if not activated: these are the ACS
and ATS that we mentioned in section 1.3. Thirdly, we introduce PCIe
configuration requests and the side effects which they can entail.

3 Modeling Read and Write Requests in a PCIe Fabric

3.1 PCI Express Standard Basics

The PCIe specifications are not freely available, but they are well-
documented (e.g. in [2]). Here we introduce the fundamental elements
needed later on. An example of typical PCIe topology is depicted in
Figure 2. The root complex, root of the whole hierarchy, connects the
device tree to the memory and CPU subsystems. The leaves are called
endpoints and usually consist in graphics and network interface cards
or storage controllers. Endpoints are connected to the root complex4,
either to one of its root port directly or through switches, responsible for
routing traffic. Finally, the PCIe link is the physical connection between
components.

In a PCIe topology, the terms up, above, top refer to data flowing
towards the root complex, while down, below and bottom refer to traffic
oriented towards endpoints. It is also possible for two endpoints to achieve
peer-to-peer communication. In this case traffic flows upwards from the
source endpoint to the closest common ancestor switch, then downwards
to the destination endpoint.

Communication between PCIe components is done using a network-like
protocol stack with three layers: physical, data link and transaction. We
are only interested in the transaction layer in this work.

4 There are exceptions to this general rule: root complex integrated endpoints which
are, as their name suggests, directly inside the root complex.

M. Daubignard, Y.-A. Perez 207

Switch

Root complex

PCIe
endpoint

PCIe
endpoint

PCIe
endpoint

PCIe linkPCIe link

PCIe link

PCIe link

Upstream port

Downstream port

Fig. 2. Example PCIe topology (based on work c© Mliu92 CC-BY-SA-4.0)

The transaction layer supports full peer-to-peer communications be-
tween endpoints. Packets at this layer are called transaction layer packets
or TLPs.

There are four basic types of transactions: memory, configuration,
I/O and messages. Transactions start by a request which can be posted
or non-posted. While a posted request constitute a transaction on its
own, a non-posted request requires a completion to finish the transaction.
Devices use completions to return data on reception of a read request, or
to acknowledge a write request.

Packet routing is achieved using three different mechanisms but only
address-based and ID-based are of interest here5. The specification imposes
when to use which mechanism. A read transaction is composed of a memory
read request, routed by address, and the corresponding completion, routed
by ID. A memory write request is routed by address, but does not involve
a completion: it is posted.

We illustrate our description of routing strategies with the example
of a CPU access to a memory area exposed by an endpoint. We use the
topology depicted on Figure 3, which displays the base configuration used
throughout the paper. A transaction is emitted by the root complex on
behalf of the CPU and targeted at endpoint 04:0.0. We assume the fabric
is already fully initialized; configuration mechanisms are described later
in this article. Elements of configuration relevant to routing are stored
inside each component in their configuration space header.

5 The third one, implicit routing, is only used for specific messages not studied here.

208 ProTIP : You Should Know What to Expect From Your Peripherals

Switch

PCIe
endpoint

03:0.0

PCIe
endpoint

04:0.0

2

3 5

1

4 6

Root complex
00:0.0

Fig. 3. Base configuration used in our examples

Address-based routing A memory read request TLP (Figure 4) in-
cludes a destination address, used to route the packet, and a requester ID
identifying the source device. Port selection inside a switch is pictured on
Figure 5. The request bears the address 0xf100400c, the switch upstream
port claims it because the address falls within its memory range, defined
by the memory base and memory limit fields of the configuration space
header (here 0xf1000000-0xf1005fff). The switch has two downstream
ports, each covering a separate address range, so only one is handling the
destination address: port 5, with range 0xf1004000-0xf1005fff. The
TLP is forwarded on the attached PCIe link where it reaches an endpoint.
The destination address is inside the memory area exposed by the de-
vice (defined by the base address register field in the configuration space
header), leading the endpoint to accept the TLP and process the request.

When a switch receives a request on a downstream port and the
destination is neither local nor handled by another downstream port,
the request is transmitted on the upstream link. This is what allows
peer-to-peer requests to travel upstream to a common ancestor of both
peers, which is the first switch having a downstream port configuration
matching the destination.

ID-based routing In our example, after processing the read request, the
destination endpoint emits a completion (Figure 6) destined to the original

M. Daubignard, Y.-A. Perez 209

0 16 32

Fmt Type R TC R Attr R TH T
D

E
P

Attr AT Length

Requester Id Tag Last DW BE 1st DW BE

Address[31:2] PH

Fig. 4. TLP header (Memory Read Request)

Switch

PCIe
endpoint

0xf1000000-0xf1003fff

PCIe
endpoint
0xf1004000-0xf1005fff

0 16 32

Fmt Type R TC R Attr R TH TD E
P

Attr AT Length

Requester Id Tag Last DW BE 1st DW BE

0xf123900c PH

0 16 32

Fmt Type R TC R Attr R TH TD E
P

Attr AT Length

Requester Id Tag Last DW BE 1st DW BE

0xf123900c PH

0xf100400c

0 16 32

Fmt Type R TC R Attr R TH TD E
P

Attr AT Length

Requester Id Tag Last DW BE 1st DW BE

0xf123900c PH

Memory range (up port)
0xf1000000-0xf1005fff

Memory range (down port)
0xf1004000-0xf1005fff

2

1

3 5

4 6

Fig. 5. PCIe address-based routing

210 ProTIP : You Should Know What to Expect From Your Peripherals

source. In this completion packet, the destination field is the requester ID
taken from the request packet (00:0.0 since the request is generated by
the root complex), while the completer ID matches the endpoint’s own
identifier (04:0.0). Of the three numbers present in this field (Figure 7),
only the bus number is used for routing.

