
Static Analysis and Runtime-Assertion Checking:
Contribution to Security Counter-Measures

Dillon Pariente1 and Julien Signoles2

dillon.pariente@dassault-aviation.com
julien.signoles@cea.fr

1 Dassault Aviation
2 CEA LIST, Software Reliabiliy and Security Laboratory

Abstract. This paper3 presents a methodology which combines static
analysis and runtime assertion checking in order to automatically gen-
erate counter-measures, and execute them whenever a flaw in the code
which may compromise the security of an application is detected during
execution. Static analysis pinpoints alarms that must be converted into
runtime checks. Therefore the verifier is able to only monitor the security
critical points of the application. This method allows to strengthen a
security-critical source code in a cost-effective manner. We implemented
it in the Frama-C framework and experimented it on a real use case based
on Apache web server. The paper ends with preliminary considerations
on potential perspectives for security evaluation and certification.

1 Introduction and context

Formal methods have been proved particularly powerful for runtime error
search in safety context [3, 9, 26], and also – more recently – for security
verification and validation purpose, as demonstrated by recent success
stories and compliance with international security standards [27]. Ap-
plying static analysis tools on real use cases, however, may represent
an unaffordable cost with respect to non-vital programs whose allocated
budget for verification activities is usually small compared to highly crit-
ical applications. Actually this is one of the most recurrent criticisms
regarding widely spreading static analysis over source code validation and
verification industrial practices: proving security properties or ensuring the
absence of safety alarms may need extra-efforts like complex interactive
proofs, heavy code annotation activities or lots of tool parameterizations
for which an important amount of time and expertise is often required.

3 This work is done in the context of project VESSEDIA, which has received funding
from the European Union’s Horizon 2020 Research and Innovation Program under
grant agreement No 731453.

82 Contribution of Static Analysis to Security Counter-Measures

Therefore, this paper presents a method – named CURSOR – applicable
to non-critical source code. First it is well known that most attacks exploit
at least one vulnerability (sometimes referenced as a CVE: Common
Vulnerability and Exposure4), which itself may be caused by one or
several Common Weakness Enumeration (CWE) entries5 6. Based on
this observation, CURSOR proposes to monitor some safety and security
alarms raised by sound static analyzers (a relevant subset of the alarms
detectable on C source code) in order to trigger predefined error-free
counter-measures (CM) whenever alarms are really encountered at runtime.
We have implemented this method within Frama-C [17], a framework for
analysis of C source code which provides several sound static and dynamic
analyzers, and experimented it on a real security-relevant use case: an
Apache library. Indeed, Apache is one of the components used in an
Aircraft e-Maintenance application (an ongoing development at Dassault
Aviation) for which security analyses are required. The results demonstrate
the usefulness of our approach, as well as its cost-efficiency.
Our contributions are therefore:

– a new cost-effective method, CURSOR, to trigger security
counter-measures, which is based on static detection and runtime
assertion checking of CWEs and requires no particular expertise in
formal methods in order to be applied;

– an implementation of this method within the Frama-C framework;
– and its experimentation on a security-critical Apache library used

in an Aircraft e-Maintenance application.

The paper is organized as follows. Section 2 presents Frama-C and its
analyzers of interest for our study, namely its plug-ins Value and E-ACSL.
Then Section 3 details the CURSOR method applied to an Apache library.
Finally Section 4 briefly introduces practical considerations about security
evaluation and certification concerns.

2 Tools: Static Analysis Contribution to
Runtime-Assertion Checking

The CURSOR method, explained in Section 3, has been implemented
within the Frama-C framework which we sum up here. More details can

4 http://cve.mitre.org
5 http://cwe.mitre.org
6 See for instance https://www.cvedetails.com/vulnerability-list/cweid-200/

vulnerabilities.html

D. Pariente, J. Signoles 83

be found in Frama-C-specific papers [17, 19]. Section 2.1 is a general
overview of the framework while Section 2.2 and Section 2.3 describe the
two most important plug-ins in our context, namely Value and E-ACSL,
which respectively provide static analysis by abstract interpretation and
runtime assertion checking.

