
WooKey: USB Devices Strike Back

Ryad Benadjila, Mathieu Renard, Philippe Trebuchet, Philippe Thierry,
Arnauld Michelizza, Jérémy Lefaure
firstname.lastname@ssi.gouv.fr

ANSSI

Abstract. The USB bus has been a growing subject of research in recent
years. In particular, securing the USB stack (and hence the USB hosts
and devices) started to draw interest from the academic community since
major exploitable flaws have been revealed by the BadUSB threat [41].
The work presented in this paper takes place in the design initiatives
that have emerged to thwart such attacks. While some proposals have
focused on the host side by enhancing the Operating System’s USB
sub-module robustness [53,54], or by adding a proxy between the host
and the device [12, 37], we have chosen to focus our efforts on the de-
vice side. More specifically, our work presents the WooKey platform: a
custom STM32-based USB thumb drive with mass storage capabilities
designed for user data encryption and protection, with a full-fledged set
of in-depth security defenses. The device embeds a firmware with a secure
DFU (Device Firmware Update) implementation featuring up-to-date
cryptography, and uses an extractable authentication token. The runtime
software security is built upon EwoK: a custom microkernel implementa-
tion designed with advanced security paradigms in mind, such as memory
confinement using the MPU (Memory Protection Unit) and the integra-
tion of safe languages and formal methods for very sensitive modules.
This microkernel comes along with MosEslie: a versatile and modular
SDK that has been developed to easily integrate user applications in
C, Ada and Rust. Another strength of this project is its core guiding
principle: provide an open source and open hardware platform using
off-the-shelf components for the PCB design to ease its manufacturing
and reproducibility.



146 WooKey

The WooKey project is a work in progress. Most of the objec-
tives described in the article have been implemented, but some
features are still under development and testing.
For this reason, it is difficult to publish the code at the time of
the SSTIC 2018 conference.

We are well aware that this can be confusing for a project that
claims to be open source and open hardware.

We emphasize, however, that we focuse all our efforts to make
the project available as soon as possible with end of Q2 2018
as a target.

Disclaimer



R. Benadjila, M. Renard, P. Trebuchet, P. Thierry, . . . 147

1 Introduction

USB devices are nowadays ubiquitous and participate in a wide variety
of use cases. Recent studies have exposed vulnerabilities in USB imple-
mentations [39], and among them the BadUSB [41] attacks are a serious
threat against the integrity of USB devices. Firmwares, hosts Operating
Systems, as well as user data confidentiality are at risk. As a matter of
fact, this can have critical consequences knowing that USB mass storage
devices are used to transfer public or confidential data between different
machines, including in air-gapped networks.

Some proprietary devices [8,9] are already sold as preventive solutions
against the BadUSB class of attacks. They however lack code or architec-
ture/design review, sometimes yielding crucial defects [44]. The academic
community has, for its part, focused on the host side by enhancing the
Operating Systems USB sub-module robustness [53,54] and by develop-
ing filtering proxies [12, 37]. Such approaches, albeit interesting, can be
non-portable and do not protect the USB device itself when it is lost or
falls into the hands of adversaries.

Such limitations inclined us to prototype a secure and trustworthy
USB mass storage device. This article compiles the results of this initiative
and provides insight into how we designed and implemented WooKey (the
prototype platform name) using off-the-shelf components with open source
and open hardware objectives.

We first provide a security and threat model for USB mass storage
thumb drives, thus highlighting the main challenges of designing a secure
device. Then, we discuss the existing public products that adopt such
functionalities from an end-user’s perspective, introducing WooKey with
what (we believe) brings new security features to embedded platforms
that use off-the-shelf components.

This leads us to detail our hardware and software design choices in
the light of the security expectations, bringing insights into our main
contributions, namely:

– A full-featured USB dongle platform with in-depth defense in mind.
– Software isolation using a microkernel with a novel approach regarding

MPU usage on constrained microcontrollers, embedding critical parts
written in safe languages (Ada with SPARK).

– Secure Device Firmware Update.
– Two-factor user authentication using a smartcard and up-to-date cryp-

tography.



148 WooKey

Finally, the last section wraps up an analysis of the resulting security
against our threat model and discusses the residual risks, thus assessing
the limitations of an architecture based on off-the-shelf components.

1.1 Threats on USB devices

Fully understanding the threats on the USB stack requires a deep knowl-
edge of the USB devices architecture. For the sake of simplicity, we will
focus on the mass storage class (commonly named USB thumb drives)
although the risks and concepts can be generalized.

USB devices hardware architecture: Two platform variants are
distinguished in the USB protocol: hosts (a.k.a. masters) and devices
(a.k.a. slaves). Both usually embed a controller chip in the form of a
dedicated microcontroller or an Application-Specific Integrated Circuit
(ASIC), whose role is to receive and transmit USB packets.

Microcontrollers are usually based on very low power Systems-on-
a-Chip (SoC) with embedded persistent storage and usually reduced
performance – few MHz CPUs, few kilobytes of RAM – compared to
general purpose processors. They usually embed a firmware that can be
reprogrammed either by logical means (e.g. through the USB protocol
itself) or physical access (e.g. through flash banks hardware reflashing).

Among all USB devices, the mass storage class aims at storing user
data on a dedicated high capacity persistent memory. Figure 1 provides a
high level view of a thumb drive: the USB microcontroller interacts with
the host USB stack on one side, and with flash storage banks on the other
side.

Flash
Memory

USB
Controller

Fig. 1. USB thumb drives classical architecture

USB devices weaknesses: The flexibility of the USB bus is also a
weakness. Since various device classes can be plugged into the same con-
nectors, a device can impersonate another one without any user action or
notification. This can be performed by reprogramming the USB controller
embedded in the device as it has been shown in the BadUSB class of



R. Benadjila, M. Renard, P. Trebuchet, P. Thierry, . . . 149

attacks [41]: many USB controller chips lack protections against such
reprogramming.

A common exploitation scenario is the HID Payload Attack: a malicious
device is reprogrammed in order to act as a Human Interface Device
(e.g. a keyboard) and enter custom keystrokes on the target machine to
compromise it [26].

Another path for the attacker is to inject a crafted payload to exploit a
(possibly zero-day) vulnerability in the host USB stack or any software layer
using it, and adapting the payload to the host through fingerprinting [18,
23,35].

Without specific hardware, the only way to protect critical host systems
against such threats is to physically disable the USB ports. Any other
software countermeasure is of limited efficiency: generic blacklists can be
bypassed; USB filtering proxies [54] are based on complex USB stacks and
are subject to the same risks. In addition, modern PCs contain low-level
embedded firmwares that also integrate USB capabilities: countermeasures
implemented at the Operating System level do not cover them. When
targeting a computer’s BIOS or UEFI, a successful exploitation opens a
breach in the most privileged parts of the system.

A possible mitigation would be to only use trusted devices. This raises
the following question: what is exactly a trusted device and how can one
trust it? This inquiry has been the starting point of the WooKey project,
and we tried to provide technical and well-founded solutions to this issue.

1.2 Secure USB thumb drive design
This section discusses all the elements that, according to us, should be used
in secure hardware and software USB thumb drive architectures. The main
goal is to provide the reader with a high-level view of the assumptions we
make, the threats we try to protect against, and the security features we
desire.

Although these elements are not based on formal foundations, we
outline the fact that they represent what we believe is an interesting
working framework to build a secure and trusted USB device. We also
stress out that to our best knowledge, there is no detailed analysis of the
desirable design features and threat model of USB thumb drives.

Functional specifications: The device must provide classical USB mass
storage features with transparent user data encryption and decryption. It
shall be detected as a thumb drive on any USB host (i.e. any classical
Operating System) with no specific software installation.



150 WooKey

Threat Model: We consider that the adversary has logical and/or phys-
ical access to the device:

1. The adversary may try to read the data simply by connecting the
device to a host or by physically reading the mass storage cells, for
example when the device is lost or stolen. This can be done either
when the device is powered up, or when it is powered down.

2. The adversary may try to tamper with the device using logical attacks,
for example when it is connected to an untrusted host. These attacks
abuse potential weaknesses in protocols used for external communica-
tion such as the USB stack or the external data storage buses.

3. The adversary may open the device to physically tamper with the
internal storage, firmware, or any other component present on the
actual device.

4. We suppose that an external authentication token is used to validate
the legitimate user presence. We will only consider physical attacks
where the adversary does not possess the legitimate user’s PIN code.
In other words, side-channel and fault injection attacks on the device
in a post-authentication phase are explicitly out of scope (even though
we discuss them in section 4). Those kinds of attacks are considered
during the pre-authentication phase though, either on the device, on
the external token, or on the communication channel when these two
exchange data.

Security expectations: We expect our device to provide the following
main security features:

1. User data protection: all data at rest are encrypted, and their confi-
dentiality protected. The data integrity is out of scope.

