
A Practical Guide to Differential Power Analysis
of USIM cards

Christophe Devine, Manuel San Pedro et Adrian Thillard
christophe.devine@ssi.gouv.fr

mdsan.pedro@gmail.com
adrian.thillard@ssi.gouv.fr

ANSSI

Abstract. In 2015, Liu et al. [1] demonstrated an attack on USIM1

cards that led to recovering authentication secrets using a differential
power analysis attack. The compromise of those secrets allows an attacker
to passively decrypt the subscriber’s communications (such as texts), but
also to impersonate the network and perform man-in-the-middle attacks.
In this work, we wanted to assess if more recent cards were vulnerable, as
well as establish whether the attack could be carried out with low cost,
off-the-shelf equipment, and finally to provide recommendations.

1 Introduction

From a historical point of view, COMP128 was the first authentication
algorithm to be used in GSM networks. Initially secret, an implementation
was reverse-engineered and posted on the Internet in 1998 [2]. Several
researchers then studied this algorithm and showed the possibility of
recovering the shared master key (Ki) by capturing and analyzing between
50000 and 130000 challenges/responses from the SIM card. This led to the
development of two new versions of COMP128 (v2 and v3), COMP128 v2
being identical to COMP128 v3 but with ten bits of the derived 64-bit key
forced to 0. This new version of COMP128 remained secret until 2013 [3].

When 3G was being worked on in 1999, specifications were released to
provide carriers with a new method for authentication: MILENAGE [4] [5].
Contrary to GSM, 3G networks require mutual authentication between
the USIM card and the core network, and also require integrity protection;
ciphering remains optional (as is the case in LTE), but integrity is
mandatory. MILENAGE may also be used in a 2G context [6].

1 Universal Subscriber Identity Module



4 A Practical Guide to Differential Power Analysis of USIM cards

In our attack scenario, we assume the attacker wishes to recover the
secrets stored in the USIM card in order to decrypt the subscriber’s
communications at a later time. To do so, the attacker gains physical
access to the card for a period of time. We will also assume the PIN code
is trivial or has been disabled; this assumption is not too far fetched in
France, as three operators amongst four use either 0000 or 1234 as the
default PIN code.

1.1 MILENAGE

The MILENAGE algorithm is described in 3GPP Technical Specification
35.205 and 35.206 [4] [5]. Figure 1 presents a high-level view of this
algorithm from the perspective of the USIM card:

Figure 1. The MILENAGE algorithm (TS 35.206)

Here, EK is a 128-bit block cipher keyed with K. OPc is derived once
from OP (a global constant set by the carrier) and stored in the USIM;
there is no need to store OP itself. RAND and AMF are controlled by
the network, and SQN is a shared counter that is incremented with each
successful authentication, to protect against replay attacks. r1...r5 as well
as c1...c5 are constants that can be set by the carrier (default values for
these constants are found in the specification).



C. Devine, M. San Pedro, A. Thillard 5

The output of MILENAGE are the keys used for ciphering and
integrity of the radio traffic (f3 provides CK, f4 IK), and further values to
authenticate both parties and resynchronize SQN if need be.

The attacker thus fully controls RAND and wishes to recover K, OPc
and optionally r1...r5 / c1...c5. In theory, the carrier could choose any
128-bit block cipher, but since the specification provides an example
based on AES, it seems likely certain carriers may choose AES by default.

1.2 Side-channel analysis

Side-channel attacks were introduced by Kocher et al in [7]. These attacks
exploit the physical behavior of devices during the execution of an
algorithm to recover information about the manipulated sensitive data.

Such attacks apply a classical divide and conquer strategy: the whole
secret is divided into small parts (usually one byte), and each of these
parts is attacked independently. To recover a secret value k, the attacker
first identifies a simple sensitive intermediate value vk manipulated by
the algorithm, which deterministically depends on both k and a known
input pi.

Then, the attacker collects a large number of observations of the
physical behavior of the device during the manipulation of vk,i. We
chose to observe the power consumption of the USIM card, which is a
classical choice (another possibility being electromagnetic radiation). Each
observation is related to the actual value of vk,i by a so-called leakage
function ℓ(·). The attacker hence gets a vector ℓ(vk,i)i characterizing the
manipulation of the data while being provided a constant key k and
varying inputs (pi)i.

The attacker then exhausts all possible values for k. For each
hypothesis k̂ and for each input pi, he computes the corresponding
sensitive variable (vk̂,i) hypothetically manipulated by the device. Then,
the attacker chooses a leakage function m to map the value of the
sensitive data towards the estimated leakage. He hence obtains (hk̂,i)i,
where for every i, we have hk̂,i = m(vk̂,i). Here, we followed [1] and
chose to model the leakage as the Hamming weight function, denoted HW .



