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Abstract. Among the hardware security evaluation toolkits that are
publicly available, the ChipWhisperer has become very popular. This
framework based on low-cost open hardware platform and open source
software, allows performing Side-Channel Analysis (SCA) like Simple
Power Analysis (SPA), Differential Power Analysis (DPA) or Correla-
tion Power Analysis (CPA) on Integrated Circuits (ICs). Unfortunately,
previous attempts to integrate a smart card reader compatible with the
ChipWhisperer are limited. In order to allow the community to study
such targets which are ubiquitous in the world of security, but have a
specific form factor, we present through this work LEIA, an open source
and open hardware victim board for the ChipWhisperer allowing the
evaluation of targets in the smart card’s format.

1 Introduction

The ChipWhisperer [13,36] is a project with the ambition of providing
an affordable open source toolchain for side-channel power analysis and
glitching attacks. Many academic papers present it as a reference evaluation
platform [14, 32, 35]. ChipWhisperer is intended to be an improvement
over older boards like for instance, SASEBO [23] and SAKURA [22]. Due
to its relatively low price (from 250 $ to 3,800 $ depending of the kit)
and good capture performances, it has become very popular in the recent
years. Moreover, this framework is an open hardware platform and comes
with an open source SDK.

The ChipWhisperer is very versatile: out of the box, it offers various
targets (MCUs or CPUs) to put under scrutiny. However, no smart cards
are currently publicly available as targets, at least with a plug-and-play
integration. Even though some attempts have been made to integrate a
preliminary support in old versions of the ChipWhisperer, they failed to
make it to the current stable and upstream version. In order to allow
the community to easily study such ubiquitous (but with a specific form
factor) targets, we present the design of LEIA, a CW308 UFO daughter
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board for smart card security assessment that is compatible with the
ChipWhisperer.

This paper is organized as follows. First, the ChipWhisperer ecosystem
is depicted in section 2. Then, the specificities of smart cards and the
ISO7816 standards are summarized in section 3. The challenges faced
during the hardware design of LEIA are discussed in section 4. The software
architecture and the additional functionalities added to the ChipWhisperer
SDK are detailed in section 5. Finally, the ASCAD [1,41] use case (an open
side-channel attacks database using an open source smart card platform)
is introduced in section 6 as a testing and validation vehicle.

2 The ChipWhisperer framework

The ChipWhisperer project has both academic foundations [37] and
industrial ambitions with efficient manufacturing process. It aims at tar-
geting various actors of hardware security:

— The students, by providing an affordable framework to learn the
basics of side-channel analysis (SCA) and fault attacks (FA). It
helps teachers offer practical exercises built on a complete ecosystem
(all the hardware and software are provided and plug-and-play).

— The researchers, by helping them to reproduce experiments made
by others, and by making their experiments reproducible by other
researchers too.

— The embedded systems makers, by offering them a fast prototyping
development platform.

By allowing to play most of the hardware security tests on Integrated
Circuits (IC), it gives the end user an easy way to apply the recent research
publications and validate the published results. This evaluation step is
essential in order to improve the security of embedded systems.

Among the proposed set of features, the ChipWhisperer allows users
to measure the power consumption of ICs [33]. The captured traces can be
then used to realize various power analyses such as Simple Power Analysis
(SPA) [30], Differential Power Analysis (DPA) [30] or even Correlation
Power Analysis (CPA) [18].

It can also be used in order to inject faults by generating voltage
glitches [15–17,19,20,28,29].

The project is composed of two parts, detailed in the next sections :

— The hardware platform: a control board and the targets.
— The software framework, which consists of all the scripts allowing

to control the hardware and run the SCA and FA algorithms.
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2.1 The ChipWhisperer hardware

Figure 1 shows examples of hardware kits as they are sold. They are
detailed in the sequel.
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Fig. 1. ChipWhisperer kit composition.