2.1 Frama-C Overview

Frama-C is an open source platform7 which aims at analyzing source
code written in ISO C99. This code may be annotated in ACSL formal
specification language [1] (briefly introduced later on in this section).
Recently Frama-Clang has been released as a prototype Frama-C extension
to handle C++ code. The platform gathers together code analyzers. It
is written in OCaml [10] and based on a plug-in architecture [23]: each
analyzer is a plug-in which is linked against the Frama-C kernel. This
architecture allows users (including external ones) to easily extend the
framework with extra features through new plug-ins [24]. This proved
useful for the CURSOR method whose implementation partly relies on a
dedicated plug-in, namely Gena-CWE which is introduced in Section 3.

The Frama-C kernel provides a normalized representation of C programs
and ACSL specifications. In addition, it yields several general services
for supporting plug-in development and providing convenient features
to Frama-C’s end-users. The kernel also allows plug-ins to collaborate
together either sequentially or in parallel. Sequential collaboration con-
sists in a chain of analyses that perform operations one after another,
while parallel collaboration combines partial analysis results from several
analyzers to complete a full program verification. The CURSOR method
described in Section 3 exemplifies sequential collaboration (it is however
worth mentioning that in Frama-C, parallel collaboration relies on kernel
consolidation of analysis results detailed in [6]).

The ACSL specification language is a tool of choice when combining Frama-
C analyzers. Indeed it is shared by the whole framework: any analyzer may
both verify and generate ACSL annotations, which can in turn be verified
by other analyzers. Generally, ACSL allows its users to specify functional
properties of C programs similarly to Eiffel [22] and JML [21]. It is based
on the notion of function contract which specifies the preconditions that
are supposed to be true before a call of f (i.e. ensured by the caller), and

7 http://frama-c.com

84 Contribution of Static Analysis to Security Counter-Measures

the postconditions that should be satisfied after the call of f (and should
be thus established during the verification of f). Numerous examples may
be found in the reference tutorial [5]. The most important feature of ACSL
for this paper is assertions: predicates which must hold at a particular
program point. It is worth noting that ACSL is powerful enough to be
able to express most C99 undefined behaviors with such predicates as
illustrated later on this paper. A Frama-C plug-in named RTE may even be
used to generate ACSL assertions for every potential errors corresponding
to certain families of runtime errors.

2.2 Value

The Value Analysis plug-in of Frama-C (Value for short) [11] automatically
computes sets of possible values8 for the variables of an analyzed program
at each program point, by means of abstract interpretation [7]. It also
warns about potential runtime errors through the generation of ACSL
annotations similar to those of the RTE plug-in. Value aims at being
directly usable on any C code in any applicative domain, from low-level
system libraries to safety-critical applications. Indeed Value relies on a
general-purpose efficient domain (a.k.a. lattice) in order to represent the
possible values of memory locations at each program point. However this
domain can be less precise than a custom domain designed for a particular
code pattern. In order to circumvent this issue, Value has recently been
improved by Eva (Evolved Value Analysis) [4] which aims at reconciling
the efficiency of the Value’s domain with the flexibility of collaborative
custom domains. Another way to circumvent possible precision issues is
provided by Frama-C itself: what cannot be proven by Value (or Eva)9

may still be proven by another plug-in, possibly a dedicated one.
This Frama-C ecosystem leads to another Value functionality: the

possibility to reuse its results. Indeed what Value has computed is (partly)
available in the Frama-C GUI and helps the user better understand Value’s
results. An illustrative example for PolarSSL 1.1.710 is presented in
Figure 1. It also allows derived analyses like slicing to be sound. In
particular it helps these analyses to safely interpret function pointers
and find out potential aliasing. In this way, several plug-ins have been
developed by academic and industrial users for proving specific goals in a

8 These sets are named domains, and can be represented in their simplest form as
intervals of values.

9 Value and Eva share the same user interface. The rest of this paper applies in the
same way to both plug-ins. We will continue to use Value for the sake of consistency.