2. Strong user authentication: the legitimate user must be present when
data is decrypted (implying a strong user authentication). When a
user PIN code is used, attack vectors that can steal it must be limited.

3. Secure device software update: the device’s software should be robustly
upgradable for system maintenance (e.g. security patches). Update
files must be authenticated and integrity checked with no rollback to
(possibly buggy) old versions. A software upgrade must be a voluntary
and authenticated action. The firmware updates must be reliable and
must avoid bricking the platform.

4. Firmware robustness against software attacks: the firmware should
guarantee that an adversary attacking the exposed software surface
(on the USB bus for instance) is not able to get privileged access to



R. Benadjila, M. Renard, P. Trebuchet, P. Thierry, . . . 151

the platform, and does not gain access to critical material such as
sensitive cryptographic keys. Software attacks must remain confined.

1.3 A survey of secure USB devices

When it comes to user data encryption in a secure USB device, various
solutions already exist in both proprietary and open source products. This
section discusses their design choices (when available), their advantages
as well as their drawbacks.

Proprietary products: We will move fairly swiftly over commercial
and proprietary solutions such as IronKey1, Kingston DataTraveler2, and
all other similar devices [1, 5]. The reason is that the details about their
internal architectures and the cryptography they use are usually very
limited. This opacity does not allow us to put their security mechanisms
under scrutiny.

For a broad overview of proprietary products, one can refer to [52].
It is worth noting that from outdated cryptography to unsafe external
authentication methods, many of such products do not implement state
of the art software and hardware security concepts, yielding in various
attack vectors [24,44].

Besides proprietary products, a few open source endeavors exist. We
have only focused on what we believe are the most relevant solutions.
Even though some of them do not aim at producing USB mass storage
devices, many security features and/or security goals they target intersect
with the threat model and the expectations that have been previously
introduced. We discuss in the remaining of the section their benefits as
well as their limitations.

USB Armory: USB Armory3 is one of the first open source and open
hardware USB stick with rich features that has been brought to public
attention. The platform aims at embedding a small yet full-featured
development board capable of booting a Linux distribution in a USB
thumb drive form factor. It is built around a NXP Cortex-A8-based i.MX53
SoC, and interestingly showcases advanced security features4 based on

1 http://www.ironkey.com/en-US/
2 https://www.kingston.com/en/usb
3 https://inversepath.com/usbarmory
4 https://github.com/inversepath/usbarmory/wiki/Hardware-security-

features



152 WooKey

both the NXP HABv4 (High Assurance Boot) secure boot module and
the ARM TrustZone isolation primitive. Even though such a platform has
not been primarily designed as a data encryption device, one could easily
build one using the Key Encryption Module.

However, these SoC advanced security features have not (at least
publicly) been under the scrutiny of well-tried evaluation schemes such as
Common Criteria: we cannot compare them to secure elements. Recent
breaches discovered in the HABv4 [11] outline this matter of fact.

Finally, it is worth noting that the USB Armory device does not
feature strong user authentication methods per se, but the flexibility of
this platform allows to extend it and to add such modules through the
exported buses and interfaces.

Ledger: this company develops USB hardware-based cryptocurrency
wallets5. Their leitmotiv is to provide a device which ensures the end user
that her wallet private keys are kept safe and are never stolen. The platform
is based on a dual chips design: a STM32 general purpose MCU for USB
communication, and a ST31 secure element. The sensitive cryptographic
operations are performed in the ST31 enclave so that critical keys and
assets never leave it. User identification requires a personal PIN code and
the device either embeds a touch screen (Ledger Blue) or buttons and
LCD screen (Ledger Nano S) for a safe authentication.

An innovative approach of Ledger is the introduction of BOLOS [34]
(Blockchain Open Ledger Operating System), an OS built for software
isolation between a normal world and a secure world through a controlled
and dedicated API. The MPU isolation paradigm used by BOLOS to en-
force application contexts is interesting: this will be detailed in section 3.6.
Although Ledger has released some open source projects on GitHub6, only
the BOLOS API (the SDK to compile applets) seems to have been released.
It is also worth noting that Ledger’s products are not open hardware, and
their detailed architecture cannot be thoroughly analyzed.

Without providing Common Criteria or equivalent certification results,
it is quite difficult to evaluate the security level of such a platform compared
to historical and time-tested smartcard embedded systems (though these
two are not incompatible as described in [13]). Finally, the ST31 chip
of Ledger devices is soldered on the PCB: we believe that a physical
separation of the functional platform and the authentication token is
crucial for our specific use cases as it will be argued in section 3.2.

5 https://www.ledger.fr/hardware-wallets/
6 https://github.com/ledgerhq



R. Benadjila, M. Renard, P. Trebuchet, P. Thierry, . . . 153

TREZOR: the TREZOR bitcoin wallet7 is an open source project that
suffers from neither using a secure element nor strong authentication such
as Ledger’s products. The lack of a secure element results in various attack
vectors described in [2]. Weaknesses of the STM32F205 (that stores all the
TREZOR user secrets) against fault injection attacks have been exploited
on the PIN verification implementation in [22].

Nitrokey: the Nitrokey family of devices8 is probably the closest to our
high-level expectations, at least in terms of advertised user functionality.
These USB devices have emerged as a response to the BadUSB threat [40].
According to the authors, their main features consist of an open source and
open hardware design with a firmware that cannot be updated through
USB (hence preventing a BadUSB host to device attack vector). Moreover,
a secure element in the form of a smartcard chip ensures a PIN based user
authentication. The Nitrokey tokens are versatile: they offer an OpenPGP
standard API through USB, along with mass storage and data encryption
features.

On the hardware side, the main variants of the Nitrokey family use
either a STM32F103 or a Microchip AVR AT32UC3A3256S, both being USB
oriented MCUs. For sensitive operations and keys protection, a secure
element is explicitly used in the Nitrokey Pro, HSM and Storage variants.
The reference of the chip depends on the Nitrokey product version, with at
least a Common Criteria certified chip (and a certified Javacard platform
for some of them) [4].

The Nitrokeys have the undeniable laudable advantage of being one of
the first open source and open hardware initiatives against BadUSB. They
however lack some crucial security features. First, they don’t make use of
an integrated user input system allowing secure PIN typing: the user au-
thentication is performed on the host PC using the Nitrokey-App software,
therefore allowing a compromised host to sniff it. Secondly, the firmware
embedded in these products (at least the open source published versions)
does not make use of dedicated kernel isolation and in-depth defense
techniques: any software vulnerability leads to a complete compromise of
the platform.

Furthermore, it seems that Nitrokeys do not enforce a secure channel
between the USB MCU and the secure element: the secure element is not
cryptographically personalized for a given platform and user (the only
binding with the user is done with the PIN code, which is limited).

7 https://trezor.io/
8 https://www.nitrokey.com/



154 WooKey

Finally, and as stated on Nitrokey’s GitHub account, there is no secure
firmware update using strong cryptography at this time.

1.4 Introducing WooKey

When compiling all the desirable security features that one wants for a
secure USB device, no open source solution seems to offer a comprehensive
answer. Proprietary solutions being out of scope since no architecture and
code review are possible, the WooKey project has emerged. It aims at
prototyping a secure and trusted USB mass storage device featuring user
data encryption, with fully open source and open hardware foundations.
We outline the fact that even though the prototype focuses on the mass
storage USB class, all the security concepts we describe in the current
article are easily portable to other USB device classes such as HID or CDC.
The comparison between open source solutions and WooKey regarding
security features is summarized in Table 1.

USB Armory Ledger TREZOR Nitrokeys WooKey
Open Source ✓ ~1 ✓ ✓ ✓

Open Hardware ✓ ✓ ✓ ✓

Secure Element ✓ ✓ ✓

Dedicated PIN pad ✓ ✓ ✓

Isolation Kernel ✓ ✓ ✓

Secure Firmware Update ✓2 ✓ ? ~3 ✓

Secure Boot ✓4

1 Not all the elements are open source.
2 Not implemented per se, but should inherit from open source projects.
3 Firmware update is controlled, but not cryptographically sound.
4 Although broken, see [11].

Table 1. Comparison between open source solutions and WooKey

Constraints related to WooKey: An important matter that the
project pursues is that any interested person should be able to man-
ufacture, flash and use its own device at will. This latter feature is very
restrictive for our design: many interesting security components, such as
secure boot and secure elements bare-metal development, are under NDA
(Non-Disclosure Agreements).

Besides this embargo on security-related technologies, the “do it your-
self” aspect would be refrained by the so-called small scale issue: many



R. Benadjila, M. Renard, P. Trebuchet, P. Thierry, . . . 155

hardware manufacturers do not retail small volumes, and will only deal
with big companies that buy at least thousands of pieces. Such economical
aspects are interesting, and we will discuss them later: we want WooKey
to be manufactured in reasonable volumes for a reasonable price.