The completion flows upward in the topology (Figure 8) until reaching
the destination or a switch with a downstream port leading to it. Down-
stream port identification inside a switch uses the requester ID as well
as two fields from the port configuration space header: secondary bus
number and subordinate bus number. The secondary bus number is that
of the PCIe link directly attached to a port, while the subordinate bus
number designates the highest bus number present beneath that port.
The resulting interval defines the bus aperture of the port. A downstream
port is selected when the requester ID from the packet belongs to its
bus aperture. When the endpoint is directly attached to the link, the
secondary and subordinate bus numbers are identical.

As for address-based routing, upwards completions are forwarded to
the upstream link if the final destination is not local and no downstream
port contains the requester ID in its bus aperture.

The I/OMMU is a vendor-specific component, absent from the PCIe
specifications. It is thus completely optional in a PCIe system and is
usually found in virtualization-intended architectures. Most popular
I/OMMU implementations include Intel VT-d and AMD-Vi.

An I/OMMU logically sits between the root complex and the memory
controller, policing requests from I/O devices targeted at memory ranges
in the system RAM. A PCIe fabric can have several of them, each one
managing a set of switches and endpoints beneath.

The primary role of an I/OMMU is to add an abstraction layer to the
memory space, like its counterpart in the CPU world, the MMU. As is the
case for processes in commodity operating systems, using an I/OMMU
enables the CPU and each I/O device to have their own memory map. For
example, this is useful in case the system has more than 4GB of system
RAM and the I/O devices only use 32-bit addresses. All I/O devices
target the same range under 4GB but the requests are actually translated
by the I/OMMU to different ranges. This is also useful for assigning a
device to a specific process (resp. virtual machine), preventing it from
accessing memory managed by another process (resp. virtual machine).

The CPU is tasked with configuring the I/OMMU by filling page tables
in the system RAM. For each memory request initiated by an endpoint

M. Daubignard, Y.-A. Perez 211

0 16 32

Fmt Type R TC R Attr R TH T
D

E
P

Attr AT Length

Completer ID Compl. Status

B
C

M

Byte Count

Requester ID Tag R Lower Address

Fig. 6. TLP header (Completion)

0 8 16

Bus Device Function

Fig. 7. Device ID

Switch

PCIe
endpoint

03:0.0

PCIe
endpoint

04:0.0

2

3 5

1

4 6

Sec bus: 4
Sub bus: 4

Sec bus: 3
Sub bus: 3

Fig. 8. PCIe ID-based routing

212 ProTIP : You Should Know What to Expect From Your Peripherals

and directed towards the system RAM, the I/OMMU performs a page
walk to obtain the final physical address. Page tables are indexed by
the device identifier and contain both access rights and the host physical
address. Upon reception of a PCIe memory request, the I/OMMU uses
the requester ID to find the correct entry and rules on the legitimacy of
the request. Authorized requests then entail emission of the corresponding
command to the memory controller.

3.2 Modeling Memory Requests in ProTIP

Elements Modeled and Tool Input Our work aims at formalizing
commodity architectures while abstracting away all constituents that are
not relevant to PCIe peripheral security. To do so, our tool is meant to
help users characterize all possible information flows in their own fabric
instance, so that they can check whether these match their expectations.
Even physically identical PCIe networks can bear different configurations
which change their properties. As a result, it requires our framework
to take into account the actual parameters of a given fabric. The latter
constitute the input of our tool.

More specifically, ProTIP works on a set of physical port numbers
representing ports of components actually present in a fabric. The tool
needs information about the physical links existing between them as well as
the contents of their configuration headers that pertain to packet routing.
This encompasses BARs for all components, completed with bus numbers,
memory base address and limit fields for switches. The user can also
specify whether an I/OMMU is present, and which filtering rules it is
supposed to enforce. While several I/OMMU components can be used to
take charge of different parts of the fabric, we currently represent them as
a single element that is present or not. We also consider the CPU to be a
single monolithic component.

For the time being, the tool input is encoded manually in an ad-hoc
format. We plan on implementing parsers for PCIe configuration as
obtained by usual enumeration tools (such as the Linux tool lspci6). The
tool parses input configurations to build an abstract representation of the
fabric, which we call a State in the rest of the paper.

Details About Rules for PCIe components There is one event pred-
icate for each kind of TLP packets, i.e. one for each type of transaction.
The information captured is fully contained in TLP headers. The actual

6 However, I/OMMU information is not part of what is provided by lspci.

M. Daubignard, Y.-A. Perez 213

payload is abstracted, as we are only interested in whether a TLP can suc-
cesfully be routed from one point to another. A read request is formalized
by predicate mem_read(Address, ReqBDF, Tag, AT), where Address is
the targeted address and ReqBDF is the requester ID. Tag is a tag value used
by the requester to associate an inbound completion with a pending request.
We skip over the AT bit, discussed in section 4. Similarly, completions (resp.
write requests) are captured by completion(ReqID, ComplID, Tag)
(resp. mem_write(Address, BDF, AT)).

The variables in these predicates are all encoded as elements of finite
domains, whose nice properties have been introduced in section 2.1. This is
particularly relevant for addresses, that are represented as elements of an in-
terval, rather than a set of individual values. This is no detail when it comes
to enumerating possible traces or listing them as an output. The ability
to compute on packets such as mem_read(Address, bdf(3,0,0), 1, 1)
with Address in 0xc0000000..0xc000ffff, by suppressing the need to
try all values, renders the tool practical on real-life configurations.

For each TLP type and each kind of PCIe component, ProTIP contains
one or more rules describing how the component acts upon reception of
the packet. As outlined in section 2.1, PCIe component rules are all built
on the same pattern, to capture results entailed by event triggered.