10 See https://tls.mbed.org/.

D. Pariente, J. Signoles 85

safe way without spending too much time with pointer intricacies [2,8,13].
The CURSOR method introduced in this paper also collaborates with
Value by inspecting its results in order to discover complementary CWE
alarms (see Section 3).

Fig. 1. Frama-C GUI with Value’s results on PolarSSL’s function net_recv. It displays
the possible values of the function’s parameter buf per callstack.

2.3 E-ACSL

Frama-C was originally oriented towards static verification. Consequently
ACSL has the same bias. In particular, it contains several constructs (e.g.
unbounded quantifications and axioms) with a well-defined mathematical
meaning but no computational semantics because they cannot be exe-
cuted. To circumvent this issue, an “executable” subset of ACSL has been
identified in which all constructs are computationnally well-defined. This
specification language is called E-ACSL (“E” stands for “executable”) [12].
All annotations in this paper are actually both ACSL and E-ACSL annota-
tions. In particular, all assertions corresponding to detectable CWEs and
automatically generated by RTE and Value fall into this category.

86 Contribution of Static Analysis to Security Counter-Measures

A Frama-C plug-in also called E-ACSL is in charge of transforming
E-ACSL annotations into executable code. More precisely, E-ACSL is a
program transformation tool: it takes as input a C program p annotated
with E-ACSL specifications and generates another C program which obser-
vationally behaves like p if each annotation is satisfied, or stops on the
first failing annotation otherwise. In other words, E-ACSL generates an
inline monitor [14] for a C program based on its formal specification. The
translation scheme is described in Figure 2. It highlights the fact that
E-ACSL benefits from Frama-C and uses static analyses to optimize the
generated code. For instance, before generating the code, it implements a
backward sound over-approximating analysis [16] in order to reduce the
instrumentation of memory: if there is no annotation depending on some
memory location l (e.g. corresponding to some program variable x), there
is no need to track its allocation, initialization and de-allocation. During
code generation, it also uses a dedicated type system to optimize opera-
tions over integer (which are mathematical integers in E-ACSL) [15]. It
also takes care of not generating C99 undefined behaviors when translating
annotations.

annotated C code

static analyses for
optimizing instrumentation

code generatortyping for optimizing
integer computation

preventing
RTE generation

instrumented code

Fig. 2. E-ACSL Translation Scheme.

The E-ACSL plug-in does require E-ACSL-annotated code as input.
However there is no need to write these annotations manually. Therefore
E-ACSL may really be used as a fully automatic tool. For instance, if
interested in certain classes of runtime errors, the user may first use the
RTE plug-in to generate E-ACSL annotations and then use E-ACSL to
monitor them at runtime. Used this way, E-ACSL is similar to memory
debuggers like ASan and MemCheck (built on top of Valgrind). Recent

D. Pariente, J. Signoles 87

experiments on programs from SPEC CPU benchmark11 show that runtime
overheads of E-ACSL are on average 19 times the normal execution [28].
That is comparable to MemCheck, while the average overhead of ASan
is about 2. It is worth noting that E-ACSL checks more properties than
these memory debuggers. The implementation of the CURSOR method
uses E-ACSL in this spirit but in a more cost-efficient way (see Section 3).
E-ACSL also allows to modify its default behavior which is to stop the
program execution whenever an annotation is violated. Once again, the
implementation of the CURSOR method relies on this feature.

3 CURSOR: principles and results

The method presented in the following is straightforward for some cate-
gories of applications and security flaws. The process is intended to be as
simple as possible. For a few families of CWEs, it is almost fully auto-
mated for cost-efficiency, and provides a sensitive improvement regarding
security flaw robustness.

At first, this process consists of identifying source code libraries of
functionalities worth analyzing in order to be strengthened. For instance
in the context of web applications and servers, it may consist of sets of
functions dealing with low-level file management, sanitizing functions on
strings or URLs, etc. These functions may implement SFR (Security
Functional Requirements) as defined in Common Criteria12. These SFR
are intended to meet the security objectives, which means to counter
threats in the assumed operating environment of the ToE.