6 A Practical Guide to Differential Power Analysis of USIM cards

Finally, the attacker compares the leakages (ℓk,i)i obtained in the
second phase with all the hypotheses (HW (vk̂,i))i he constructed. This
comparison is done using a statistical distinguisher and lays the most
likely value for the used key; here, we use the Pearson linear correlation
coefficient as a statistical distinguisher.

1.3 Attacking MILENAGE

Based on the previous theoretical model, the MILENAGE algorithm can
be attacked in the following way: first, we know RAND as it is an attacker-
controlled input. RAND is XORed with OPc, and then XORed with the
first round key (identical with K) to be input to the AES S-box in the
SubBytes stage. The output of the S-box will be the target of the first
pass of the attack.

Algorithm 1 Deriving the prediction matrix
for each of the 16 bytes of (OP c⊕K) under attack (i=0..15) do

for each MILENAGE call associated with an attacker chosen RAND do
for each of the 256 hypothesis about (OP c⊕K) do

XOR the hypothesis with RAND[i],
Process the previous value through the AES S-box,
Compute HW of the previous value: this is the prediction.

As a simple example, when attacking the first byte of OPc⊕K, if the
hypothesis is 0x11 and RAND[0] was chosen as 0x9A, the result will be
HW (Sbox[11 ⊕ 9A]) = HW (Sbox[8B]) = HW (3D) = 5.

This algorithm provides us, for each byte under attack, with a
prediction matrix composed of 256 rows and n columns (the total number
of calls to MILENAGE that were made). In addition to the prediction
matrix, the power consumed by the USIM card is measured with each
MILENAGE call. Let’s assume m is the number of points in a power
trace: then we have a second matrix composed of n rows and m columns.
Through the correlation of the two matrices, one correct hypothesis
should emerge for each byte (i).

If the first stage was successful in recovering OPc⊕K, we can then
deduce (after ShiftRows and MixColumns) the input that will be XORed
with the second stage round keys RK2. Attacking again the output of the



C. Devine, M. San Pedro, A. Thillard 7

Figure 2. First two AES rounds (from [1])

S-box, RK2 can be recovered leading to K itself.

Constants r1 through r5 and c1 through c5 can be recovered as well;
we refer the reader to the aforementioned article [1] which details the
complete procedure.

2 Test setup

2.1 Card reader
The first building block in our setup is the ability to craft commands to
be sent to the USIM card and call MILENAGE. To this end, we used the
card library [8] to derive the correct APDUs, as illustrated in the following
code snippet (for a more complete understanding of the commands being
sent, we refer the reader to section 7.1.2 Command parameters and data
of TS 31.102 [9]).
selectFile1 = [0x00, 0xA4, 0x08, 0x04, 0x02, 0x2F, 0x00]
headerReadRecord = [0x00, 0xB2, 0x01, 0x04]
headerSelectFile2 = [0x00, 0xA4, 0x04, 0x04]
headerGetResponse = [0x00, 0xC0, 0x00, 0x00]
InternalAuthenticate = [0x00, 0x88, 0x00, 0x81, 0x22]

def milenage_init(reader):
answer,sw1,sw2 = reader.send_apdu(selectFile1)
answer,sw1,sw2 = reader.send_apdu(headerGetResponse + [sw2])
answer,sw1,sw2 = reader.send_apdu(headerReadRecord + [answer[7]])
answer,sw1,sw2 = reader.send_apdu(headerSelectFile2 +

list(answer[3:4 + answer[3]]))
answer,sw1,sw2 = reader.send_apdu(headerGetResponse + [sw2])

def milenage_request(reader, rand = [0]*16, autn = [0]*16):
return reader.send_apdu(InternalAuthenticate + [16] +

list(rand) + [16] + list(autn), True)

In addition, a custom card reader was used. It is composed of a 8-bit
microcontroller with its serial port connected to the PC through USB.



8 A Practical Guide to Differential Power Analysis of USIM cards

It controls the clock and I/O lines to the smartcard under test, and
additionally provides a trigger output to notify the oscilloscope to start
an acquisition. Finally, a 10 Ohm resistor is inserted after the GND pin
of the smartcard; of which voltage is mesured across, providing how much
power is being consumed.

While the software and hardware parts of this card reader are not
open-source, we would like to mention the WooKey project [10], to be
released in 2018. This open-source and open-hardware project may be
used as a card reader (it includes an ISO 7816 implementation), and
can be modified to add a trigger signal after sending an APDU such as
INTERNAL AUTHENTICATE.

Another platform for side-channel attacks worth mentioning is the
ChipWhisperer; it provides a complete open-source software and hardware
toolchain for performing side-channel power analysis of various targets [11].