To give the reader an intuition of how it works, we develop the example
of a rule capturing what happens when a Completion TLP is received by
an endpoint device. The specification prescribes that the device accepts a
completion under the condition that it corresponds to an outstanding read
request that the device placed. This is where tags come into play. Before
emitting a read request mem_read(Address, BDF, Tag, AT), a device
generates a unique 8-bit Tag value, and stores the pair (Tag,Address).
If everything goes according to plan, the completion received by the
device features its ID in the RequesterID field. However, according to the
specification, a completion packet does not reference the address which
was read, but bears the tag value. Thus, when a completion is received,
the device should compare this tag value to its list of outstanding read
requests. If there is a match, then the address value that was read is
deduced from the tag list stored by the device.

completion_hops (completion (ReqBDF ,BDF ,Tag), Port , TagList ,
accept (compl , Address), Port , NTagList , State) :-

is_endpoint (Port , State , ReqBDF),
outstanding_request (Port , Tag , TagList , Address , NTagList).

Listing 3. Completion rule

214 ProTIP : You Should Know What to Expect From Your Peripherals

Listing 3 shows the sample rule, slightly simplified for the sake of
clarity. We note that hop rules actually have seven arguments, contrary to
the simplified introduction of section 2.1. However, the intuition provided
then still holds. The first six arguments can be divided into two groups,
each comprising an event predicate, a physical port and a set of tag lists.
The first group represents a trigger event occurence, while the second
represents the consequences it entails. The last argument State models
the configuration of the PCIe network under analysis.

The rule captures that completion_hops holds when is_endpoint
and outstanding_request are both true. For example, the predicate
outstanding_request(Port, Tag, TagList, Address, NTagList) is
true when TagList lists the pair (Tag,Address) under the outstand-
ing request list for Port, and NTagList is an identical list of tags except
that (Tag,Address) is removed. It is important to bear in mind that
everywhere a variable appears in a given formula, the unification algo-
rithm tries to instantiate the variable with the same term. Thus, it is
the appearance of TagList in both predicate outstanding_request and
completion_hops which ensures that we check what we are supposed to.
Acceptance of the completion is captured by the event predicate accept,
which references the address matched by the tag value. It is important
to note that it is the address which was read, rather than the address to
which the completion is copied.

About Non-PCIe Elements The CPU has the particularity to be able
to initiate requests, just like the PCIe endpoints are. Let us set aside the
I/OMMU problem for a moment. When the root complex receives CPU
requests, they are translated into TLPs and are sent downstream through
the relevant root ports. We model the root complex as a collection of root
ports. The event predicate capturing the reception by a root port of a read
(resp. write) request from the CPU is denoted gen_read(Address) (resp.
gen_write(Address)). These predicates appear as the first components
of hops modeling root port rules. The CPU itself is denoted as a specific,
constant physical port denoted cpu. The interaction with system RAM is
similarly formalized. Either RAM appears as the constant physical port
ram when it is the final destination of a request (e.g. when an endpoint
writes to system memory), or it is abstracted when a root port receives
a read request meant to be completed. In the latter case, relevant root
port rules model both reception of a read request and response with a
completion.

M. Daubignard, Y.-A. Perez 215

On top of this, the I/OMMU is captured as a couple of predicates
imposing additional conditions to check when testing whether root port
rules apply. This is natural for a component architecturally placed between
root ports and RAM. We only model access rights applied to different
memory regions, but not computation of address translations. These latter
computations do not impact our security evaluation per se, only the actual
occurence of translation does.

Eventually, we complete the set of rules with non-compliant behaviors
that a compromised endpoint can exhibit. We allow these to flood the
network with arbitrary packets. To differentiate resulting traces, such
rules use event predicate generate, rather than gen_write or gen_read.

3.3 Building ProTIP outputs
A PCIe fabric is the combination of its physical reality and the logical
network built on top of it by the transaction layer abstraction. Given
a fixed configuration, expressing security properties solely based on the
logical view of the network does not allow to properly capture design flaws
enabling spoofing attacks. Moreover, the security criterion of interest
to users is compartmentalization. It means that ProTIP must provide
a description of the actual connectivity of a fabric, both physically and
logically. Simply put, users need to know which device can influence which
other. Model-wise, this means finding all possible hop sequences ending
with a device accepting a packet. Our search algorithm should be sound –
meaning that we do not over-approximate possible interactions – and has
to be complete – meaning that we do not miss any possible information
flow.

A naive enumeration of hop sequences fails to solve our problem: it
does not terminate. Indeed, when thinking of a hop sequence, we naturally
tend to picture a kind of minimal trace. A minimal trace consists in a
sequence of hops which starts with a generation event, terminates with
an acceptance event and where hops form a causal chain: the trigger
event in a hop is a resulting event of the previous one in the sequence.
Nevertheless, an arbitrary acceptance-terminated hop sequence exhibits a
series of possibly unrelated hops, dealing with transactions that do not
necessarily originate in a generation event, and possibly comprises several
acceptance events. There is an infinite number of such traces.

To prune our search space while remaining complete, we rather build
our search strategy on weakest precondition calculus. Since we are inter-
ested in packet acceptance, we first set out to generate all sets of necessary
conditions resulting in acceptance, and then check whether these are

216 ProTIP : You Should Know What to Expect From Your Peripherals

satisfiable. We need to decide on a set of tag lists from which to start our
backtracking. Acceptance causes removal of elements from tag lists, and
we are computing backwards. We thus choose to backtrack from empty
tag lists for every port to avoid introducing side effects on the computation
of preconditions. Our backtracking yields causal chains of hops resulting
in acceptance, which we stop at the first generation event occurrence.

Two cases can arise then. Either the tag lists related to this generation
event are empty, which corresponds to the initial state for our fabric, or
there is one tag list containing a tag-address pair. No other kind of initial
set of tag lists occurs in practice. Indeed, only acceptance events augment
tag lists in our backtracking process and they never appear as trigger
events of a rule. This is not an artefact of modelization but a property of
our distributed system. The fact that some traces start on non-empty tag
lists is expected. After initialization, the fabric starts with an empty set
of tag lists, but other packets can go through it before our trace starts.
To check on reachability of our non-empty tag list, we use backtracking
again, until we find a generation event which, coupled with the initial set
of empty tag lists, results in our intermediate set. This provides the list
of all satisfactory trace prefixes.