Then, a static formal analysis is performed by applying Frama-C’s
Value plug-in: at this point, several categories of CWE may be found in
the C source code. TrustInSoft Analyzer13, which is based on the Frama-C
platform and Value, was able for instance to identify automatically several
CWEs (119 to 127: buffer-related weaknesses, 369: divide-by-zero, 415:
double-free, 416: use-after-free, 457: use of uninitialized variable, 476: null
pointer dereference, 562: return of stack variable address, 690: unchecked
return value to null pointer dereference) on some commercial-of-the-shelf
software [27]. When analyzing a source code with Value, the CWEs are
expressed as ACSL annotations attached to the related statement. For
instance, consider the following code snippet:
11 https://www.spec.org/cpu/
12 A standardized framework for the definition and validation of the security pro-

vided by a given product (a.k.a. Target of Evaluation, or ToE). http://www.
commoncriteriaportal.org

13 https://trust-in-soft.com

88 Contribution of Static Analysis to Security Counter-Measures

// ...
j = i + 1;
x = * (p + j);

// ...

Value may raise some alarms as ACSL assertions: for instance an
integer overflow14 on the first statement, and an invalid dereferencing in
the second one, as follows.

// ...
/*@ assert Value : signed_overflow : i+1 <= 2147483647; */
j = i + 1;
/*@ assert Value : mem_access : \ valid_read (p+j); */
x = * (p + j);

// ...

These alarms could be spurious as the runtime context might never lead
to an error or actual exploitable security flaw. The false positive alarms
may be due to static over-approximations inherent to sound analyses by
abstract interpretation, or a too imprecise initial state (i.e. domains of
value for each location in memory) at the entry point of the analysis.

Once Value analysis has been performed, categories of CWEs are
identified in the source code under study (in our sample code: CWE-
190 “Integer Overflow or Wraparound”, and CWE-125 “Out-of-bounds
Read”). At this point, the CURSOR method benefits from the possibility
to write its own Frama-C plug-ins [24]: CURSOR is enriched by some
scripts gathered in a plug-in named Gena-CWE. This plug-in detects
complementary categories of CWEs which are not directly displayed by
Value but are however computed and can be obtained by adequately
querying its abstract states. For instance, among others, it can detect and
locate CWE-174 “Double Release of Resource”, CWE-457 “Uninitialized
Variables”, CWE-570 “Always False conditions”, CWE-571 “Always True
conditions”. If not relevant with regards to risk analysis, the search for
some families of CWE can also be deactivated.

In the case of a library, Value is applied function-by-function: the C
functions under analysis can potentially be called at runtime from any
control point of the application. Thus, it is necessary to analyze these
functions with the largest possible input domain for each of their arguments,
independently from the calling context. As Value is a context-sensitive
analysis, the functions are analyzed and thus annotated separately.

The code, once automatically annotated with ACSL alarms corre-
sponding to potential CWEs, can now be analyzed by the E-ACSL plug-in
14 It assumes a 32-bit architecture.

D. Pariente, J. Signoles 89

in order to translate all these annotations into executable statements. The
previous code snippet is then transformed as the following instrumented
code:

// ...
/*@ assert Value : signed_overflow : i+1 <= 2147483647; */
__store_block ((void *) (& p) ,4U);
e_acsl_assert (i + 1 <= 2147483647 ,

(char *)" Assertion " ,(char *)" f_ABSCAL ",
(char *)" Value : signed_overflow : i+1 <= 2147483647 ",
3056) ;

j = i + 1;
/*@ assert Value : mem_access : \ valid_read (p+j); */
{

int __e_acsl_valid_read ;
__e_acsl_valid_read = __valid_read ((void *)(p + j),sizeof (char))

;
e_acsl_assert (__e_acsl_valid_read ,(char *)" Assertion " ,(char *)"

f_ABSCAL ",
(char *)" Value : mem_access : \\ valid_read (p+j)"

,3058);
}
x = (char *) *(p + j);
__delete_block ((void *) (& p));
__e_acsl_memory_clean ();

// ...