As it will be detailed in the next sections, we do not aim at perfect
security as we believe that such an ideal paradigm is too difficult to achieve
using only off-the-shelf components. However, our leitmotiv – underlined
in the sequel – is to observe that a high level of security can be achieved
notwithstanding some compromises. The crucial ingredient is to control
the attack surface (i.e. attack scenarios and limits) that our platform
covers, and to document the (un)achievable security features.

WooKey security overview: The security model is based on both
hardware and software primitives designed to bring in-depth security.
Hardware security relies on an extractable token embedding a secure
element. This token is meant to provide pre-boot authentication as well as
a secure storage area for the sensitive master keys of WooKey user data
encryption.

Software security relies on a microkernel that enforces privilege sep-
aration, memory isolation, W⊕X principle, stack and heap anti-smashing
techniques. The most sensitive parts are implemented with a safe language
(SPARK/Ada).

The secure update mechanism over USB is based on the DFU (Device
Firmware Update) protocol [29]. It also uses the pre-boot user authentica-
tion feature to strengthen the security of the platform. Firmware integrity
and authenticity are based on state of the art cryptography.

2 Hardware Architecture

2.1 General hardware design

Hardware specifications: The functional and security inputs of the
WooKey specifications lead to natural design choices and/or requirements
when it comes to the hardware platform.

First, the processor at the heart of the design must embed a Memory
Management Unit (MMU) or at least a Memory Protection Unit (MPU).
These two hardware IPs provide a necessary privilege level separation
between a supervisor mode and a user mode. A MMU usually isolates tasks
memory using pagination, allowing two tasks to handle (virtual) pages
with different access rights and pointing to the same physical memory



156 WooKey

space. A MPU, usually implemented in embedded devices, allows a more
coarse-grained isolation: physical memory is split in distinct regions with
associated rights, and the number of simultaneous regions is often limited
yielding in much less flexibility than pages.

Secondly, a cryptographic accelerator must be present to guarantee
fast user data encryption. In order to achieve good performance on the
USB side, the controller must be compatible with the USB High Speed
(USB 2.0) specification.

Strong user authentication must be provided through the usage of
an external token, which securely embeds the sensitive master keys of
the platform. The firmware must remain authentic during the life-cycle
of the product, and be only updated through controlled means: debug
functionalities provided by the SoC manufacturer such as Joint Test Action
Group (JTAG) or Serial Wire Debug (SWD) interfaces must be reliably
deactivated.

Since the platform design will be open source, all components and
their data-sheets must be publicly available. The platform should have a
good security versus price ratio.

We detail in the next sections the rationale behind our specific choices
for the hardware components.

2.2 USB controller choices

Using a microcontroller with an embedded firmware or an Application-
Specific Integrated Circuit (ASIC) emerged as the optimal choice to
properly implement a fully operational USB stack. The alternative of
using a Field-Programmable Gate Array (FPGA) dedicated to the USB
functions was too expensive compared to integrated SoCs, over and above
their availability issues for small quantities. From this standing point, we
eventually faced two options:

– Either use dedicated ASICs abstracting low-level protocol communica-
tion and exposing a simple interface [28].

– Or use microcontrollers (MCUs) with an embedded firmware.

We have chosen to use a MCU since it allows to reduce the complexity
of the PCB thanks to the integration level (many functions are embedded
on the same piece of silicon). Specifically, we have focused on the 32-bit
ARM-based Cortex-M cores: they embed a MPU, are compact and energy
efficient, and they provide desirable security features. Some of them allow
us to override/prevent any proprietary code execution (BootROM): we



R. Benadjila, M. Renard, P. Trebuchet, P. Thierry, . . . 157

consider such privileged and unreviewed code as a possible important
threat. This is all the more true when considering that any discovered
vulnerability in this piece of software cannot be patched on the already
deployed SoCs [11]. Some Cortex-M-based MCUs offer the possibility
to disable debug interfaces in production and to prevent flash memory
Read/Write/Erase operations (Read protection allows protecting against
dumping sensitive data, Write/Erase protection allows preserving the
integrity of the firmware).

We emphasize here that even though general purpose MCUs pro-
pose security features, they are not secure elements. A recent study has
completely broken the NXP CRP (Code Read Protection) on the LPC
microcontrollers family [10] using a power glitch during the bootROM code
check of the CRP status. Another article [42] also circumvents STM32F0
RDP (Readout Protection) to recover the firmware embedded in the
flash using more invasive means (acid decapsulation to access the die and
light-based fault injection).

Even though these attacks involve more or less intrusive vectors, they
demonstrate the relative frailty of these features. This is why the WooKey
platform does not rely solely on them, and includes such possibly broken
features in the residual threats analysis.

Looking at the Cortex-M lines of the microcontrollers providers (Qual-
comm/NXP, Atmel/Microship, STMicroelectronics) that include USB
capabilities, we highlight several components families that would fit our
need in Table 2. After examining their respective features, we chose to dis-
card some of them. The NXP LPC43xx series do not include a bootROM
override feature, and their Big/Little architecture increases the attack
surface. The Cortex-M7-based Atmel SAMx7 and alike SoCs lack of OTP
(One Time Programmable memory) and their JTAG seems to be non-
lockable9. Finally, MCUs such as the NXP Kinetis K8x series or the newer
ARMv8-M-based cores10 did not exist back in 2014 during the hardware
design phase.

We finally focused on the STM32F439 as it fits most of our needs.
Moreover, the Cortex-M4 SoCs have been widely studied in the recent
years, and the STM32F439 features a cryptographic coprocessor (the CRYP
engine) as well as a TRNG (True Random Number Generator).

The power consumption of this SoC is rated as high as 98 mA when
the core is running at maximum possibilities and all the peripherals are

9 At least from the publicly available documentation.
10 These SoCs seem very promising: they offer interesting security features such as a

lightweight TrustZone mechanism implementation.



158 WooKey

M
em

or
y

Pr
ot

ec
tio

n
Un

it

US
B

Sp
ee

d
In

te
gr

at
ed

US
B

PH
Y

Cr
yp

to
gr

ap
hi

c
co

pr
oc

es
so

r

JT
AG

/S
W

D
de

ac
tiv

at
io

n

JT
AG

/S
W

D
au

th
en

tic
at

io
n

Da
ta

-sh
ee

ts
br

oa
dl

y
av

ai
la

bl
e

SD
ca

rd
(S

DI
O

) i
nt

er
fa

ce

SP
I I

nt
er

fa
ce

O
TP

m
em

or
y

zo
ne

Lo
w

po
we

r
In

te
rn

al
fla

sh
st

or
ag

e

Bo
ot

RO
M

in
hi

bi
tio

n

Fl
as

h
R/

W
/E

r p
ro

te
ct

io
n

NXP LPC43Sxx
Atmel SAMx7

NXP Kinetis K8x
STM32 Cortex-M4

✓

✓

✓

✓

FH1

FH1

FH1

FH1

FH1

FH1

FH1

F1

✓

✓

✓

✓

?4

✓

✓

?4

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓2

✓2

✓3

✓2

✓

?4

✓

✓

?4

✓

✓

1 F: Full-Speed, H: High-Speed, FH: both speeds.
2 >= 1 MBytes flash size.
3 256 KBytes flash size.
4 Unknown information or value.

Table 2. Overview of available ARM Cortex-M SoCs with USB capabilities

enabled. This leaves room for the other components on the board to be
powered even during the enumeration phase of the USB protocol where the
maximum allowed power consumption is 150 mA. Though this SoC has an
integrated USB Full Speed PHY (12 Mb/s capable), it needs an external
PHY to achieve High Speed (480 Mb/s). The communication between the
SoC and the PHY is done using ULPI, which is a standardized interface
for USB 2.0.

2.3 Data storage

We have chosen to store the encrypted user data on an external SD card.
This format has many advantages. It offers large storage capacities for an
affordable cost with a possible expansion of the USB thumb drive capacity
by switching the SD modules. Compared to raw flash modules, there is no
need to handle complex FTL (Flash Translation Layer) software layers:
the firmware embedded in the SD card takes care of this.

The fact that we use an active component that embeds a complex
and uncontrolled firmware [17] to handle the data could be seen as a
threat. This is, however, not the case since the SDIO protocol is simpler
than the USB protocol. Furthermore, the SD card firmware only transfers
encrypted data blocks on WooKey, which reduces the interest of a Man
In The Middle (MITM) attack on the SDIO bus.



R. Benadjila, M. Renard, P. Trebuchet, P. Thierry, . . . 159

Nonetheless, since the SDIO driver is exposed to malleable user inputs,
all the software modules handling it will run isolated from other sensitive
modules (e.g. those manipulating secrets) using the MPU (see section 3.6).

2.4 Authentication tokens and secure elements

The need for an authentication token: Strong user authentication
ensures that no sensitive cryptographic operation is performed without
the legitimate user’s presence (through a correct PIN code). This implies
that all the cryptographic and authentication material must be handled
securely: a secure element seems to be a suitable choice for this task.