In the end, the tool outputs these traces in a file so that the user can
analyze them. For the time being, since this is the very beginning of our
formalization effort, trace analysis is reduced to (not so) pretty-printing.
Traces are classified very crudely to check for specification compliance,
according to the sequences of events they comprise. In particular, any
trace which includes a generate event is labeled as requiring attention.

We emphasize that the security goal of compartmentalization is orthog-
onal to specification compliance: typically, it is fully compliant to allow
every device to read and write all system memory and to communicate
with every other device. Eventually, the user is the only one capable
to decide whether exhibited traces raise security issues for his own de-
ployment. ProTIP is mainly a very precise PCI configuration audit tool
raising warnings. By soundness of our search algorithm, all traces are
worth examining: they can actually happen.

3.4 Security Issues Underlined

For the remainder of this article, we repeatedly present results obtained
when running the tool on a few variants of the base configuration illustrated
in Figure 5 and 8. In addition to information depicted, we precise that
the memory range of the root port is 0xc0000000..0xffffffff in the

M. Daubignard, Y.-A. Perez 217

base configuration, and that switch downport number 3 (resp. 5) has a
BAR of 0xc0000000..0xc0000fff (resp. 0xc0001000..0xc0001fff).

Listing 4 shows samples of actual trace listings obtained as a result of
running ProTIP with the base configuration as an input, in the absence of
I/OMMU. In output logs, each trace is displayed followed by constraints
computed by the CLPFD module for its variables7. Traces are displayed
as sequences of triples formed by event, physical port number and a set of
tag lists when the event occurs for the port number. Namely, when two
triples are separated with by ->, it means that a hop rule involving the
first and second triple was applied to build the trace.

The first trace shows that endpoint 4 can generate write requests that
can successfully reach system RAM adresses comprised between 0x0 and
0xbfffffff, using an arbitrary requester ID bdf(B,D,F). We remind
that the generate event predicate is meant to differentiate arbitrary
packet generation from specification-conformant behavior. Tag lists are
represented as a list of six empty lists, one for each port. Even though
this is not modeled at this point, switches can emit read requests and
receive completions. The fact that we transit directly from port 1 to
RAM has been explained in section 3.2, but the attentive reader may
note that port 2 does not appear. This comes from the manner in which
switches are modeled: one of their port receives a packet as input, and if
it is not dropped or accepted, the outcome is the emission of a packet to
another PCIe component. The specification provides little details about
what should happen inside switches, rather focusing on what they should
output. This is mirrored by modeling switches as wholes.

For the time being, no post-treatment is applied to output traces.
There is one log entry per way to build a given hop sequence from the
rules. Hence, multiple identical traces or traces refining one another
can appear. Moreover, several interval slices correspond to several log
entries. The address range in the log must not be interpreted as the
largest set of addresses that can be written in RAM by endpoint 4 using
an arbitrary requester ID. The upper limit comes from the presence of a
BAR starting in 0xc0000000 on port 3. Any write request addressing the
BAR is accepted by the switch and not routed to RAM.

Diving further in the output logs, we find traces to confirm that
endpoints can perform DMA read and write requests to any arbitrary
RAM address but those routed elsewhere. The second trace in Listing 4

7 Real logs differ slightly from those in the listing. Except for Address, variables still
appear with counter-intuitive, automatically generated variable names, and integers
have decimal representation.

218 ProTIP : You Should Know What to Expect From Your Peripherals

provides an example of a legitimate read request from endpoint 4 for RAM
addresses. This issue is a well-known security vulnerability in the absence
of an I/OMMU.

The third trace illustrates the possibility of generating arbitrary com-
pletion packets. The specification does not impose any specific check
on completion reception, except that it should match an element in the
tag list of the port. This is reflected by the initial set of tag lists of the
trace: the tag list of the root port contains one pair. As explained in
section 3.3, we must then find prefixes resulting in a such a set of tag lists.
The last trace in the log extract of Listing 4 shows one example of such
a prefix. The address interval 0xc0000000..0xffffffff corresponds to
the root port memory range. The combination of both traces points out
the possibility for a rogue endpoint of racing any legitimate completer.
When winning the race, the spoofing device can answer arbitrary data to
any read request which the CPU can place, if it correctly guesses the 8-bit
tag value.

The achievability and severity of this potential vulnerability have yet to
be examined. As mentioned previously, we have not had the opportunity
and necessary equipment to inject arbitrary PCIe traffic into a fabric.
Since the address being read is not under the control of an adversary, this
does not seem easy to exploit except for blunt denial of service attacks.
We plan on investigating this further in future work.

Trace : port ram accepts write with a WEIRD TRACE
generate ,4 ,[[] ,[] ,[] ,[] ,[] ,[]]

-> mem_write (Address ,bdf(B,D,F) ,1) ,3 ,[[] ,[] ,[] ,[] ,[] ,[]]
-> mem_write (Address ,bdf(B,D,F) ,1) ,1 ,[[] ,[] ,[] ,[] ,[] ,[]]
-> accept (write , Address),ram ,[[] ,[] ,[] ,[] ,[] ,[]]

and constraints :
clpfd : (Address in 0.. 0 xbfffffff), clpfd : (B in 0..256) ,
clpfd : (D in 0..32) , clpfd : (F in 0..8)

Trace : port 4 accepts completion with a usual read trace :
gen_read (Address) ,4 ,[[] ,[] ,[] ,[] ,[] ,[]]

-> mem_read (Address ,bdf (3 ,0 ,0) ,Tag ,0) ,3,
[[] ,[] ,[] ,[(Tag , Address)] ,[] ,[]]