So far, some code is added by E-ACSL which will be executed at
runtime. It mainly contains memory management statements specific to
E-ACSL, and condition evaluations corresponding to each alarm15. In case
the conditions are met during execution (i.e., in the example code above,
if the first argument of function e_acsl_assert is true), some extra-code will
be triggered. Indeed, this extra-code constitutes the implementation of
the related counter-measures (CM) in case the ACSL alarms are activated,
making the application potentially more robust to attacks based on the
targeted weaknesses in the source code. At the origin, e_acsl_assert was
intended to stop the code execution – thus at runtime – whenever a
violation was detected. But in CURSOR this mechanism is extended in
such a way that the execution continues, activating some pre-defined
counter-measure behaviors. All the arguments of e_acsl_assert can be used
by the CM functions: of course the boolean condition, but also the kind
of emitted alarm ("Assertion" in the example), the function in which this
alarm is raised, the alarm expression itself, and finally the location (line
number) in the source file.
15 The interested reader may refer to the E-ACSL documentation [25] and related

publications [16, 20, 28] for further details, in particular on how pointer validity is
efficiently managed at runtime through the tracking of allocated memory blocks.

90 Contribution of Static Analysis to Security Counter-Measures

In practice, these CM may range from logging the information (storing
what happened, where and why, for any further processing as in case of
forensics for instance), to halting the service or the system (or even any
other defensive or "retaliating" measures!). The choice of the adequate
CM is left to the user, with regards to the corresponding security risk
analysis – only the latter is able to help identifying efficiently the relevant
parts of the software to be CURSOR-ed. It is worth noting that these
CM functions can be either specific to the alarm location and its context,
or definitely generic. This is possible thanks to the information passed
as argument at the calling context generated for each alarm: annotation
kind, file location, rationale, etc., on which any on-the-fly filtering will
allow to trigger the most suitable counter-measure.

Of course, these CM functions must themselves be free of dreaded
weaknesses. The last step of the process will therefore consist in formally
verifying the absence of flaws in the implementation of these CM functions
according to security functional requirements (which includes avoiding any
disclosure of sensitive data related to the triggered weaknesses). This is
done by means of the Frama-C platform, its static analyzers, and possibly
a set of security functional ACSL properties annotated in the source code.
The plug-ins mostly involved in these verifications are Value and Wp16.
When required, they are also combined with dynamic analyses. Indeed,
dynamic analyses may help static ones decide the validity of some complex
alarms: for instance, dynamic approaches combining fuzzy testing and
static techniques [18] can automatically generate executable scenarios that
will compromise a given sought security property, and thus confirm the
presence of a related vulnerability. Otherwise, the very same property
could have required important efforts and expertise to be discharged when
only using formal methods. Indeed, static and dynamic techniques are
commonly seen as able to palliate their mutual limitations in numerous
situations, and their coupling constitutes a promising field of investigation
extending results presented in [18].

A more sophisticated – thus less push-button – version of the CUR-
SOR method is currently defined in this regard, yielding some hints on
static/dynamic possible combinations, but this approach still needs more
experiments and consolidations at this stage.

Finally, the whole annotated code enriched with automatic CM calling
contexts and CM implementations can be pentested for further detection
of vulnerabilities not caught by static analysis (therefore by dynamic

16 http://frama-c.com/wp.html

D. Pariente, J. Signoles 91

analysis means, like automatic security-oriented fuzzers – as AFL17 –,
applied on the instrumented program) and/or embedded into the system
for operations. Figure 3 presents the whole process.

Fig. 3. CURSOR method process.

In this figure, squares represent either existing tools or complements
implemented for the sake of the method. It is worth noting that generating,
even automatically, as many CM calling contexts as alarms (spurious or
not) may result in a lot of extra-code, and in some cases with potential
impacts on the execution time and memory consumption at runtime. This
point is addressed by several means. First, the method is not applied to the
whole application, but only on security sensitive parts (typically some well-
chosen libraries). Second, some strategies relying on security risk analysis
might allow to get rid of some categories of alarms (or CWEs) emitted by
Frama-C plug-ins: from a functional viewpoint, for a given function, the
same alarm kind occurring on the same variable but in different control
points should be kept only once in the source code, namely the first time
it appears in the control flow. This heuristic has been implemented by a
new Frama-C script, with no particular difficulty from a technical point of
view. However, it may also break the soundness of the formal analyses,
and thus should be used with care and duly justified.