Splitting the platform and the user authentication material yields in a
strong two-factor authentication scheme. This is why we have chosen to
use an external and extractable user token (instead of soldering it) in the
form of a smartcard.

We emphasize the fact that the external token does not solely serve
a logical presence purpose: this critical element is actively used as a
safeguard, through cryptographic operations, when a sensitive action is
initiated (user data decryption, firmware updates). The way we handle
this strong adherence between the SoC of the platform and the external
token will be thoroughly explained in section 3.2.

Using an external token with strong user authentication allows us
to exclude many attack scenarios where the USB device is lost by the
legitimate user. If the hardware and software design are sound and if the
decryption master secrets are stored in the token, an adversary will only
be able to observe and abuse the pre-authentication modules of WooKey,
and hence all the post-authentication critical modules are safe. Moreover,
since the external token is based on a secure element, we can also include
lost tokens in our threat model.

Secure elements: Secure elements are the foundation of modern systems
security: they are usually considered as a hardware root of trust in systems
requiring strong authentication (payment and credit cards in the banking
ecosystem, SIM cards in telecom, TPM in PCs’ secure boot, etc.).

A secure element is in fact a microcontroller hardened against a wide
range of logical and physical attacks (side-channels attacks and fault
injections, cloning). It is validated by a formal process through Common
Criteria: certified laboratories perform pentests and assess attacks difficulty
and impacts so that the chip can be considered robust and certified at a
so-called EAL level.



160 WooKey

Finding a certified secure element that can be programmed without
signing NDAs and that can be bought in small quantities is not an
easy task. This is particularly true if one wants to have a bare-metal
access to the chip, e.g. to implement her own OS. The situation between
secure hardware suppliers and the Open Source community is thoroughly
discussed in [25] and [13].

Using the Javacard framework: The attempts to bring secure ele-
ments technology to the public domain have emerged through VM-backed
languages. The user code is confined in a Virtual Machine and the re-
sources of the platform are abstracted with standard and documented
APIs. This isolation serves various purposes: low-level layers are protected
against tampering and the isolated applications cannot interfere with
one another, the Virtual Machine API is standardized and proprietary
information is not needed to implement useful algorithms.

To the best of our knowledge, the two main lines of products using
publicly available secure elements are11:

– The Javacard platform [43]: this is a lightweight version of the Java
language and runtime with embedded development constraints in mind.
It has become the de facto standard adopted by the industry since
the 90’s. A major asset of Javacard certified products is that the EAL
certification usually concerns the whole platform (from the low-level
chip to the VM).

– The BasicCard platform [56]: a Basic interpreter is embedded in these
smartcards. Though the underlying chips seem to be certified, this is
not the case of the whole platform.

Since Javacard is the only widely available framework to offer a Com-
mon Criteria certification, we have chosen to focus on this platform. More
specifically, we have developed and tested our applets on EAL 4 certified
NXP JCOP J3D081 2.4.2 smartcards [6]: we provide more details on
this in section 3.2.

2.5 Touch screen

In order to limit the smartcard PIN code exposition and defeat Man In
The Middle attacks on the USB bus or in a compromised host [24], we
11 To a lesser extent, .NET VM-based smartcards also exist. We considered them out of

scope because of proprietary framework and development tools.



R. Benadjila, M. Renard, P. Trebuchet, P. Thierry, . . . 161

have decided to include a user input interface directly on the platform.
This allows confining the PIN code to the WooKey device.

Among possible input devices technologies, we have chosen the TFT-
LCD ILI9341 with a AD7843 touch screen component. This allowed us to
design a randomized PIN pad that makes movements observation attacks
more complex [51]. We drive the touch screen from the STM32 SoC using
the SPI bus where both the ILI9341 and AD7843 are slaves.

The residual risk is that the PIN code flows in clear text on the internal
SPI bus: an adversary is able to recover it using hardware taps. We point
out, however, that the PIN is only one of the two factors used for the
authentication (the extractable token being the other one).

Fig. 2. WooKey hardware platform

2.6 Prototyping and cost estimations

All the elements described in the previous subsections are placed on two
4-layer PCB. The final dimensions are 44× 66× 8 mm. An overview of
the final design of WooKey is provided on Figure 2. At this stage of the
project, it is difficult to have an accurate cost estimation for the device in
a production context. We can nonetheless bring some feedbacks about our
experience with hardware manufacturing during our prototyping phase.

For a batch of 10 boards with PCBs produced in China and assembly
in France, the cost is around 300 e per board bundled with a 16 GB SD
card. We also did a simulation for 10 boards produced and assembled in



162 WooKey

the USA and we obtained an estimation of 174 e. The same company
charges 44 e per board for 1,000 boards. All these estimations do not
include the price of the circuit case.

The variations of the price are mainly due to three factors: the minimum
order quantity for each part of the circuit, the setup time, and the number
of boards and parts required for the batch.

Finally, the JCOP J3D081 smartcards can be found at around 30 e
per unit. Similarly to the PCB components, there is a scaling factor: the
per unit price drops to 2 e for 1,000 pieces.

As a comparison basis, the price of commercial USB Encrypted Flash
Drives usually fluctuates between 100 e and over 500 e.

3 Software architecture: towards a secure framework

3.1 General software design

Classical USB thumb drives need at least two main software components:
the USB stack to exchange data with the host and the mass storage man-
ager to store data. One of WooKey’s main feature is to encrypt the data at
rest, which requires a dedicated cryptographic module to encrypt/decrypt
this data. WooKey must securely manage both the cryptographic and
authentication materials along the user data path.

WooKey software modules

Crypto
Token

External TokenPINTouch Screen

Mass Storage USB PHYSDIO Z USB

Modules handling very sensitive information (authentication, master keys)
Modules handling sensitive information (keys, user PIN)
Modules handling less sensitive information (user data path)

Fig. 3. General software architecture of WooKey

The data path goes through three logical modules to read and write
data from/into the device.

– The USB module handles the USB communication with the host.



R. Benadjila, M. Renard, P. Trebuchet, P. Thierry, . . . 163

– The SD module manages the mass storage device and read/write access
to encrypted data.

– The cryptographic module sits between these two modules. It encrypts
and decrypts data when authentication has been performed using the
external token.

The CRYP hardware module increases the cryptographic operations’
performance: processing an AES block takes very few cycles, and the
engine allows DMA (Direct Memory Access) transactions with the other
modules (USB and SDIO).

3.2 Handling cryptographic material and authentication:

Cryptography is involved in the user data at rest confidentiality and the
authentication token interactions on the WooKey platform. We discuss
the issues related to these topics hereafter.

About user data confidentiality and integrity: Full Disk Encryp-
tion (FDE) has become a matter of concern and a topic of interest in
applied cryptography these last years. This is mostly due to the develop-
ment of nomadic devices and the emergence of privacy issues (all modern
smartphones feature data encryption). From a pure cryptographic stand-
point the situation is not ideal though: the high-level features an end user
expects are both data confidentiality and integrity. Unfortunately, no ideal
efficient solution exists nowadays to ensure both these assets with a perfect
and proven security level. This is even more true since integrity expects
extra data to be stored on the disk in addition to the encrypted blocks,
and since fine-grained considerations such as local/global and temporal
integrity must be taken into account. This inherent complexity explains
why most devices acting as a transparent layer over the storage peripheral
and under the OS (e.g. embedded encrypting USB devices) chose to only
focus on user data confidentiality: this is also the case for WooKey.

User data confidentiality cipher: AES-XTS, standardized by the
NIST [3], has become a popular AES tweakable mode for block device
encryption. We have nonetheless decided to use AES-CBC-ESSIV [27]
(used in dm-crypt and its implementation in Android FDE) because
of performance reasons. Indeed, the CBC mode is accelerated on the
STM32F439, and AES-XTS can be quite greedy for CPU cycle on general
purpose MCUs because of operations over GF (2128). A major advantage



164 WooKey

of AES-XTS over AES-CBC-ESSIV is its better resilience against block
malleability [7]. We however stress out that integrity is still at risk with
AES-XTS: our approach is to clearly state that WooKey does not ensure
it. Hence, getting back a lost device or SD card and using them must
be considered dangerous. A straightforward solution for the end user is
to handle integrity in a higher layer, e.g. at the file system level. Future
work is planned to explore authenticated encryption schemes using the
AES-GCM acceleration in the CRYP engine (the tags data extra storage
and Initialization Vectors are still challenging issues in a FDE context).

The data path encryption module: Since we want the encryption
and decryption along the data path to be very efficient during USB and
SDIO transfers, we must avoid reconfiguring the AES CRYP engine (and
key schedule) at each transaction while preventing the USB and SDIO
tasks to steal and leak the sensitive data encryption key. Fortunately, we
can isolate the registers configuring and holding the AES key using the
MPU. This yields in the following split of the WooKey cryptographic task
in two modules:
– An untrusted cryptographic module: it shares its memory space with

the USB and SDIO tasks, and its job is to trigger AES-CBC encryption
and decryption in the CRYP and handle DMA transfers. This module
uses the CRYP with the key already setup, and never accesses the
secret value.