-> mem_read (Address ,bdf (3 ,0 ,0) ,Tag ,0) ,1,
[[] ,[] ,[] ,[(Tag , Address)] ,[] ,[]]

-> completion (bdf (3 ,0 ,0) ,bdf (0 ,1 ,0) ,Tag) ,2,
[[] ,[] ,[] ,[(Tag , Address)] ,[] ,[]]

-> completion (bdf (3 ,0 ,0) ,bdf (0 ,1 ,0) ,Tag) ,4,
[[] ,[] ,[] ,[(Tag , Address)] ,[] ,[]]

-> accept (compl , Address) ,4 ,[[] ,[] ,[] ,[] ,[] ,[]]
and constraints :
clpfd : (Address in 0..0 xbfffffff), clpfd : (Tag in 0..25)

Trace : port cpu accepts completion with a WEIRD TRACE
generate ,4 ,[[(Tag , Address)], [] ,[] ,[] ,[] ,[]]

M. Daubignard, Y.-A. Perez 219

-> completion (bdf (0 ,1 ,0) ,bdf(B,D,F),Tag) ,3,
[[(Tag , Address)] ,[] ,[] ,[] ,[] ,[]]

-> completion (bdf (0 ,1 ,0) ,bdf(B,D,F),Tag) ,1,
[[(Tag , Address)] ,[] ,[] ,[] ,[] ,[]]

-> accept (compl , Address),cpu ,[[] ,[] ,[] ,[] ,[] ,[]]
and constraints :
clpfd : (Tag in 0..25) , clpfd : (B in 0..256) , clpfd : (D in 0..32) ,

clpfd : (F in 0..8)

Possible prefix :
gen_read (Address),cpu ,[[] ,[] ,[] ,[] ,[] ,[]]

-> mem_read (Address ,bdf (0 ,1 ,0) ,Tag , AT) ,2,
[[(Tag , Address)] ,[] ,[] ,[] ,[] ,[]]

and constraints :
clpfd : (Address in 0 xc0000000 ..0 xffffffff), clpfd : (Tag in 0..25) ,

clpfd : (AT in 0..1)

Listing 4. Extracts of ProTIP output on the base configuration

When ProTIP analyzes the base configuration in the presence of an
I/OMMU, it rediscovers ID-spoofing attacks exposed in [8, 10]. Namely,
the first trace in the previous example is not possible for any requester
ID anymore: the I/OMMU checks that a transaction is allowed to reach
RAM based on its requester ID. That being said, no mechanism in the
configuration compels the device to use its own ID. As a result, a rogue
endpoint, spoofing an ID listed in the I/OMMU configuration, is granted
access to the memory regions initially authorized for the spoofed device.

Last but not least, regardless of the presence of an I/OMMU, peer-to-
peer communications between endpoints are possible. In a similar fashion
to the CPU example detailed earlier, alternative completions from rogue
endpoints can successfully target other endpoints, as soon as the latter
emit a read request.

4 Addressing Compartmentalization Issues With
Fine-Grained Configuration of Routing Components

4.1 Introduction to Access Control Services and Address
Translation Services

One interesting feature of PCIe is the ability for endpoints to exchange
data with the system memory without involving the CPU: since those
transfers are slow, stalling the CPU during them would be costly. Direct
memory access (DMA) is needed for improving performance for high speed
devices like hard drive controllers and network interface adapters. But as
is now widely known, DMA raises security concerns, which the I/OMMU is
meant to address. It translates device addresses into physical addresses by

220 ProTIP : You Should Know What to Expect From Your Peripherals

performing a page walk on each memory transaction. While this is faster
than having the CPU do the transfer, it is still too slow for some usages.
I/OMMU implementations commonly include some internal memory to
cache translated addresses (like a TLB for the MMU). Nevertheless, it
remains a bottleneck, specifically when multiple devices need to access
memory simultaneously. The PCIe specification has been extended with
Address Translation Services (ATS) to limit performance impact.

ATS delegate the caching part of the translation to the endpoints them-
selves in order to distribute the load. When emitting memory requests,
instead of using device addresses (the only address type previously known
by an endpoint), an endpoint can now use an already translated physical
address. When using pretranslated addresses in a TLP, an emitter must
set the Address Type (AT) bit.

A device can obtain translated addresses using a dedicated transaction,
consisting of a Translation Request and its associated Translation Com-
pletion. The requester stores the translation result in a local cache (also
called I/OTLB). The translated address can then be used to compose
a TLP later on. When the AT bit is set, the I/OMMU translation is
bypassed.

The specification explicitely forbids a device to issue a memory request
with the AT bit set if the address in the destination field is not obtained
as a result of the translation protocol. Yet, a compromised endpoint does
not necessarily conform to specifications. Any request received by the
root complex with the AT bit set bypasses the I/OMMU. Thus, a rogue
component whose requests are routed to the root complex is basically
granted unrestricted access to the system RAM.

ATS are coupled with Access Control Services (ACS), allowing a
host to inhibit the use of translated addresses to some extent. Included
in the PCIe specification, ACS allow filtering of TLPs in the routing
components of the PCIe topology. In particular, they apply to root ports
and switch downstream ports, grouped under the terminology downports.
By specification, implementing ACS is optional. ACS support by routing
component of a fabric is not required to be homogeneous. For each TLP
handled by a component with ACS support, the decision to route it
normally, block it or redirect it can be made based on rules called access
controls. There are seven access controls and each one can be enabled
separately on any downport. In this article, we focus on five access control
services. These are Source Validation, Translation Blocking, as well as
controls related to peer-to-peer transactions: P2P Request Redirect, P2P

M. Daubignard, Y.-A. Perez 221

Completion Redirect, and Upstream forwarding. P2P Egress Control and
Direct Translated P2P have not been formalized yet, so we do not detail
their effect. ACS violations are supposed to be reported to both the root
port and the offending device.