Application to Apache libraries. The simplified process presented above
was applied to several Apache libraries. As an illustration, it was used
17 American Fuzzy Lop: http://lcamtuf.coredump.cx/afl

92 Contribution of Static Analysis to Security Counter-Measures

to strengthen the httpd/server/util.c source code, a representative
library containing some file management and sanitizing functions, relevant
for security analysis purpose. The snapshot of this (100+ functions) library
callgraph is given in Figure 4. This code is originally 7,958 loc (before
pre-processing by Frama-C, 14.8 kloc afterward in particular because of
macro expansions and inclusion of external libraries). On this library,
340 ACSL annotations are generated by Value and Gena-CWE. E-ACSL
plug-in is then applied, expanding instrumented source code to 9,759 loc
(excluding counter-measures to be implemented on the user side). This
instrumentation represents an increase of about 22% of the original source
code size. This code can then be compiled and executed: any violation of
a CWE alarm will thus trigger one of the implemented counter-measures,
with negligible impact on memory consumption and execution time from
a functional standpoint (for more issues about performance, see [28]).

Fig. 4. An Apache library’s callgraph.

4 Security Evaluation and Certification Considerations

(This section briefly presents some insights into CURSOR and Common
Criteria certification process. For convenience, it can be skipped for the
reader not concerned with certification issues.)

The CURSOR method has a clear impact on the attack surface and
application behavior, which is definitely modified by inserting the CM
calling contexts into the source code. These CM intend to drastically
change the behavior of the application under analysis. In this respect, the
pentester (and possibly the hacker) will face different reactions for the -
apparently - same software according to whether CURSOR was applied or
not. Namely, whenever a pentester might expect triggering an error from
a given vulnerability in the code (for instance detected after a "fruitful"

D. Pariente, J. Signoles 93

white-box manual review of the source code), the CURSOR-ed version of
the application will bifurcate at runtime to the corresponding CM which
may be as stealthy as possible (at least, the CM should hide clues to the
pentester about the original flaw in the code), and thus diverting from
the expected original behavior.

Besides, in a Common Criteria (CC) certification context, the method
presented in this paper comes with some clear benefits (in the following
ATE_* and FAU_* identify some CC security requirements):

– Completing in some extent the security functional requirements (SFR)
through automatic generation of potential alarms and their executable
translation,

– Replacing some documentation effort by generating evidence: providing
automated coverage testing (ATE_COV) marks for the new functional
requirements,

– Security audit data generation (FAU_GEN): the executable code
generated by the CURSOR method allows to log causes of crashes or
attack “witnesses”, then contributing to the FAU_GEN requirement,

– To some extent, security audit automatic response (FAU_ARP), anal-
ysis (FAU_SAA), and review (FAU_SAR) can also be addressed by
CURSOR.

These considerations are not exhaustive, and still preliminary at this
stage. Further analyses are necessary to assess the perimeter of use and
the benefits which can be expected when applying the CURSOR method
in a certification process. However, the approach seems already quite
promising, and cost-efficient from security and affordability standpoints.

5 Conclusion and Perspectives

The CURSOR method presented in this paper permits to automatically
counter some families of attacks based on CWEs. It first consists in
generating as many ACSL alarms in the source code as the Frama-C
sound formal static analyzers will find, and then translating them – even
the spurious ones – as executable code for further pentesting/dynamic
analyses and eventually operational use. Most of the process is fully
automated, and scalable as the static formal analyses can be done function-
by-function. It is also cost-efficient as no particular expertise is needed in
formal methods, at least in the simplified version of the method: ACSL
annotations corresponding to security alarms are not expected to be
discharged during the process.