2.2 Oscilloscope setup

Initially, we operated a high-end Lecroy oscilloscope capable of up to
10 Gsample/second and 1 GHz bandwidth for the characterization of the
USIM cards being tested. After a successful attack on one of the cards, we
reproduced it on an entry-level Rigol oscilloscope, the DS1054Z. It costs
about 400e and can acquire at up to 1 GS/s with 100 MHz bandwidth.

The DS1054Z project developed by Philipp Klaus [12] was used to
setup the oscilloscope in SINGLE mode, and acquire raw waveforms over
Ethernet with the _get_waveform_bytes_internal function. In order to
accelerate this acquisition phase, _get_waveform_bytes_internal was
altered to remove setup calls that were only necessary once.

During acquisition, the issue of electromagnetic noise became
apparent. One PC in particular would leak large amounts of noise
through the ground and shield of the USB cable. The proper remedy
would be in that case to provide a form of electrical isolation with an
optocoupler. We found a temporary workaround: by cutting all lines
in the USB cable, except D+ and D-, communications with the mi-
crocontroller still remained but the noise coming from the PC disappeared.



C. Devine, M. San Pedro, A. Thillard 9

Also, nearby devices transmitting EM radiation would couple on
the setup and insert noise into the measurements. Figure 3 shows the
emission of a nearby phone, in this case transmitting a GSM burst. Ideally
the measurement should be run within a Faraday cage, but another
solution is to power off nearby devices, or put them as far away as possible.

Figure 3. GSM burst leaking into the test setup

To sum it up, here is an outline of the script that performs acquisition
of traces. milenage_request will lead the trigger signal to be held high
until a response is received.

Algorithm 2 Acquiring power consumption traces
Connect to the oscilloscope
Setup the USIM with milenage_init
Create the HDF5 output file
for each trace to be captured do

Set the oscilloscope in SINGLE mode,
Pick a random RAND 16-byte value,
Call milenage_request with RAND,
Get waveform bytes with _get_waveform_bytes_internal,
Store RAND and the waveform in the HDF5 output file.



10 A Practical Guide to Differential Power Analysis of USIM cards

3 Results

We tested nine USIM cards (amongst which five are from french carriers);
one non-French card was found to be vulnerable to the attack. This is not
to say that other cards are not vulnerable at all, but rather that more
work might be needed to achieve success.

In the following, we will concentrate on the vulnerable USIM card2.

3.1 Identification of MILENAGE
Figure 4 shows the result of one call to MILENAGE. Channel 1 (yellow) is
the trigger, channel 2 (purple) is the I/O line to the USIM and channel 3
is the power consumption. We can see the processing of this APDU takes
about 52ms.

Figure 4. Power consumption of the vulnerable card

While at this stage we cannot distinguish MILENAGE, zooming
(figure 5) shows a blocks repeated six times, possibly corresponding to the
six call to Ek as shown in figure 1.

Further zooming (figures 6, 7) on one of the blocks shows a pattern of
ten peaks leading to further suspicion those are the ten rounds of AES-128,
which would be Ek.

2 The maker of this card was notified of our findings in January 2018, and is working
on a fix.



C. Devine, M. San Pedro, A. Thillard 11

Figure 5. Zooming on the MILENAGE algorithm

Figure 6. Zooming on one call to Ek (AES) within MILENAGE

Figure 7. Zooming on the first round of the first call to AES



12 A Practical Guide to Differential Power Analysis of USIM cards

While the MILENAGE implementation in this particular USIM card
could be located by eye only, this is not always the case, especially in the
case of countermeasures that smooth out power consumption. Statistical
tools exist to determine at which point the data we control (here, RAND)
is being manipulated; NICV3 is a popular tool for this purpose [13].

3.2 Synchronizing the traces
Before conducting the Correlation Power Analysis itself, it is required
to temporally synchronize the traces. As the clock is not perfect, jitter
may happen leading to traces not starting exactly at the same point in time.

In the following example, we captured 4000 traces (having 60000
points each) of the beginning of the first AES call, at a sampling
rate of 125 MS/s. In figure 8 are shown two traces taken from the
whole set of traces; a clear temporal delay between the two traces is present.

Figure 8. Two power consumption traces, before synchronization

To synchronize the traces, a Python script takes the first trace as a
reference and tries to shift each trace until a correlation maximum is found
(using numpy.corrcoef), then performs a rotation of the trace; figure 9
shows the same two traces after synchronization.

3 normalized inter-class variance



C. Devine, M. San Pedro, A. Thillard 13

Figure 9. Two power consumption traces, after synchronization

3.3 Correlation Power Analysis

The final step in this attack is to recover each secret: OPc⊕K,
then RK2, one byte at a time, by correlating the prediction matrix
with the captured traces (using for instance numpy). In our case,
predictions are contained within a 256x4000 matrix. By correlating
this matrix with the 4000x60000 matrix containing traces of power
consumption, we obtain a 256x60000 matrix where we can look for
the hypothesis leading to the highest correlation value, for a given key byte.