Source validation forces a downstream port to check if the requester
ID in a request belongs to its bus aperture. When translation blocking in
enabled in a downport, the latter drops any request with the AT bit set.
P2P request and completion redirects are used to force validation of peer-
to-peer transactions by a component in the root complex implementing
Redirected Request Validation Logic (RRVL). When both P2P request
redirects and P2P completion redirects are enabled in a switch downstream
port, a packet that would normally be routed to another downstream
port of the same switch (a peer-to-peer TLP) is instead forwarded to the
upstream port towards the root complex for validation. Such a packet
is transmitted unmodified on the upstream link. The parent device then
receives a packet by its downport, packet that it would normally route
downstream through the very same downport. Different behaviors can
occur. In case the TLP is dropped, the P2P transaction is lost. If the
TLP is reemitted downstream by the parent downport, it skips validation.
Upstream forwarding is intended to fix that problem. When enabled, it
forces a switch to forward upward this new kind of packets, received
on a given downstream port which claims them. For P2P redirects to
actually enforce access control checks, it has to be coherently configured
along the paths of packets. However, nothing in the specification imposes
restrictions on acceptable ACS configurations in a fabric. It is up to the
BIOS or the operating system to configure access control in a suitable
manner.

4.2 Extending ProTIP with ACS and ATS
While still in progress, ACS modelisation has already produced results.
The ATS protocol to query the I/OMMU is not modeled. We do not plan
on doing it in the initial version of the tool, because requesting translated
addresses is a completely independent process from the device ability to
leverage the AT bit in memory requests. Obviously, the configuration of
the fabric used by ProTIP must be extended to take into account ACS
settings on all relevant physical ports. Setting all ACS configuration bits
to 0 disregards these services on components of the fabric which do not
support them.

Then, hop rules are completed with ACS predicates modeling condi-
tions which should be checked according to the specification. To model the

222 ProTIP : You Should Know What to Expect From Your Peripherals

proper handling by the root complex of requests ensuing from redirection
of peer-to-peer requests, we need the specification of the Redirect Request
Validation Logic, to which the PCIe specification delegates the access
control decision. We have yet to find a proper specification for this root
complex component, but we expect this to be vendor specific. For the
time being, it is modeled like the I/OMMU: permissions are indexed by
requester IDs. There are also grey areas around the criteria used to decide
whether a request or a completion received is meant to be routed through
the RRVL or upwards to the CPU or memory controller. A priori, knowing
both the memory range in the root port configuration and the requester
ID is sufficient to choose the proper outcome. We have yet to dig further
in the specifications to find eventual clarifications. It is the prerogative of
formalization efforts to shed light on specification imprecisions.

Eventually, as far as trace search is concerned, the extensions intro-
duced for ACS do not require any change to our algorithm.

4.3 New Security Flaws
We have run ProTIP on our base configuration augmented with various
ACS settings.

Firstly, it correctly reports that when no Translation Block bit is set
on any downport receiving a request with the AT bit set, this request
successfully reaches its recipient. In particular, it allows a rogue endpoint
to write to all system RAM addresses not claimed by any other device.
This was clearly identified by Fernand Lone Sang, and exposed in his PhD
thesis [7].

Secondly, it shows that when the source validation bit is set on the
downstream port of a switch directly facing an endpoint, ID-spoofing
requests are blocked. However, this only holds on two conditions. First,
source validation must be activated on the first downport upstream of
an endpoint. Second, the downport has to be configured so that its bus
aperture only comprises the endpoint’s bus number. We remind that
source validation merely imposes that the requester ID belongs to the
bus aperture of a downport. Thus, to be successfully routed, an endpoint
request only needs to have a requester ID belonging to the bus apertures
of downports with activated source validation.

This highlights a property of configurations classically generated, at
least in Linux systems. Memory ranges and bus apertures of downports
are set so that they do not include values which are not truly claimed by
downstream endpoints. We say that such configurations are tight. They
respect the principle of least privilege.

M. Daubignard, Y.-A. Perez 223

Eventually, as far as complete compartmentalization of every endpoint
is concerned, we could expect the existence of a safe way to position
ACS bits on tight configurations. By safe, we mean that all possible
flows between devices, be it peers or non-PCIe components, would go
through the I/OMMU or the RRVL to check their conformance to some
comparmentalization policy. However, this is not the case. We have run
ProTIP on our base configuration, augmented with source validation,
request and completion redirection, and translation blocking activated on
all downports in the fabric. It exhibits the same illegitimate completions
opportunities as those detailed in section 3.4. Completion races can occur
on a peer-to-peer level as well as from an endpoint to the CPU. This is
not surprising, since the only access control service acting on completions
is P2P completion redirects, which exists for scheduling purposes only.
The specification states that "the intent of ACS P2P Completion Redirect
is to avoid ordering rule violations."

5 Extending the Model With Configuration Requests

5.1 Details on Configuration Request Issues

As mentioned in section 3.1, PCIe devices expose internal parameters
as a collection of registers called the configuration space header. For
example, this configuration space contains the routing information of
ports. It is not immutable, but rather dynamically set by the host system.
The configuration data is sent to the device and stored in the internal
registers using configuration write requests. Data can also be read using
configuration read requests and associated completions.

The PCIe configuration space contains the configuration space headers
of all devices. It is I/O-mapped at a base address provided by the system
firmware (on x86 architectures by the MCFG ACPI table)8. When the CPU
writes to an address belonging to that specific range, the root complex
receives it instead of the system RAM. The root complex then generates
a configuration request directed to the device associated with the offset in
the PCIe range. These requests are routed by ID, with the BDF identifier
encoded in the memory address, as displayed in Figure 9.