Control and measurement device. The ChipWhisperer-Lite (figure
1.3) is a multipurpose board, providing a power analysis capture instru-
ment, and a power supply glitching module. It is also supplied with an
embedded target (XMEGA microcontroller). Both are on the same PCB
but can easily be splitted in two different parts. Then, the user can connect
the control part of the PCB to analyse another target. The board consists
in an FPGA for generating signals (clock, data, trigger), a micro USB
port enabling the configuration of the board with a computer, a 20-pin
connector which allows to connect other target that the one provided (see
the Targets paragraph).

The ChipWhisperer-Pro (figure 1.3) is an upgraded version of the
ChipWhisperer-Lite. It includes a larger sample buffer, streaming-mode
captures and a touchscreen interface, all of that in a fancy box. These
features make it a device targetting laboratory use.

Targets. Both controller boards can be connected to what ChipWhisperer
calls a target. The target is the component being studied. It can be a
microcontroller, an FPGA, or any other IC. The connection between the
controller board and the target is normalized and is a 20 pins connector
simply named 20-Pin ChipWhisperer Connector.
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NewAE, the company that sells the ChipWhisperer, provides vari-
ous targets on its website, XMEGA (CW303, the one shipped with the
ChipWhisperer-Lite), ATMEGA328P (CW304), FPGA (CW305), etc.

CW308 UFO board. The CW308 UFO board can be seen as a generic
backplane allowing to evaluate multiple targets. It does not embed any
FPGA neither is supposed to perform any computations on itself. It offers
multiple power supplies (From 1.2V to 5V), drives a clock signal, provides
an easy access to JTAG signals (if they are routed through the target
board) and a SMA connector to measure with the ChipWhisperer (or an
oscilloscope) the power consumption. As every ChipWhisperer Target, it
also has the 20-Pin ChipWhisperer Connector.

The CW308 UFO board expects its daughter boards, called victim
boards, to be plugged in a dedicated connector, the U connector, that can
provide many things to the target:

Power supply: the board can deliver multiple power supply levels; 1.2 V,
1.8 V, 3.3 V and 5 V. Each can be selectively activated by positioning
the corresponding jumper. A power filter functionality is available on the
board, to improve power supply quality.

JTAG: As many victim boards are microcontrollers that can be repro-
grammed, a JTAG connector is available on the CW308 UFO board and
afferent pins are reserved on the connector.

GPIO: The board exposes different GPIO of the victim. 10 GPIOs
are available through some pin headers and three others are connected to
different LEDs.

Icc measurement: One can find on the board a current sensing re-
sistance connected to a SMA. It can be used with the ChipWhisperer
Capture module or an oscilloscope to measure the power consumption of
the victim.

Clock generation: The board contains a crystal oscillator driver. This
allows to use a standard crystal to drive either the victim board or the
connected ChipWhisperer. Furthermore, this also allows the use of the
CW308 stand-alone, as it is possible to have almost any frequency by
connecting the appropriate crystal onto the board.

2.2 ChipWhisperer software stack

The software stack of ChipWhisperer is split into two main parts: the
firmware of the victims, which are mainly C or C++ embedded code, and
the scripts that run on the PC and drive the measurements (these are
mainly Python scripts).
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ChipWhisperer victims’s firmwares. They can be found on the
github repository of ChipWhisperer. Firmwares are split into several
parts: the Hardware Abstraction Layers (HALs) [4], which are libraries
that provide a generic interface above specific hardware and the actual
algorithm under scrutiny.

Using the HAL concept, the same code can run on multiple targets
without much effort from the developer side.

The HAL abstraction layers for the CW308 UFO are located in the
chipwhisperer/hardware/victims/firmware/hal and the actual code
in the chipwhisperer/hardware/victims/firmware directory.

As presented in Section 4, LEIA is designed as a CW308 daugther
board. All development including the LEIA firmware code will be pushed
to the official ChipWhisperer repository.

ChipWhisperer scripting SDK. The SDK on the PC host side has
probably helped to democratize the use of ChipWhisperer: it offers a
simple Python library that can be used to script signal acquisition or
glitch attacks. This SDK allows to:

— drive the control module (ChipWhisperer-Lite and Pro);
— communicate with the targets (most often by using an UART and

a simple dedicated protocol named “SimpleSerial”);
— realize simple attacks like SPA, DPA or DFA.
Script examples can be found on a dedicated part of the repository [3].