– A trusted cryptographic module: this module is confined and isolated
from the other tasks. It is in charge of setting up the CRYP key registers
with the secret AES key derived from the external authentication token.
It is also in charge of managing all communications with this token.

Authentication with the external token: The trusted cryptographic
module running on the STM32 SoC communicates with the external
smartcard (aka authentication token) through an ISO-7816-3 bus using
Application Protocol Data Units (APDUs). The main SoC and the token
embed (personalized) ECDSA key pairs. The first thing that is performed
by the two peers when the token is inserted is mutual authentication. This
is performed with an ephemeral ECDH (Elliptic Curve Diffie-Hellman key
exchange), then AES-CTR and HMAC-SHA-256 session keys are derived,
as well as a random IV (Initialization Vector) value. This allows to establish
a secure channel with confidentiality, integrity and anti-replay properties.
Forcing mutual authentication as a mandatory first step allows limiting the
attack surface (against malicious tokens or a malicious ISO-7816 master).



R. Benadjila, M. Renard, P. Trebuchet, P. Thierry, . . . 165

On the platform side, we use the open source libecc12 that was
designed with embedded constraints in mind. On the token side, ECDSA
and ECDH are part of the Javacard 3.0.1 framework. AES-CTR and
HMAC-SHA-256 were not fully supported, so we have implemented our
own Javacard classes/applet over the built-in hardware accelerated AES-
ECB and SHA-256. One could wonder why we have decided to implement
our own secure channel while the Global Platform framework offers this
feature. None of the proposed schemes were adequate on our JCOP
Javacard: they are either broken [50] and/or make use of symmetric key
cryptography (compromising a platform would yield in breaking the token
secret key as well, which is prevented by asymmetric cryptography in our
case).

Whenever the PIN is entered on the touch screen, the cryptographic
module gets it and sends it to the token. The token checks the PIN, and if
the PIN is OK (locked after configurable n failures) it derives a key using
the PIN value and a master secret stored in the token. This key is sent
back to the main SoC and serves as the AES-CBC-ESSIV data master key.
The PIN also participates in secure channel session keys diversification to
bind the session to this authentication instance.

The CRYP engine is not certified (i.e. could be attacked through
side-channels), and since the secure channel is established and used before
the PIN is provided, we have chosen to use a dedicated software masked
AES for our AES-CTR [19,21,48]. The masked AES is secure but slow,
which is actually not an issue here because of the relatively limited baud
rate of the ISO-7816 channel and the small size of the data packets.

Finally, the external token (actually a token dedicated to firmware up-
dates) also participates in our DFU implementation as it will be described
in section 3.4.

3.3 About the WooKey personalization phase:

It is assumed in the threat model that the initial firmware upload and
configuration of the platform are performed in a trusted environment. The
security insurance brought by the defense-in-depth mitigations during the
life cycle of the product inherently depends on this critical phase.

The main steps that are handled during personalization are:

– Flash the initial firmware on a virgin and open device (i.e. with
JTAG/SWD unlocked).

12 https://github.com/ANSSI-FR/libecc



166 WooKey

– Flash the Javacard applets on virgin and open smartcards (one for
user authentication, one for firmware signing, one for device firmware
update).

– Generate and deploy (on the platform and the external tokens) all the
master cryptographic keys, namely the ECDSA key pairs for mutual
authentication with user and update tokens, keys handling firmware
updates, as well as user data encryption master key.

– Deactivate JTAG/SWD, activate the flash RDP protection (level 2)
on the STM32F439 MCU in order to lock the platform in production
mode.

– Lock the external token smartcards in production mode (modify the
default Global Platform keys).

3.4 Designing an efficient and secure DFU mode

An often underrated security feature is the ability to maintain a product in
secure and working conditions. However, updating a USB device in a safe
way is not an easy task because such devices are often not self-powered
and may be disconnected at any time.

Because microcontrollers have very little memory space in volatile
memory, firmware upload and checking have to be performed in-place
in the flash area where it will be executed. Hence, this requires a flip-
flop mechanism ensuring software redundancy in order to handle any file
corruption (hazardous disconnection, data flow corruption, invalid crypto-
graphic signature, etc.). Such implementations are in general proprietary,
but are sometimes based on standards like the USB DFU protocol [29]
that allows device update through USB.

Allowing patching of device firmware is dangerous, as malware might
use this feature to replace the genuine firmware with a malicious one.
Therefore, DFU should not be accessible without explicit user activation
and authentication. The DFU implementation itself could contain bugs,
and as a consequence it should also be upgradable.

To support such features, we have decided that the DFU flip/flop
implementation should be separated from the standard firmware; it is
executable only after voluntary physical button toggling at boot time.

When the user willingly activates the DFU mode, the bootloader
expects a specific external token to be present. Mutual authentication
is performed with the token (the details of this protocol are provided
in section 3.2), and a specific PIN code (dedicated to updates) is asked
by the main SoC and checked on the token side. If the PIN is valid,
firmware upload can begin. The firmware is encrypted using a session key



R. Benadjila, M. Renard, P. Trebuchet, P. Thierry, . . . 167

at production time, and this session key is decrypted using the token so
that its presence is indeed enforced during the update.

Once uploaded to the device, the new firmware integrity and authen-
ticity are checked using a cryptographic ECDSA signature validation,
and the default bootloader pointer is switched. The update version is
also validated in comparison to the current firmware version to avoid any
downgrade with an older and buggy (but signed) firmware [20].

All these constraints and security features impact the overall device
software mapping and reduce the available space for each software com-
ponent. Figure 4 shows the content of the device with all the required
components.

Flash memory

DF U 2

firmware 2

DF U 1

firmware 1

shared

loader

app slot 8

app slot 7
...

app slot 3

app slot 2

app slot 1

kernel

STM32 RAM

kernel RAM

ISR stack

app 8 RAM

app 7 RAM

...
app 3 RAM

app 2 RAM

app 1 RAM

Fig. 4. Overview of the embedded software mapping

Splitting the device software into two independent firmwares and into
two DFU-dedicated firmwares is an efficient way to bring some resilience
and protection against the risks previously described. However, even if it is
a way to protect the offline devices, it does not prevent any online software
attack. For instance, without any further protection mechanism, a flaw in
the USB stack implementation may allow an adversary to fully compro-
mise the device. Such escalations can be thwarted by enforcing memory
segregation between I/O applications (USB stack, etc.) and other parts



168 WooKey

of the device. In the following sections, we describe the countermeasures
implemented to avoid this kind of software exploitation.

3.5 Toward a highly secured embedded software

Most firmwares embedded in microcontrollers do not enforce any security
at all. In particular, the lack of isolation between software components
hinder enforcement of crucial security principles: e.g. least privilege or
privilege separation. Therefore, it is not uncommon that each component
of the firmware can access the whole memory space and that any bug in
the smallest piece of code can corrupt the entire system.

Overview of the software security requirements: We retained sev-
eral security requirements to bring the WooKey platform to a security
level nearing the state of the art, while respecting the inherent flash and
RAM small footprints:

1. Using the MPU to enforce the least privilege principle and to protect
the most sensitive assets.

2. Formal verification of critical code, or at least the usage of a safe
language to harden the implementation.

3. Advanced in-depth mitigation mechanisms (stack-smashing protection,
heap protection, W⊕X, etc.).

4. Being open source to permit peer review.

The MPU, a crucial confinement primitive: Most of modern 32-bit
microcontrollers have a Memory Protection Unit (MPU) and a processor
with at least two CPU privilege levels (the so-called user mode and
supervisor mode). The MPU is a programmable unit that allows privileged
software, often a kernel, to define memory access permissions in order
to isolate memory regions. It can be used to enforce confinement and
privilege separation between unprivileged components, like tasks executed
in user mode. These tasks must not break out of their address space.

Microkernels paradigm: Microkernels architecture (e.g. QNX, Fi-
asco.OC, SeL4, OKL4, etc.) goes back to the 1970’s [47,55] and enforce the
least privilege principle by isolating the drivers in their own address space.
Vulnerabilities in a driver are kept confined and cannot compromise other
parts of the system. Another advantage over monolithic kernels is that the
Keep It Simple and Stupid (KISS) paradigm is also applied. By keeping



R. Benadjila, M. Renard, P. Trebuchet, P. Thierry, . . . 169

microkernels minimal, with fewer functionalities, they are in theory simpler
to design, implement, debug, and maintain, and they are therefore less
error-prone. Another consequence of shrinking the functionalities and the
number of syscalls is that the exposed code to untrusted applications (and
hence the attack surface) is drastically reduced. Drivers still have to be
implemented, but as userspace tasks, with limited access rights.