A device does not store its BDF in its configuration space header,
but rather in a private memory area. Nevertheless, it is influenced by
configuration write requests. Each time it accepts a configuration write
request, a device must update its device and bus number to reflect the

8 The legacy PCI access method using I/O ports 0xCF8 and 0xCFC is omitted here.

224 ProTIP : You Should Know What to Expect From Your Peripherals

32

31 30 29 28 27 26 25

24

23 22 21 20 19 18 17

16

15 14 13 12 11 10 9

8

7 6 5 4 3 2 1

0

OffsetRegisterExt RegisterFunctionDeviceBusBase

Fig. 9. BDF encoding in a memory-mapped PCIe configuration space access

target ID appearing in the request. Informally, the device deduces its
new ID from the last one used to send it configuration information. More
precisely, upon reception of a configuration write request, a PCIe device
reacts according to the type of the request. The specification states that
a type 0 request is always accepted by the device receiving it, while a type
1 should be routed further. Therefore, every time a device receives a type
0 configuration request, the request contains its – potentially new – BDF.

The CPU has no control over the configuration request type generated
by the root complex. Unless targeting a directly attached endpoint, the
root complex always emits a type 1 configuration request. To route such
a request, a downport compares the target ID of the request with its own
secondary bus number. If they match, the downport converts the type 1
request to a type 0 and emits it downstream, and the device immediatly
below accepts it. Otherwise, the downport forwards the type 1 request
downstream without changing it.

Changing an endpoint source identifier is thus a two step operation.
Let us provide a concrete example. We use the base configuration depicted
in Figure 8, and describe actions required to change the identifier of port
6 from 04:00.0 to 05:00.0.

First, code running on the CPU updates the configuration of port 5,
to set its secondary and subordinate bus number registers to 5. This is
done by accessing the port configuration space header, mapped in the
CPU memory. The addresses where the CPU must write are obtained by
combining the PCIe base address, the identifier of port 5 and the offset of
the registers.

Then, the CPU writes to any register in the endpoint configuration
space header using the new BDF identifier (05:00.0) to build the desti-
nation address. This new identifier becomes the target ID of the type 1
request created by the root complex. The request is converted into a type
0 request at port 5, since its secondary bus number has just been updated
with 5. The endpoint accepts the type 0 configuration request and updates
its internal configuration. Packets emitted later on by the endpoint use
05:00.0 as a requester ID, if the endpoint conforms to specification.

M. Daubignard, Y.-A. Perez 225

5.2 Towards the evaluation of compartmentalization when
delegating peripherals

The ability to issue configuration requests after the system has booted is
needed to ensure that devices can be hotplugged or pulled at any time
during system execution. Drivers can also use access to some specific
registers – not modeled in ProTIP – to fine-tune the behavior of a device.
Nevertheless, changing the value in the configuration registers modeled
in our tool can totally change the logical topology of the fabric and
severely impact the compartmentalization properties actually enforced in
the system. Thus, from a security point of view, it seems quite appropriate
to try and evaluate the consequences of configuration requests.

That being said, it is a fact that the legitimate system (say, the host
kernel running on our machine) can reconfigure everything, and this is not
what really raises problems. The idea is rather to assess the impacts of
requests that an attacker could use to compromise expected compartmen-
talization properties, in a deprivileged setting such as peripheral delegation.
Existing PCI-passthrough implementations generally tackle this problem
by applying filtering operations to configuration space accesses. It would
be useful to be able to assess these rules and warn users about potential
security gaps. This amounts to reducing the set of configuration requests
of interest to those that an attacker can issue.

Therefore, we would like to have a tool listing all traces in a given
fabric ensuing from adding to the usual traffic a given set of configuration
requests from the CPU. Unfortunately, ProTIP only answers part of this
challenge at the time being. The problem that we have to address is
that our search algorithm is not satisfactory anymore: State can change.
However, the CLPFD module enables ProTIP to work with configurations
exhibiting variables in place of instantiated integer values in configuration
registers. What we set out to do is thus to compute a set of reachable
configuration states, represented by a state comprising variables in finite
domains where the configuration can be updated. Then, this variable
configuration is provided as an input to our previous search algorithm.
This global search algorithm is not complete: configuration changes are
taken into account for traces transitioning at most once by each physical
port. In other words, we emphasize that we do not enumerate all traces
formed by interleaving configuration requests and memory requests. Traces
presenting packets going at least twice through ports whose configuration
has been updated are not taken into account by our algorithm. However,
this already allows us to uncover potential threats.

226 ProTIP : You Should Know What to Expect From Your Peripherals

The variable state computation is performed by an extension of ProTIP,
which comprises configuration rules. It uses the input configuration given
by the user, to iteratively compute possible consequences of configuration
requests, transforming registers into variables at each step. Since side
effects from one component to another only exist between parent and
children, a fix point is always reached. Our implementation is a proof-of-
concept in need of more testing and stabilization.

5.3 Preventing New Security Issues
The beginning of our study on illegitimate configuration updates has
highlighted potential security issues in case of delegation of a routing
device. Judging from existing open-source implementations studied below,
we honestly do not think that this has been used in production scenarios
to this day. With the appearance of peripheral delegation in cloud settings,
we prefer to preventively raise awareness about potential consequences of
delegation of switches.

When a downport configuration can be updated, at least two ways
of circumventing compartmentalization exist. The first is configuration
untightening. As was explained in section 4.3, the unnecessary inclusion
of elements in memory ranges or bus apertures of switches can allow
unwanted transactions to be routed. A good example is the modification
by an attacker of a subordinate bus number. It can entail the routing of
ID-spoofing request of a child device, even if the ACS Source Validation
bit is set and a filtering policy prevents its modification. The second
problem lies in legitimate ID-spoofing. As explained in section 5.1, if the
attacker is able to provoke the issuance of two requests allowing to update
in a legitimate manner the ID of a device, then this latter assumes this
ID. This endangers compartmentalization when the ID belongs to another
device whose information flow can reach the updated one – which depends
on the topology of the fabric.