2.3 ChipWhisperer attempts to support smart cards

There have been previous attempts to support smart card targets with
the ChipWhisperer. However, such attempts are either obsolete and not
compatible with upstream ChipWhisperer, or are limited in some ways.
We explain hereafter such limitations.

CW301. the CW301 Multi-Target board [7] is an old version of the
ChipWhisperer board that is obsolete since 2016. It offered an embedded
smart card connector present on the board, whose I/O is driven by an
FPGA [2] and the clock is produced by a fixed oscillator at 3.579 MHz.
This setup is not very flexible: the clock is not configurable, and the VHDL
stack is inherently not flexible (it only supports a small subset of smart
cards). For all these reasons, over and above its deprecation, the CW301
solution seems to be out of scope when considering a modern alternative
for the ChipWhisperer project.
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CWLite (CW1173). the more recent ChipWhisperer-Lite does not
embed a physical smart card connector, but pins are present to handle
the communication bus on headers J6 and J7 [6]. J6 is connected to the
FPGA and uses the VHDL smart card stack described with CW301 [2]: it
inherits from its multiple limitations. J7 is connected to the Atmel SAM3U
MCU of the board (the one handling the USB communication with the
host) : it uses a more flexible and versatile software stack [5]. Although,
this last alternative appears to be a good building block for a smart
card SCA test bench, we stress out that it suffers from some limitations.
First of all, on the hardware part: measuring power consumption can be
tricky, as explained in section 4. Isolating the consumption of the smart
card chip from the one of the MCU driving the communication with it is
challenging (but necessary when clean and non-noisy measurements are
needed). Additionally, the SAM3U software driver [5] suffers from some
limitations, and does not cover all the quirks of the ISO standard covering
smart cards.

For all these reasons and limitations, we have decided to develop our
own solution LEIA: a victim board compatible with the ChipWhisperer
ecosystem. In order to have as much control as possible on the software
and hardware aspects of the board, we have decided to build this solution
from scratch with the ChipWhisperer compatibility constraints as input
hypothesis.

3 Smart card and ISO7816

Smart card is a generic term usually used for embedded small electronic
devices with a standardized form factor. The embedded ICs (usually secure
ICs) in such devices are very compact, which allows embedding them in a
plastic shell with reasonable dimensions. The rationale is to have a small
yet secure electronic device in users’ wallets and pockets.

This compact and portable form allows very versatile usages: banking
for payments, authentication and identification (ID cards), telecommuni-
cations (SIM cards), healthcare (French “Vitale” cards), etc.

They usually exist in two flavors: contact and contactless cards. Contact
cards use physical connectors to communicate with a so-called reader,
exchanging data through a physical layer detailed in the sequel. The
ISO7816 set of standards provides all the necessary specifications.

Contactless smart cards communicate with a reader using NFC (Near
Field Communication), meaning an over the air (but at a small distance)
communication channel. Although in their logical layers, such cards share
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similarities with contact cards, the physical layer (described in ISO14443
standards [9]) is very different. The current article and the LEIA framework
only focuses on contact cards.

3.1 Smart cards: electrical specifications (ISO7816-1/2)

The IC embedded in the card must ensure tight constraints: regarding
its size, of course, but also regarding power consumption and Input/Output
characteristics.

In order to standardize such constraints, the ISO/IEC standardization
body has developed a series of international standards around contact
smart cards. ISO7816-1 [24] presents the physical characteristics, while
ISO7816-2 [25] addresses the dimensions and location of the contacts.
Even though they have been amended, first versions of the documents
date back to the end of the eighties decade, which proves how much this
technology is time-tested.