Figure 10 shows, for the 8th byte of OPc⊕K, a selection of three
hypothesis. Hypothesis 168 is the correct one and, amongst all hypothesis,
presents several high peaks where the sensitive variable is being
manipulated; we thus deduce that OPc⊕K[7] = 168.

About 1.2 traces/second can be captured on the RIGOL DS1054Z;
4000 traces are acquired in 80 minutes. After this acquisition phase,
resynchronisation and correlation takes ~20mn on a quad-core PC.

The final step, after having recovered OPc and K, is to verify if they
are correct. This is done by simply calling MILENAGE and validating
the MAC (SQN resync may be performed as well). Success indicates the
constants r1...r5 and c1...c5 were not changed by the carrier and do not
need to be recovered.



14 A Practical Guide to Differential Power Analysis of USIM cards

Figure 10. Three hypothesis are shown here for the 8th byte of OP c⊕K

4 Conclusion

Our work has shown that the attack presented in [1] could be reproduced
even using low-cost measurement equipment and open-source components.
Although most USIM cards were not successfully compromised, we should
not assume they are invulnerable; dedicating more time and pushing the
attack (for instance, using SCARE4 [14] [15] or a higher order attack [16])
could lead to success.

From the point of view of the user, we recommend changing the PIN
(and not disable PIN security), especially if the carrier’s default code
is trivial. While PIN verification could itself be the suject of a phyical
attack, it remains nonetheless a deterrent that will slow down the attacker.

Countermeasures exist to protect against side-channel analysis.
Certified secure ICs are available, and we encourage carriers to choose
such ICs. Finally, it is our hope that future generation networks will
move away from authentication based on symmetric-key algorithms, and
instead will embrace more modern methods that would enable desirable
security features such as Perfect Forward Secrecy.

4 Side channel analysis for reverse engineering



C. Devine, M. San Pedro, A. Thillard 15

Acknowledgement

We would like to thank all our present and past collegues who have helped
us with this work (in no particular order): Benoit Michau, Victor Lomné,
Marc Blanc-Patin and Ryad Benadjila.

References

1. J. Liu, Y. Yu, F.-X. Standaert, Z. Guo, D. Gu, W. Sun, Y. Ge, and X. Xie, “Small
Tweaks do Not Help: Differential Power Analysis of MILENAGE Implementations
in 3G/4G USIM Cards,” Black Hat USA Briefings, 2015.

2. M. Briceno, I. Goldberg, and D. Wagner, “An implementation of the GSM A3A8
algorithm. (Specifically, COMP128.),” 1998. http://www.iol.ie/~kooltek/a3a8.
txt.

3. https://doc.freeradius.org/comp128_8c_source.html.
4. “3GPP TS 35.205 - MILENAGE algorithm set: General.” http://www.3gpp.org/

DynaReport/35205.htm.
5. “3GPP TS 35.206 - MILENAGE algorithm set: Algorithm specification.” http:

//www.3gpp.org/DynaReport/35206.htm.
6. “3GPP TS 55.205 - GSM-MILENAGE algorithms: Functions A3 and A8.” http:

//www.3gpp.org/DynaReport/55205.htm.
7. P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA, DSS,

and other systems,” in Annual International Cryptology Conference, pp. 104–113,
1996.

8. https://github.com/mitshell/card.
9. “3GPP TS 31.102 - Characteristics of the USIM application.” http://www.3gpp.

org/DynaReport/31102.htm.
10. R. Benadjila, J. Lefaure, A. Michelizza, M. Renard, P. Thierry, and P. Trebuchet,

“WooKey: USB Devices Strike Back,” Symposium sur la sécurité des technologies
de l’information et des communications, 2018.
https://github.com/wookey-project/.

11. https://newae.com/tools/chipwhisperer/.
12. https://github.com/pklaus/ds1054z.
13. S. Bhasin, J.-L. Danger, S. Guilley, and Z. Najm, “NICV: normalized inter-class

variance for detection of side-channel leakage,” in Electromagnetic Compatibility,
Tokyo (EMC’14/Tokyo), 2014 International Symposium on, pp. 310–313, 2014.

14. C. Clavier, “Side channel analysis for reverse engineering (SCARE) - an improved
attack against a secret A3/A8 GSM algorithm,” International Conference on
Information Systems Security, 2004.

15. C. Clavier, “An Introduction to Physical Attacks - Application to Secret Specifica-
tions Algorithms,” Symposium sur la sécurité des technologies de l’information et
des communications, 2007.

16. E. Prouff, M. Rivain, and R. Bevan, “Statistical analysis of second order differential
power analysis,” IEEE Transactions on computers, vol. 58, no. 6, pp. 799–811,
2009.