We have examined several implementations of PCI-passthrough: VFIO
for Linux-KVM, Xen-Linux and Xen-NetBSD. All of them do let access to
some part of a configuration register (typically the cache line size register,
although it does not do anything and is just a PCI artefact). Currently,
VFIO does not allow for routing device delegation – though comments in
the code can lead to believe that support is planned in the future. Besides,
VFIO carefully filters writing operations accessing configuration space.
By default, Xen does not enable routing device delegation. With default
settings, it emulates a PCIe root complex for hosts to which passthroughed
device appear attached. In another available mode (by changing an

M. Daubignard, Y.-A. Perez 227

argument at the relevant driver start), Xen allows to delegate routing
devices. In default configuration, filtering is implemented on register access.
Setting Xen in permissive mode allows for unfiltered access. Permissive
mode is a threat to security, basically every configuration register is
exposed. NetBSD seems to do something similar to the permissive mode
in Xen.

The feasibility of breaking compartmentalization using legitimate ID-
spoofing has not been carefully examined yet in these settings. ID-spoofing
has been carried out successfully as root user on Debian Jessie with an
activated I/OMMU, and has resulted in the possibility for a Slotscreamer
device with no system RAM access authorized by the I/OMMU to read
and write in the memory reserved to the NIC. This confirms feasibility
in principle, but not in our attacker model. In case there is a Virtual
Machine (VM) to which both a routing device and one of its child devices
are delegated, we still need the hypervisor to let the VM write in at least
one register of the child at the address of its targeted ID. We anticipate
that it should not be possible to perform this last step. Indeed, it seems
that the address actually transmitted to the root complex is computed by
the backend driver, from the bus, device and function numbers stored at
delegation time. If all this is true, then the preservation of this property
in future implementations ensures the attack remains impractical.

6 Conclusion

In this article, we have presented our current formalization effort to evalu-
ate the compartmentalization of devices in a PCIe fabric in a systematic
manner. We have highlighted already known defaults of the communica-
tion protocol, along with some new technical details to be explored further
in real-life settings. To do so, we need to couple our approach with the
use of an IronHide-like fuzzer to try out our scenarios. Such devices can
also find bugs in real components bugs, which can then be modeled in
ProTIP to evaluate their consequences. Both approaches complement each
other. Besides limitations of the current implementation, our work suffers
from classic limits of formalization efforts, such as the difficulty to verify
the adequation between model and reality. In our case, the closed world
hypothesis of Prolog makes it difficult to validate the implementation. If
a trace that we expect is missing from the logs, we can notice it, but if
we are not expecting it, we risk missing attacks. In the future, we wish
to continue down this path, to assess the problems already uncovered,
perfect the tool search strategies, and refine the model with new features.

228 ProTIP : You Should Know What to Expect From Your Peripherals

Acknowledgements The authors thank Arnaud Fontaine for helpful tech-
nical discussions on the formal model, and Pierre Capillon and Mickaël
Salaün for lengthy discussions about this work and its perspectives.

References

1. R. Amin. Demystifying the i-Device NVMe NAND. https://ramtin-amin.fr/
#nvmepcie, 2016.

2. R. Budruk, D. Anderson, and T. Shanley. PCI Express System Architecture.
Mindshare PC System Architecture. Addison-Wesley, 2004.

3. J. Fitzpatrick and M. Crabill. Slotscreamer. https://github.com/NSAPlayset/
SLOTSCREAMER, 2016.

4. U. Frisk. DEFCON, Direct Memory Attack the KERNEL. https://media.
defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentations/DEFCON-24-
Ulf-Frisk-Direct-Memory-Attack-the-Kernel.pdf, 2016.

5. U. Frisk. PCILeech. https://github.com/ufrisk/pcileech, 2016.
6. J. Hansbrough. Fuzzing PCI Express: security in plaintext. https:

//cloudplatform.googleblog.com/2017/02/fuzzing-PCI-Express-security-
in-plaintext.html.

7. F. Lone Sang. Protection des systèmes informatiques contre les attaques par
entrées-sorties. PhD thesis.

8. F. Lone Sang, É. Lacombe, V. Nicomette, and Y. Deswarte. Exploiting an I/OMMU
vulnerability. In 5th International Conference on Malicious and Unwanted Software,
MALWARE 2010, Nancy, France, October 19-20, 2010, pages 7–14, 2010.

9. F. Lone Sang, V. Nicomette, and Y. Deswarte. IronHide : plate-forme d’attaques
par entrées-sorties.

10. F. Lone Sang, V. Nicomette, Y. Deswarte, and L. Duflot. Attaques DMA peer-
to-peer et contre-mesures. In Symposium sur la Sécurité des Technologies de
l’Information et des Communications, pages 150–179, 2011.

11. C. Maartmann-Moe. Inception. https://github.com/carmaa/inception, 2011.
12. K. Nohl, S. Krissler, and J. Lell. BlackHat, BadUSB – On Accessories that

Turn Evil. https://srlabs.de/wp-content/uploads/2014/07/SRLabs-BadUSB-
BlackHat-v1.pdf, 2014.

13. Y.-A. Perez, L. Duflot, O. Levillain, and G. Valadon. Quelques éléments en matière
de sécurité des cartes réseau. In Symposium sur la Sécurité des Technologies de
l’Information et des Communications, pages 213–234, 2010.

14. R. Sevinsky. BlackHat, Funderbolt: Adventures in Thunderbolt DMA
Attacks. https://media.blackhat.com/us-13/US-13-Sevinsky-Funderbolt-
Adventures-in-Thunderbolt-DMA-Attacks-Slides.pdf, 2013.

15. SWI-Prolog. SWI-Prolog Reference Manual. http://www.swi-prolog.org/pldoc/
doc_for?object=manual.

16. The Qubes OS Project. Qubes-OS. https://www.qubes-os.org/.
17. A. Williamson et al. Vfio. https://www.kernel.org/doc/Documentation/vfio.

txt.