The electrical constraints of the smart cards capture the need to have
low energy systems: the chip communicates with the “outside world” using
at most eight pins as presented in figure 2. These metallic pins are exposed
over the plastic with quite large connectors, and are connected to the
underlying metallic layer with the bonding wires rounding the internal
chip. Here is a brief description of the pins as per ISO7816-2 specifications:

— VCC/Pin C1: this pin is an input of the chip and handles the
power line feeding the IC. The ISO7816 standard provides three
fixed voltage levels: 1.8 V (class C), 3.3 V (class B) and 5 V (class
A). Legacy smart cards are usually supplied in 5 V, and newer
chips tend to accept the three voltages. Specifically, for critical
power consumption reasons, SIM cards are designed to be powered
by at 1.8 V power supply.

— GND/Pin C5: this pin is an input connected to the ground.
— RST/Pin C2: this pin is an input handling the reset signal. Even

though such a signal can be directly connected to the hardware
reset signal of the embedded chip, modern ICs actually perform a
polling of the signal and implement a software reset.

— CLK/Pin C3: this pin is an input handling the ISO7816 clock.
More information is provided in the next sections about the specific
properties of the clock. As for the RST signal, CLK used to directly
clock the IC on legacy chips without an internal clock, but this is
no more the case: this signal is sampled and handled in software
by CPUs running at a higher frequency.



8 LEIA

— I/O/Pin C7: this pin is an input/output line for a bidirectional
communication between a host (the smart card reader) and the
smart card itself. The communication is based on a half-duplex
protocol with byte-based transmission. The I/O line is in a high
state when not driven (i.e. pulled up). We provide more details on
this in the section dedicated to ISO7816-3.

— VPP/Pin C6: this pin is a special bit, since it can both be used for
standard or for proprietary nonstandard usages. Therefore, it can
be both input and/or output. Usually, such a pin has been used for
chip erasure and reprogramming: applying a voltage on C6 would
allow reprogramming the embedded EEPROM, acting as a charge
pump.

— Pins C4 and C8: these pins are marked RFU for future use.

Fig. 2. ISO7816 pins.

3.2 Smart cards: ISO7816 protocol (ISO7816-3/4)

The ISO7816-3 [26] specification defines the communication layer (both
physical and logical) over the connectors described in section 3.1. It can
be seen as the OSI physical and link layers). The ISO7816-4 [27] standard
is built upon it to deal with the application level (OSI application layer).

The current section briefly presents the key concepts necessary to
understand the challenges of building an ISO7816 compatible software
stack.

The standard defines two communicating entities: the “card” (i.e., the
smart card), and the “interface device” (i.e., the reader). In the sequel, we
use these terms interchangeably. The protocol is asymmetrical, the reader
is master whereas the card is slave. This means that all communications
must be initiated by the reader.

ISO7816-4 APDU and RESP. At the logical level, the communication
unit that the reader can send is called an APDU (for Application Protocol
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Data Unit). Each APDU sent by the reader expects a response APDU,
that we denote RESP, from the card. The ISO7816-4 standard provides
the exact format of APDU and RESP (see figure 3):

— Command APDU, or APDU: it is composed of a mandatory header
of four bytes CLA, INS, P1, P2, and a conditional body made of an
optional Lc field, optional Data payload, and an optional Le field.

— Response APDU, or RESP: it is composed of a conditional body
of Data, followed by two mandatory status bytes SW1 and SW2.

Lc encodes the number of bytes sent to the card (i.e. the size of Data

payload). Le encodes the expected number of bytes to get back from the
card, with 0 encoding 256 bytes (maximum size).

Fig. 3. APDU and RESP structures.

The ISO7816 standard distinguishes four types of APDU/RESP cases:

— Case 1 APDU: the command does not send data and does not
expect data back from the card. Lc and Le are then absent.

— Case 2 APDU: the command does not send data, but expects data
back from the card. Lc is absent, Le is present and encodes the
data size, data payload is present in RESP.

— Case 3 APDU: the command sends data, but does not expect data
back from the card. Lc is present and encodes data sent size, Le is
absent.

— Case 4 APDU: the command sends data and expects data back
from the card. Lc and Le are both present.