Safe languages: Most kernels and microkernels are written in C with a
pinch of assembly. The major drawback of the C language is its proneness to
coding errors. Out-of-bound array accesses, integer overflows and dangling
pointers are difficult to avoid due to the weakly enforced typing. Such
bugs can become nonetheless devastating when exploited in a privileged
context.

A way to prevent such vulnerabilities is to use a safe language.
Pierce [45] defines a safe language as one that protects and guarantees the
integrity of its own abstractions, which can be achieved by static checking,
but also by run-time checks. Many high-level languages share this feature,
but very few are actually suitable for operating systems programming, let
alone embedded bare-metal programming.

Using a safe language for implementing low-level kernel code is an
approach that goes back to the early 1970’s [32, 46]. Nowadays, such
initiatives are not widespread, and usually use languages such as Rust (for
example Redox13 or Tock14) or Ada [16,38].

Ada is designed for building high-confidence and safety-critical appli-
cations [15,49]. It is a strongly typed language that supports bare-metal
programming, and can circumvent most well-known vulnerabilities like
buffer overflows or invalid pointers management by enforcing type checking
at compile time and at run time.

SPARK is an Ada subset that can be used with the GNATprove tool
to prove that the written code is free of any type violations. SPARK
and GNATprove bring confidence in the soundness of the code, therefore
allowing to remove run-time Ada type checks. This yields in better perfor-
mance, smaller memory footprint and no run-time exception breaking the
execution flow.

Rust is a rather new promising language with increasing popularity. It
aims at enforcing strong static type checking and memory safety.

13 https://github.com/redox-os/redox
14 https://www.tockos.org/



170 WooKey

Language Safe language Formal proof Memory footprint Well-known
C ✗ ✗ ✓ low ✓

Ada ✓ ✓(SPARK) ✓ low1 ✗

Rust ✓ ✗ ✗ high ~2

1 Ada can embed runtime checks. SPARK code reduces such checks size.2 Recent language, but with a growing and active community.
Table 3. Comparison between the languages used in the WooKey project

Formal methods: Formal methods allow proving functional correctness
and soundness of a design and/or of an implementation with respect to
some predefined properties. This approach fits well with microkernels.

It was successfully applied to SeL4 [33], proving that its implementation
is free of several classes of vulnerabilities (deadlocks, buffer overflows and
arithmetic exceptions).

This approach has nonetheless some drawbacks. It is complex, and it
is not uncommon that the number of proof code lines goes well beyond
the number of code lines to prove (SeL4’s 8,500 lines of C code induced
200,000 lines of proof and 11 man-years of work [33]). Moreover, inner
constraints limit the scope of the properties that can be proven.

Defense-in-depth security mitigations: Software exploit mitigation
uses many techniques: stack canaries, ASLR (Address Space Randomiza-
tion), page guards, heap protection, memory isolation, non-executable
data regions, W⊕X, kernel side checks, data sanitization, etc. Thus, even
if an attacker may find a flaw in one defense, combining many of them
multiplies by orders of magnitude the efforts needed to bypass all of them.

3.6 EwoK, a driver-oriented microkernel

Enforcing memory protection, tasks isolation and providing access control
to the assets and to the hardware requires a kernel.

A brief survey of embedded kernels (summarized in table 4) shows
that none of them met our security requirements. We discarded non-free
and closed source kernels, despite some of them have interesting security
features (BOLOS operating system, INTEGRITY, ProvenCore, etc.). We
also discarded most of open source embedded kernels: their real-time
driven design is barely compatible with the overhead produced by security
mechanisms (Contiki, FreeRTOS, etc.).

TockOS [36] is a new kernel written in Rust that benefits from the
memory protection mechanisms offered by this language in order to secure



R. Benadjila, M. Renard, P. Trebuchet, P. Thierry, . . . 171

the drivers execution. The major drawback is its memory footprint that
does not fit within our hardware limitations.

L4 microkernels have some interesting security properties but they
target bigger devices. Among the L4 family, F9-kernel [31] is designed to
be executed on microcontrollers (such as the STM32F4 family). However,
it is written in C, with no specific security properties.

Therefore, we decided to develop our own microkernel.

Features and security properties: EwoK is a microkernel that pro-
vides the necessary functionalities to execute device drivers as user tasks.
It implements all the security requirements exposed above.

It enforces at build time a strict memory partitioning between tasks,
despite the inner limitations of the MPU that only allows 8 memory
regions at the same time [30].

Registered devices are mapped only when needed, enforcing the least
privilege principle. The drivers (running as tasks) can claim resources, like
GPIO, DMA and MMIO devices, during their initialization phase.

Tasks may communicate using IPC or shared memory. For example,
the untrusted cryptographic task (handling the user data path) and the
trusted cryptographic task (handling the smartcard and the master keys)
are synchronized using IPC.

Permissions are statically defined at build time to avoid improper
access or information leakage.

A user task supports two contexts: a main context and an Interrupt
Servicing Routine (ISR) context. The kernel manages the processor inter-
rupts in the so-called ARMv7m privileged handler mode. Then execution
is dispatched to the registered ISR handlers to be executed in user mode.

Critical parts of the kernel and the components belonging to the
Trusted Computing Base (TCB) are developed in SPARK/Ada (see Fig-
ure 5). Criteria for identifying these components are their role in the
security of the platform as well as their exposure to untrusted applications
and to user inputs.

EwoK is also hardened with defense-in-depth mechanisms: usage of
the W⊕X paradigm and stack guards (inspired from stack canaries). Due
to the low amount of RAM and the lack of virtual memory, we abandoned
the idea of implementing ASLR.

The software implementation suffered from two major hurdles: the
small amount of available RAM memory and the IPCs performance.
Executing drivers as user tasks implies that function calls are replaced
with IPCs, which generates an overhead that can be a real burden for



172 WooKey

Softw
are

requirem
ent

designed
for

partitionned
Supports

B
ased

on
a

Fast&
safe

Portable
Sm

all
Static

O
pen

nam
e

security
drivers

C
ortex-M

safe
language

driver
exec

enough
perm

issions
Zircon

✓
✓

✓
✓

✓

SeL4
✓

✓
✓

✓
✓

✓
✓

(capabilities)
✓

f9-kernel
✓

✓
✓

TokO
S

✓
✓

✓
✓

~
3

✓
?

✓

R
avenscar

~
1

✓
✓

✓
✓

✓
✓

A
da

profile
FreeRT

O
S

✓
✓

✓

R
IO

T
-O

S
✓

✓
✓

✓

Q
N

X
✓

(pure
µkernel)

✓
✓

M
inix3

✓
?

✓
✓

PikeO
S

~
2

~
2

✓
✓

✓

ProvenC
ore

✓
✓

✓
✓

✓
✓

✓
✓

V
xW

orks
✓

?
?

✓
✓

IN
T

EG
R

IT
Y

✓
✓

?
?

✓
✓

?
B

O
LO

S
✓

?
✓

?
?

?
?

?
C

ontiki
✓

✓
✓

✓

Ew
oK

✓
✓

✓
✓

✓
✓

✓
✓

✓

1
D

epends
on

the
developer’s

choice.
2

D
epends

on
integrator’s

choice.
3

Speed
m

ay
vary

depending
on

the
driver/application

interactions.

T
able

4.Existing
em

bedded
kernels

and
Ew

oK
features

versus
W

ooK
ey

constraints



R. Benadjila, M. Renard, P. Trebuchet, P. Thierry, . . . 173

low-power devices [14]. The kernel uses a mixed collaborative/preemptive
scheduler, with an event-based threshold support for high reactivity of
ISRs and tasks: tasks can yield and ask (under certain circumstances
and permissions) for voluntary reschedule of their main threads, but a
preemptive time slotting and a priority management is maintained by the
kernel scheduler. Using (controlled) shared memory and DMA transactions
also participates in improving performance.

syscalls
∗ ‡ †

softirqd
∗‡

scheduler
∗‡

dma-control
‡

clock & rcc MPU
‡

UART task init
‡

timers

∗
gpios

∗

devices
∗‡

idle task

† External API, requires efficient validation of input and output values
‡ Security critical component. Impacts the overall security
∗ Need for correctness. May impact the safety/efficiency of the target

C Ada Ada+SPARK

Fig. 5. Block diagram of the software components of the EwoK microkernel

EwoK, the WooKey gate keeper: The WooKey project aims at pro-
tecting user sensitive assets against their stealing by adversaries. In order
to do so, the main cryptographic secrets are stored in an external smart-
card which needs to be connected to the device at boot time to allow the
data read and write actions.

In order to protect these critical assets (the master keys and the PIN
code), the kernel segregates the data plane (USB to/from mass storage)
and the authentication plane.

Figure 6 describes such a logical partitioning. Mutual authentication
with the smartcard is controlled by a process dedicated to the secure
channel management. Another dedicated process manages the embedded
screen and touchpad. The data encryption/decryption is done using cryp-
tographic content accessible only when the external token authentication
has been successfully performed. The USB and SDIO stacks have access



174 WooKey

to the current session data, as they manage the transfers to and from the
external host, but have no direct access to the master cryptographic assets
inside the smartcard.