94 Contribution of Static Analysis to Security Counter-Measures

CURSOR remains a straightforward exploitation of Frama-C plug-ins,
with some further developments depending on the complementary and
relevant CWEs refined from application-dependant security risk analy-
ses. Moreover, future developments will consist in developing a Frama-C
plug-in to automatically classify Frama-C alarms with respect to their
corresponding CWEs, while extending the scope of detectable CWEs.
First experiments with CURSOR method, performed in an R&T context
at this stage, are quite conclusive, even for open source applications for
which design and development documentations are either unavailable, or
only exploitable with a certain amount of investment not always affordable
for applications with a low level of criticality. It is worth noting that this
paper includes the very first publicly available R&T evaluation of E-ACSL.
Yet the exact impact of the deployment of counter-measures in terms
of time efficiency and memory consumption is still to be done, even if
recent intensive benchmarking on an evolved version of E-ACSL [28] might
suggest it is clearly acceptable. Also E-ACSL is still a young tool and lots
of improvements are already planned to enhance memory footprint and
computing time consumption of the generated monitors, as well as the
scope of sought security alarms.

Some insights were also presented in this paper with regards to security
evaluation and CC certification processes, which might be argued and
deepened in order to obtain concrete recognition of CURSOR’s benefits
among security communities and certification bodies.

Acknowledgements: The authors would like to thank Marion Daubig-
nard, Raphaël Rigo and the anonymous reviewers for their helpful and
constructive comments that contributed to improving the final version of
the paper.

D. Pariente, J. Signoles 95

References

1. Patrick Baudin, Jean C. Filliâtre, Thierry Hubert, Claude Marché, Benjamin
Monate, Yannick Moy, and Virgile Prevosto. ACSL: ANSI/ISO C Specification
Language. http://frama-c.com/acsl.html.

2. Pascal Berthomé, Karinne Heydemann, Xavier Kauffmann-Tourkestansky, and
Jean-François Lalande. Attack model for verification of interval security properties
for smart card C codes. In Programming Languages and Analysis for Security
(PLAS 2010), pages 1–12. ACM, 2010.

3. Peter G. Bishop, Robin E. Bloomfield, and Lukasz Cyra. Combining testing and
proof to gain high assurance in software: A case study. In International Symposium
on Software Reliability Engineering (ISSRE’13), pages 248–257, November 2013.

4. Sandrine Blazy, David Bühler, and Boris Yakobowski. Structuring abstract in-
terpreters through state and value abstractions. In International Conference on
Verification, Model Checking, and Abstract Interpretation (VMCAI 2017), January
2017.

5. Jochen Burghardt, Jens Gerlach, and Timon Lapawczyk. ACSL by
Example. 2016. https://gitlab.fokus.fraunhofer.de/verification/open-
acslbyexample/blob/master/ACSL-by-Example.pdf.

6. Loïc Correnson and Julien Signoles. Combining Analyses for C Program Verification.
In International Workshop on Formal Methods for Industrial Critical Systems
(FMICS 2012), volume 7437 of LNCS, pages 108–130. Springer, 2012.

7. Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
Principles of Programming Languages (POPL 1977), pages 238–252. ACM Press,
1977.

8. Pascal Cuoq, David Delmas, Stéphane Duprat, and Virginia Moya Lamiel. Fan-C,
a Frama-C plug-in for data flow verification. In Embedded Real-Time Software and
Systems Congress (ERTS2 2012), 2012.

9. Pascal Cuoq, Philippe Hilsenkopf, Florent Kirchner, Sébastien Labbé, Nguyen
Thuy, and Boris Yakobowski. Formal verification of software important to safety
using the Frama-C tool suite. In International Topical Meeting on Nuclear Plant
Instrumentation, Control and Human Machine Interface Technologies (NPIC &
HMIT), 2012.

10. Pascal Cuoq and Julien Signoles. Experience report: Ocaml for an industrial-
strength static analysis framework. In International Confererence on Functional
Programming (ICFP 2009), pages 281–286, September 2009.