The formats of APDU presented here are so-called short ones. The
data payloads are at most 255 bytes for the APDU, and 256 bytes for the
RESP. A standard amendment has introduced extended APDUs where
the Data payload is extended to 65,535 bytes for the APDU and 65,536
bytes for the RESP. In this case, Lc and Le are encoded on 0 to 3 bytes.

As already stated, APDUs and RESPs are logical views that the
application level sends and receives on the line. Such commands and
responses must be sent over a physical line using a dedicated transmission
protocol. In this article, we focus on the ISO7816-3 way of dealing with
the physical and link layers, as it is the most common way for contact
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smart cards. Other ways (out of scope here) to handle this layer are NFC
for contactless cards, USB bus provided by the USB specifications, etc.

The data packets transported by the transmission protocol to send an
APDU are called TPDU for Transmission Protocol Data Units.

ISO7816-3: driving the I/O line. As already stated, the I/O line serves
as a half-duplex channel where both the reader and the card send/receive
data. The line is naturally driven to a high state (denoted H), and the
sender must pull it down explicitly to a low state (denoted L). The receiver
then samples this line state during a fixed number of clock cycles, and
deduces a value.

The communication is character oriented, meaning that the character
is the atomic element exchanged between the two parties.

Exchanging one character is performed in 10 “moments” as shown on
figure 4, encapsulating one byte (8 bits) and one parity bit of actual data.

Fig. 4. The I/O line and characters transmission.

A character transmission is composed of four main phases:

1. A start bit in moment 1. The start bit is detected (by the receiver)
when the line is forced to a low state during one moment (by the
sender).
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2. The eight bits of the data byte are sent during moments 2 to 9
(the interpretation of these bits depending on the state is discussed
later in this section).

3. The parity bit of the data byte is sent during moment 10.

4. Finally, the sender releases the I/O line to the high level, and waits
for the receiver to signal an error if necessary (usually in case of
reception error detected with a bad parity bit). The “pause” time
should be at least one moment.

In case of a signaled error, the sender is expected to send the same
byte again. The way the bits are interpreted when received depends on
a convention set by the card itself during the ATR (more on this later).
Two conventions exist for the bit order and the polarity:

— Direct convention: a high state encodes a 1 bit, a low state encodes
a 0 bit, the bits in the data byte are LSB (Least Significant Bit)
first. For instance, the sequence from moments 2 to 10 HHLH HHLL

H encodes the value 0x3B with a parity bit set to 1.
— Inverse convention: a high state encodes a 0 bit, a low state encodes

a 1 bit, the bits in the data byte are MSB (Most Significant Bit)
first. For instance, the sequence from moments 2 to 10 HHLL LLLL

H encodes the value 0x3F with a parity bit set to 0.

We have so far talked about moments, without providing any time-
related definition. The ISO7816-3 standard provides a specific definition
named the ETU (Elementary Time Unit). Hence, one moment is exactly
one ETU. In order to compute the ETU, the standard uses three physical
quantities:

— f : the clock signal CLK frequency.
— F : the clock rate conversion integer.
— D: the baud rate adjustment integer.

At any time, the ETU is computed with the formula 1 ETU = F
D

× 1

f

in seconds, or simply put one ETU is F
D

clock cycles of CLK. An interesting
thing to notice here is that the clock frequency could be variable, the only
value meaningful for the protocol being the ETU sampling timings.

The ATR (Answer To Reset). The possible f , F and D values fixing
the ETU are described in the standard and are set up, and optionally
negotiated, during a step called the Answer To Reset, or ATR. Other
important timing-related values, such as guard times between characters,
waiting times to be able to detect a timeout condition, and so on, are also
fixed during this phase.
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The ATR is happening just after a reset performed through the RST

pin. Since no negotiation between the reader and the card is performed
yet, ISO7816-3 fixes standard values to be used: F = 372 and D = 1,
meaning a default ETU of 372 clock cycles. Typical guard times must also
be respected by the sender and the receiver.