EwoK

PIN code
manager

Smartcard

USB
stack

crypto

mass storage
manager

IPC

IPC

SHMSHM

USB FS/HS
memory mapped
device

SDIOmemory mapped
device

ISO-7816 (USART)
memory mapped

device

Screenmemory mapped
device

Touchscreenmemory mapped
device

DMADMA Z

Fig. 6. Usage of EwoK in WooKey

Completely separating the USB stack, the untrusted cryptographic
subsystem and the mass storage manager in terms of processes and shared
memory is still an ongoing investigation. The final design will heavily
depend on performances trade-offs.

The bottleneck that would emerge is in the data path between the USB
and the SDIO sides. In any case, the data plane and the cryptographic
module handling the external token and the sensitive assets are confined
in distinct memory spaces: their interactions do not need high speed and
can therefore be handled using IPCs.

3.7 MosEslie: towards a versatile SDK

In order to easily integrate new software, drivers and tasks in the WooKey
platform and over the EwoK microkernel, we have designed a dedicated
SDK (Software Development Kit): MosEslie. It uses only widespread open
source tools (GCC, GNAT, Kconfig, Makefiles, etc.) without any external
dependencies.

The SDK helps configuring the flash and RAM partitioning for the
applications, as well as the shared memory slots and the IPC control
flow matrix. The memory protection layouts applied by the MPU and



R. Benadjila, M. Renard, P. Trebuchet, P. Thierry, . . . 175

the whole permissions are automatically generated by the configuration
subsystem. If no proper layout can be produced (i.e. inconsistent MPU
configuration at runtime), the SDK displays a comprehensive error.

Finally, MosEslie makes integrating software written in safe languages
(Ada and Rust) very easy thanks to their binding interfaces with C, hence
providing a mixed languages firmware.

4 WooKey: a security and threat analysis

The expected requirements of the platform (regarding hardware, software
and security) are recalled in Table 5.

Hardware Software Security
MPU Resilient storage Strong authentication
Crypto-processor Performance Signed firmware update
Conforming to USB2.0 Open Confinement of exposed interfaces
Open, COTS and cheap Modular and evolutive Static and checkable permissions
JTAG/flash protections Versatile SDK Safe languages for critical parts

Table 5. Platform security requirements overview

We have chosen to build the WooKey hardware platform around
the STM32F439 SoC featuring a MPU for memory confinement, AES co-
processor and TRNG random generator. Only off-the-shelf and widely
available components are used on the PCB.

The strong authentication requirement is ensured using an extractable
secure element (see section 2.4): an affordable Javacard smartcard with a
dedicated applet. The PIN code is entered on a TFT touch screen (see
section 2.5) ensuring no leak to the host.

The firmware’s integrity and authenticity are serviced using a robust
and strengthened DFU mode involving digital signature and authentication
token interactions (explained in section 3.4).

The EwoK microkernel provides efficient isolation of distinct firmware
parts, static configuration of the applications and their memory layout,
Ada usage on sensitive modules and SPARK formal verification on very
critical ones (such as the MPU driver) as detailed in section 3.5.

Hence, most of the hardware and software requirements listed in Table 5
are met. The performance benchmarking is still an ongoing work: many
modules have been individually tested and no major issue should arise
once the complete integration is performed. The integration and the fine
tuning are in progress, nonetheless not finished yet.



176 WooKey

We leverage the implemented two-factor authentication method (user
PIN and smartcard). The fact that WooKey does almost nothing during
pre-authentication allows preventing some attack scenarios:

– Adversaries that use side-channel attacks or fault injection without the
authentication token won’t be able to do much. This still stands if they
have the token without the PIN: since all the cryptographic sensitive
material remains locked in a secure element, this should resist to such
a class of attacks (under the assumption of the CC EAL certification
of the secure element of course). The only part that is exposed is the
secure channel (using ECDSA and ECDH, AES-CTR and HMAC-
SHA-256) established in the pre-authentication phase: failed attempts
could yield in locking the platform by using a counter stored in flash.

– Try to mimic hardware and software: unintelligent attempts will fail
thanks to the strong cryptography (secure channel) performed in the
pre-authentication phase (since the adversaries do not have the ECDSA
private keys). The only asset that an attacker will be able to get is the
user PIN by deceiving the legitimate user in entering it. However, the
adversary still has to achieve physical possession of the external token.

On the features that are lacking by design on WooKey, we have:

– Trojan firmware, aka evil maid style attacks. Our DFU ensures that
firmware updates are sound and authentic, but there is no check at
boot time that the firmware has not been altered by other means:
either physically by manipulating the flash (JTAG/SWD and so on),
or logically through exploiting a buffer overflow for instance. We
try to limit the physical modifications by using ST RDP (Readout
Protection) that locks the platform in production, but section 2.2
and [10, 42] have shown how such countermeasures could become
fragile against aggressive attack vectors (decapping and faulting). On
the software part, EwoK is precisely dedicated to intrusion mitigation
and confinement.
Against trojan firmware, secure boot technologies could come to the
rescue, but they might not be the silver bullet we expect to thwart such
threats [11]. Newer MCUs also integrate transparent flash encryption
using a dedicated cryptographic co-processor (a technology inherited
from the secure elements and the FPGA worlds). However, such recent
improvements of the publicly available MCU lines have still to prove
their robustness against physical and logical threats.

– Trojan hardware. This kind of attack is devastating and we cannot
do much against it. If an attacker has been able to somehow recover



R. Benadjila, M. Renard, P. Trebuchet, P. Thierry, . . . 177

(e.g. via physical attacks) WooKey sensitive private keys from the
SoC’s flash, and build a full platform resembling the genuine one, this
is the perfect crime. A much weaker variant of such hardware mimic
attacks is when the adversary does not know the platform private keys,
this falls in the previously described unintelligent scenarios.

On a side note, the main advantage for an adversary when implanting
a trojan firmware or hardware is to steal the legitimate user PIN, and
ultimately to steal the master decryption key from the token (using the
PIN) in order to be able, in the future, to decrypt user data without the
token.

We emphasize the fact that achieving a protection level preventing
these two latter powerful – and rather costly – kinds of adversaries is very
complex (if not impossible) using off-the-shelf affordable components.

Regarding cryptography, as it has been thoroughly detailed in sec-
tion 3.2, we only protect user data confidentiality: the integrity of the
SD card is out of scope and the user must be informed of this and use
complementary solutions (such as integrity at the file system level).

5 Conclusion

WooKey aims at being an open source, open hardware, secure and afford-
able USB encrypting mass storage device using off-the-shelf components.

Protection against the BadUSB class of attacks is achieved using strong
cryptography with two-factor authentication of the legitimate user (PIN
and smartcard using a secure element), as well as a robust DFU dedicated
to firmware integrity and authenticity insurance. Software classes of attacks
(e.g. buffer overflows) are mitigated using EwoK, a novel microkernel
designed with security in mind, enforcing memory isolation using the
MPU and providing more confidence by using the Ada safe language along
with SPARK for formal verification of critical parts. Beyond the mere USB
key itself, we also provide MosEslie: an easy-to-use SDK that simplifies
the integration of user applications on the platform as well as the possible
mixed usage of safe languages (Ada and Rust).

Thanks to these characteristics, the overall security of WooKey is
strong against software attack vectors, and some pre-authentication hard-
ware attacks (side-channel observation and fault injections). The residual
adversaries that endanger the platform integrity involve aggressive and
costly attacks on the STM32 MCU (decapping and light-based fault injec-
tion) to recover the private keys in flash. On a similar note, WooKey only



178 WooKey

protects user data confidentiality: user data integrity is not covered (which
is the case for most of USB thumb drives with transparent encryption).

Though such residual threats directly inherit from the constraint of
using available and affordable off-the-shelf components for WooKey, we
feel that there is still room for improvement. Newer ARMv8-M architec-
tures offer interesting features such as TrustZone and a more advanced
MPU (for better isolation of EwoK applications), some recent MCUs
also integrate tamper detection and transparent flash encryption using
dedicated hardware, etc. Many of the key concepts already developed
during the project are easily portable on these platforms, and improving
the defense-in-depth layers is future work.

— “It’s not wise to upset a WooKey.”

— “I suggest a new strategy, Artoo: let the WooKey win.”

References

1. Encrypted Drive. https://www.kingston.com/fr/usb/encrypted_security.
2. Hardware Wallet Vulnerabilities. https://blog.gridplus.io/hardware-wallet-

vulnerabilities-f20688361b88.
3. NIST: Recommendation for Block Cipher Modes of Operation: The XTS-AES

Mode for Confidentiality on Storage Devices.
4. Nitrokey Secure Elements.

https://www.nitrokey.com/documentation/frequently-asked-questions#is-
nitrokey-common-criteria-or-fips-certified.