11. Pascal Cuoq, Boris Yakobowski, and Virgile Prevosto. Frama-C’s value analysis
plug-in. http://frama-c.com/download/value-analysis.pdf.

12. Mickaël Delahaye, Nikolai Kosmatov, and Julien Signoles. Common specification
language for static and dynamic analysis of C programs. In the 28th Annual ACM
Symposium on Applied Computing (SAC 2013), pages 1230–1235. ACM, April 2013.

13. Jonathan-Christofer Demay, Éric Totel, and Frédéric Tronel. SIDAN: a tool
dedicated to software instrumentation for detecting attacks on non-control-data. In
International Conference on Risks and Security of Internet and Systems (CRiSIS
2009), pages 51–58. IEEE, 2009.

14. Yliès Falcone, Klaus Havelund, and Giles Reger. A tutorial on runtime verification.
In Engineering Dependable Software Systems, volume 34 of NATO Science for
Peace and Security Series - D: Information and Communication Security, pages
141–175. IOS Press, 2013.

96 Contribution of Static Analysis to Security Counter-Measures

15. Arvid Jakobsson, Nikolai Kosmatov, and Julien Signoles. Rester statique pour
devenir plus rapide, plus précis et plus mince. In David Baelde and Jade Alglave,
editors, Journées Francophones des Langages Applicatifs (JFLA’15), Le Val d’Ajol,
France, January 2015. In French.

16. Arvid Jakobsson, Nikolai Kosmatov, and Julien Signoles. Fast as a Shadow,
Expressive as a Tree: Optimized Memory Monitoring for C. Science of Computer
Programming, pages 226–246, oct 2016.

17. Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris
Yakobowski. Frama-C: A Software Analysis Perspective. Formal Aspect of Com-
puting, 27(3):573–609, 2015.

18. Balázs Kiss, Nikolai Kosmatov, Dillon Pariente, and Armand Puccetti. Dynamic
analyses for vulnerability detection: Illustration on heartbleed. In Software Veri-
fication and Testing - 11th International Haifa Verification Conference, HVC’15,
Haifa, Israel, November 17-19, 2015, Proceedings. Springer Verlag, 2015.

19. Nikolai Kosmatov and Julien Signoles. Frama-C, a Collaborative Framework for
C Code Verification. Tutorial Synopsis. In International Conference on Runtime
Verification (RV 2016), September 2016.

20. Nikolaï Kosmatov, Guillaume Petiot, and Julien Signoles. An Optimized Memory
Monitoring for Runtime Assertion Checking of C Programs. In International
Conference on Runtime Verification (RV’13), sep 2013.

21. Gary T. Leavens, Yoonsik Cheon, Curtis Clifton, Clyde Ruby, and David R. Cok.
How the design of JML accomodates both runtime assertion checking and formal
verification. In International Symposium on Formal Methods for Components and
Objects (FMCO 2002), volume 2852 of LNCS, pages 262–284. Springer, 2002.

22. Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, Inc., 1988.
23. Julien Signoles. Software Architecture of Code Analysis Frameworks Matters: The

Frama-C Example. In Workshop on Formal Integrated Development Environment
(F-IDE 2015), pages 86–96, June 2015.

24. Julien Signoles, Loïc Correnson, Matthieu Lemerre, and
Virgile Prevosto. Frama-C Plug-in Development Guide.
http://frama-c.com/download/plugin-development-guide.pdf.

25. Julien Signoles and Kostyantyn Vorobyov. E-ACSL User Manual. http://frama-
c.com/download/e-acsl/e-acsl-manual.pdf.

26. Jean Souyris, Virginie Wiels, David Delmas, and Hervé Delseny. Formal verification
of avionics software products. In Formal Methods (FM’09), November 2009.

27. TrustInSoft. PolarSSL 1.1.8 verification kit, v1.0. Technical report, 2015.
28. Kostyantyn Vorobyov, Julien Signoles, and Nikolai Kosmatov. Shadow State Encod-

ing for Efficient Monitoring of Block-level Properties. Submitted for publication.