The ATR consists of a bunch of at most 33 characters sent by the card
to the reader, and its variable length depends on the options the card
proposes to the reader. The reader has to dynamically parse the bytes
received during the ATR to decide if more bytes follow or not.

The first byte of the ATR is TS, it can be either 0x3F or 0x3B and
encodes the convention (inverse or direct). Then, the T0 (the format
character) is conveyed; it encodes the presence or not of following optional
interface characters. These interface characters are the ones encoding
possible negotiable elements between the reader and the card (more on
this in the PPS paragraph). After the interface characters the so-called
historical characters (between 0 and 15 bytes) are optionally sent. Finally,
a “check byte” is optionally sent as a checksum of the whole ATR.

The PPS (Protocol and Parameters Selection). After the ATR
phase where the card is the sender and the reader the receiver, the reader
is left the opportunity to potentially negotiate various elements with the
card. Such a negotiation, called the PPS (for Protocol and Parameters
Selection), mainly allows to negotiate the protocol (T=0, T=1 and so
on), the baudrate and maximal frequency (F , D and fmax parameters,
only a fixed and limited number of {F, D, fmax} triplets are allowed by
the standard), various timings (guard times, timeouts, etc.) as well as
parameters that are specific to the chosen protocol.

Whenever the ATR and the PPS steps are over with both parties
agreeing on the exchanged parameters, the “nominal” phase begins and
the reader can send to the card APDU commands while expecting RESP
responses back.

The TPDUs are the ways APDUs and RESPs are encoded over the
physical I/O line, i.e., what are the bytes exchanged to encode such
APDUs and RESPs. The ATR and PPS encoding allows to support up
to 16 transmission protocols T=0 to T=15, but only two of them (T=0
and T=1) are standardized in ISO7816-3. T=2 is in the process of being
standardized by ISO, but is not yet out (it is based on T=1 with a full-
duplex flavor). Other values are either reserved for future use by the ISO
standard, or dedicated to proprietary/national usage on specific cards 1.

1. For instance, T=14 is used by Deutsche Telekom for the card-phone system.
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The T=0 protocol. The T=0 transmission protocol is the original one
specified by ISO7816-3 in the eighties, which explains why T=0 is implicit
during the ATR phase.

It is half-duplex and byte oriented, meaning that the smallest unit
exchanged between the reader and the card is a byte. In order to send an
APDU on the line, the protocol splits it in two parts as show in figure 5:

— The header: it is composer of five bytes. Four byte are the CLA, INS,
P1 and P2 from the APDU. The fifth byte, named P3, is context
dependent and encodes either the number of outgoing bytes Lc

from the reader to the card, or the expected data back from the
card in the response Le.

— The data part: this represents the actual data payload of size Lc.

Sending an APDU is performed in at least three steps: first sending
the header, getting an acknowledgment from the card (one byte), and then
sending the rest of the data. When handling the response, the card sends
various so-called procedure bytes (the acknowledgment byte being one of
them). Using such interleaved procedure bytes allows to handle various
cases such as time extensions requests (when the card is performing an
long computation and wants to extend the ISO7816 standard timeouts).

At its basic level, T=0 only handles Cases 1, 2 and 3 APDUs since P3

encodes either incoming or outgoing data size. The way Case 4 APDUs
are encoded actually involves the application layer described in ISO7816-4
using specific application level commands GET_RESPONSE. Such an OSI
layers mixing, mainly inherited from the byte oriented protocol limitation,
induces many restrictions: T=0 is hardly robust against errors, and does
not have any “session” notion. This is why the standard has introduced a
newer T=1 transmission protocol during the nineties.

The T=1 protocol. It is half-duplex and block oriented, meaning that
the smallest unit exchanged between the reader and the card is a block,
conveying both payload data and protocol control messages.

All the exchanged blocks in this protocol have a common structure
presented in figure 6:

— A prologue field: 1 byte NAD (node address in order to support
multiple slaves/cards), 1 byte PCB for the block type (more on this
below), 1 byte LEN encoding the length of the embedded data (the
ISO7816-3 specifies lengths ≤ 254 bytes).