5. USB encryption. https://www.hacker10.com/usb-encryption/.
6. NXP JCOP 2.4.2 R2 CC, 2013.
7. Practical malleability attack against CBC-Encrypted LUKS partitions, 2013.
8. BadUSB vs. DataLocker Sentry 3.0. http://www.ireo.com/fileadmin/img/

Fabricantes_y_productos/datalocker/BadUSBWP.pdf, 2015.
9. Get BadUSB protection from IronKey USB Flash drives.

https://media.kingston.com/images/usb/pdf/BADUSB_us.pdf, 2016.
10. Breaking Code Read Protection on the NXP LPC-family Microcontrollers, 2017.
11. USB armory security advisory.

https://github.com/inversepath/usbarmory/blob/master/software/secure_
boot/Security_Advisory-Ref_QBVR2017-0001.txt, 2017.

12. Sebastian Angel, Riad S Wahby, Max Howald, Joshua B Leners, Michael Spilo,
Zhen Sun, Andrew J Blumberg, and Michael Walfish. Defending against Malicious
Peripherals with Cinch. In USENIX Security Symposium, pages 397–414, 2016.

13. Nicolas Bacca. Secure Hardware and Open Source, 2016.
https://www.ledger.fr/2016/06/09/secure-hardware-and-open-source/.

14. Brian N Bershad. The increasing irrelevance of ipc performance for
micro-kernel-based operating systems. In USENIX Workshop on Microkernels and
Other Kernel Architectures, pages 205–212, 1992.

15. Carl Brandon and Peter Chapin. The Use of SPARK in a Complex Spacecraft.
ACM SIGAda Ada Letters, 36(2):18–21, 2017.



R. Benadjila, M. Renard, P. Trebuchet, P. Thierry, . . . 179

16. Reto Buerki and Adrian-Ken Rueegsegger. Muen-an x86/64 separation kernel for
high assurance. University of Applied Sciences Rapperswil (HSR), Tech. Rep, 2013.

17. Xobs Bunnie. Lecture: The Exploration and Exploitation of an SD Memory Card.
Chaos Communication Congress 2013.

18. Benoît Camredon. USBiquitous: USB intrusion toolkit. In SSTIC 2016. SSTIC,
2016.

19. S. Chari, C.S. Jutla, J.R. Rao, and P. Rohatgi. Towards Sound Approaches to
Counteract Power-Analysis Attacks. pages 398–412.

20. Yue Chen, Yulong Zhang, Zhi Wang, and Tao Wei. Downgrade Attack on
TrustZone. arXiv preprint arXiv:1707.05082, 2017.

21. Christophe Clavier and Kris Gaj, editors. Cryptographic Hardware and Embedded
Systems - CHES 2009, 11th International Workshop, Lausanne, Switzerland,
September 6-9, 2009, Proceedings, volume 5747 of Lecture Notes in Computer
Science. Springer, 2009.

22. Josh Datko, Chris Quartier, and Kirill Belyayev. Breaking Bitcoin Hardware
Wallet. DEF CON 2017, 2017.

23. Andy Davis. Revealing embedded fingerprints: Deriving intelligence from usb stack
interactions. Blackhat USA, 2013.

24. Matthias Deeg and Schreiber Sebastian. Cryptographically Secure? SySS Cracks a
USB Flash Drive, 2009. https://www.syss.de/fileadmin/dokumente/
Publikationen/2009/SySS_Cracks_SanDisk_USB_Flash_Drive.pdf.

25. Jakob Ehrensvärd. Secure Hardware vs. Open Source, 2016.
26. Darren Kitchen et al. Hack5 USB Rubber Ducky Part 1.
27. Clemens Fruhwirth. New Methods in Hard Disk Encryption. na, 2005.
28. FTDI. FT600Q-FT601Q IC Datasheet (USB 3.0 to FIFO Bridge).
29. Trenton Henry, David Rivenburg, and Dan Stirling. Universal Serial Bus Device

Class Specification for Device Firmware Upgrade. Aug, 5:47, 2004.
30. ARM Holdings. ARMv7-M Architecture Reference Manual, 2010.
31. George Kang et al. Jim Huang. F9-Microkernel implementation, 2012.
32. Paul A. Karger and Roger R. Schell. Thirty Years Later: Lessons from the Multics

Security Evaluation. In Proceedings of the 18th Annual Computer Security
Applications Conference, ACSAC ’02, pages 119–, Washington, DC, USA, 2002.
IEEE Computer Society.

33. Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, et al. seL4: Formal verification of an OS kernel. In Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems principles, pages 207–220.
ACM, 2009.

34. Ledger. Ledger BOLOS. https://www.ledger.fr/2016/03/02/introducing-
bolos-blockchain-open-ledger-operating-system/, 2017.

35. Lara Letaw, Joe Pletcher, and Kevin Butler. Host Identification via USB
Fingerprinting. In Systematic Approaches to Digital Forensic Engineering
(SADFE), 2011 IEEE Sixth International Workshop on, pages 1–9. IEEE, 2011.

36. Amit Levy, Bradford Campbell, Branden Ghena, Pat Pannuto, Prabal Dutta, and
Philip Levis. The case for writing a kernel in Rust. In Proceedings of the 8th
Asia-Pacific Workshop on Systems, page 1. ACM, 2017.

37. E. L. Loe, H. C. Hsiao, T. H. J. Kim, S. C. Lee, and S. M. Cheng. SandUSB: An
installation-free sandbox for USB peripherals. In 2016 IEEE 3rd World Forum on
Internet of Things (WF-IoT), pages 621–626, Dec 2016.

38. Arnauld Michelizza. Programmation d’un noyau sécurisé en Ada. SSTIC, 2013.



180 WooKey

39. Nir Nissim, Ran Yahalom, and Yuval Elovici. USB-based attacks. Computers &
Security, 70:675–688, 2017.

40. Nitrokey. How Nitrokey’s Firmware is Protected Against BadUSB and NSA.
https://www.nitrokey.com/news/2015/how-nitrokeys-firmware-protected-
against-badusb-and-nsa.

41. Karsten Nohl and Jakob Lell. BadUSB - On accessories that turn evil, 2014.
https://srlabs.de/wp-content/uploads/2014/07/SRLabs-BadUSB-BlackHat-
v1.pdf.

42. Johannes Obermaier and Stefan Tatschner. Shedding too much Light on a
Microcontroller’s Firmware Protection. In 11th USENIX Workshop on Offensive
Technologies (WOOT 17), Vancouver, BC, 2017. USENIX Association.

43. Oracle. Java Card 3 Platform Runtime Environment Specification, Classic Edition
Version 3.0.5, 2015.

44. Jean-Michel Picod, Rémi Audebert, Sven Blumenstein, and Elie Bursztein.
Attacking encrypted USB keys the hard(ware) way. Black Hat USA, 2017.

45. Benjamin C Pierce. Types and programming languages, 2002.
46. Gerald J Popek, Mark Kampe, Charles S Kline, Allen Stoughton, Michael Urban,

and Evelyn J Walton. UCLA secure Unix. In afips, page 355. IEEE, 1979.
47. Richard F. Rashid and George G. Robertson. Accent: A communication oriented

network operating system kernel. SIGOPS, December 1981.
48. Matthieu Rivain, Emmanuel Prouff, and Julien Doget. Higher-Order Masking and

Shuffling for Software Implementations of Block Ciphers. In Clavier and Gaj [21],
pages 171–188.

49. José F Ruiz. Going real-time with Ada 2012 and GNAT. ACM SIGAda Ada
Letters, 33(1):45–52, 2013.

50. Mohamed Sabt and Jacques Traoré. Cryptanalysis of GlobalPlatform Secure
Channel Protocols. Cryptology ePrint Archive, Report 2017/032, 2017.
https://eprint.iacr.org/2017/032.

51. Alireza Sahami Shirazi, Peyman Moghadam, Hamed Ketabdar, and Albrecht
Schmidt. Assessing the vulnerability of magnetic gestural authentication to
video-based shoulder surfing attacks. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 2045–2048. ACM, 2012.

52. Bruce Schneier, Kathleen Seidel, and Saranya Vijayakumar. A worldwide survey of
encryption products. 2016.

53. Dave Jing Tian, Adam Bates, and Kevin Butler. Defending Against Malicious
USB Firmware with GoodUSB. In Proceedings of the 31st Annual Computer
Security Applications Conference, ACSAC 2015, pages 261–270, New York, NY,
USA, 2015. ACM.

54. Dave Jing Tian, Nolen Scaife, Adam Bates, Kevin Butler, and Patrick Traynor.
Making USB great again with USBFILTER. In USENIX Security Symposium,
2016.

55. W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack.
Hydra: The kernel of a multiprocessor operating system. ACM, June 1974.

56. Zeitcontrol. BasicCard Developer Manual V8.15, 2013.