— An information field: it contains the encapsulated APDU data.
— An epilogue field: it contains a checksum on optionally one or two

bytes (the checksum type is fixed by the ATR and PPS).
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Fig. 5. T=0 header and data.

Fig. 6. T=1 basic block structure.

Fig. 7. T=1 block chaining.
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There exist three types of blocks in T=1: I-Blocks, R-Blocks and
S-Blocks. I-Blocks are transporting data information, i.e. the APDU
payload. R-Blocks are control messages dedicated to positive or negative
acknowledgments (for instance in case of bad checksum in the epilogue
field). S-Blocks are control messages related to the protocol itself such as
resynchronization, wait time extensions, etc. As we can see, error detection
and synchronization have been part of the design of the protocol, which
makes it much more reliable than T=0.

When sending APDUs or receiving RESPs that exceed 254 bytes, they
must be split across multiple blocks. The T=1 protocol has a builtin feature
called chaining; it uses metadata in the PCB byte to allow it. Figure 7
provides an example of such chaining: the reader splits an APDU in two
I-Blocks. The first I-Block is sent, the card responds with an R-Block for
positive acknowledgment, and then the reader sends the second I-Block
to complete the transfer. Finally, the card sends its RESP in an I-Block.

3.3 Smart cards: ISO7816-4 and above

As we have already explained, ISO7816-4 handles the application layer
of the protocol. However, because the OSI layer separation is not clear
for T=0, ISO7816-4 and ISO7816-3 are intermixed. As discussed in the
software section of the document, this means that in order to implement a
proper ISO7816 stack to communicate with various smart cards, ISO7816-3
and parts of ISO7816-4 must be implemented. Specifically, only the parts
related to APDUs (Case 1 to 4) of ISO7816-4 are of interest.

This standard also specifies a file system and binary storage of objects
on the card as well as access rights. Secure messaging is also a part of the
specification. However, these elements are not necessary to implement a
core ISO7816 driver whose sole purpose is to send and receive APDUs.
Furthermore, they can be implemented in a much easier fashion host PC
side by formatting the proper APDUs and sending them to the reader
that handles the low-level communication. By extension, this is also the
case for (most of) other ISO7816-x standards above 4 since they take place
in the application layer.

4 LEIA hardware design

In order to allow the community to compare results of attacks on
smart card platforms, LEIA has been designed to be compatible with the
CW308 UFO board. The CW308 UFO board is a generic main board
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for attacking all sorts of embedded targets. It can be used as a stand-
alone bench (with an external oscilloscope for the measures) or with the
ChipWhisperer-Capture hardware provided with the ecosystem. Moreover,
it is annouced by NewAE 2 as the new standard form factor for the targets
supported by this device [8].

4.1 CW308 UFO target board

The CW308 UFO daughter boards (commonly named Targets, or
Victims) are usually designed for attacking a target with a single chip.
However the LEIA board differs from this classical model: it embeds
both an interface to the ISO7816 standard which is used to communicate
with the target, and the target itself. The LEIA board is presented on
figure 8. For simplicity and clarity, we use the term Reader to designate
the ISO7816 interface smart card reader and the tested smart card is
denoted the Target of Evaluation (TOE).

The ISO7816 protocol is complex, as shown in section 3, and the above
architecture allows abstracting this protocol out of the controlling logic:
the controlling hardware (would it be the ChipWhisperer or not) does
not drive directly the TOE but communicates with it through the Reader
which implements the ISO7816 stack and hides its complexity.

Fig. 8. Comparison between standard targets and the LEIA target.

The desired compatibility with the CW308 UFO board comes at the
expense of some restrictions regarding the architecture, functionalities,
communication protocol and hardware design:

2. The company branding ChipWhisperer.
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— The first limitation is that the form factor of all new targets must
fit with the CW308 UFO connector. As a result the geometry and
the distribution of the signal and power lines are fixed. Notice that
the ChipWhisperer device has been designed for providing both
powering and measurement and so the connector imposes both
power and I/O line distribution. This is all the more problematic
as, in order to reduce crosstalk 3 between signals 4, both the TOE
and the Reader signals shall be well distributed across the board
and the respective power lines shall have to be properly split.

— Voltage selection provided by the CW308 UFO board is useful if
one wants to study different targets requiring different power supply
levels. The good point is that the CW308 UFO board provides
the 1.8 V (class C), 3.3 V (class B) and 5 V (class C) levels which
permit to work with all the standard smart cards.
Nevertheless, the nowadays design can be improved by providing
a galvanic isolation between the TOE and the capture hardware
(the ChipWhisperer-Capture or an external oscilloscope) on one
side, and the control workstation on the other side. This will help
to filter out unwanted signals (eg. ground loop 5) and will limit the
probability of a hardware breakdown.

— Concerning the JTAG port provided by the CW308 UFO board,
within the context of smart card, it is left unconnected as smart
cards do not have JTAG compatibility 6.

— The same reasoning can be applied to the GPIO. As smart cards
usually do not have any GPIO beyond the ISO7816 pins, those
available upon the CW308 are not used.

— Due to LEIA complexity, and in order to provide the best measure-
ment quality, we choose to embed on LEIA the shunt resistor for
power consumption measurement. More details are provided in the
next sections.

— Given the fact that the clock used with smart card can change
over the time, we can not use the one provided by the board. As
detailed in the next sections, the STM32 of LEIA’s reader uses its

3. Crosstalk is any phenomenon by which a signal transmitted on one channel creates
an undesired effect in another channel.

4. To provide a clean acquisition chain and reduce post capture cleaning operation.
5. A ground loop occurs when two points of a circuit both intended to be at ground

reference potential have a different potential.
6. The SWD protocole is used in the context of LEIA to reprogram the smart card

Reader firmware, but through a dedicated connector for the sake of galvanic isolation
between the capture and the control domains.
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own internal clock, and generates the ISO7816 clock used by the
smart card.

— Regarding the communication between the ChipWhisperer and
the TOE, the SDK imposes to drive the daughter board through
the UART interface using a specific protocol. This is why we have
added to LEIA a dedicated MCU as a proxy translating commands
from the UART to ISO7816 packets to and from the TOE.

Fig. 9. Top view of smart reader target: Power Domains.

4.2 Hardware specifications

The functional specifications lead to natural design choices and/or
requirements when it comes to the hardware platform.

The microcontroller at the heart of the design must be able to commu-
nicate with the TOE. The communication must be based on the ISO7816
protocol either using an internal hardware unit or using a software im-
plementation driving GPIOs (so-called bit banging). It must have an
UART interface available in order to communicate with the ChipWhis-
perer measurement device. Since the platform design will be open sourced,
all components and their data-sheets must be publicly available.

We detail in the next sections the rationale behind our specific choices
for the hardware components.
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4.3 LEIA microcontroller choice

The Reader interface is designed around a microcontroller of the
STM32F4xx family: the STM32F439. These Systems On Chip (SoC) are
based on 32-bit ARM Cortex-M cores: their main advantage is to embed
a plethora of versatile hardware modules in a compact form factor.

Using a microcontroller with an embedded firmware appeared as the
optimal choice to implement the ISO7816 specification with respect to
the flexibility, possible reuse, and the convenience for the community to
modify/improve the software stack. This is to be compared with using
a Field-Programmable Gate Array (FPGA) whose disadvantage is less
flexibility in software development and contribution.

The STM32F439 is able to run up to 196 MHz. It has a built-in USART
mode for accelerating ISO7816 (more on this in the software section 5),
UART and many other communication modules. It also features a crypto-
graphic coprocessor (the CRYP engine) as well as a TRNG (True Random
Number Generator) that might prove useful for testing. The high fre-
quency of the embedded Cortex-M4 and its numerous provided I/O lines
guarantee that it will not hinder further evolution both on the software
and hardware sides; and that the platform is future proof for potential ex-
tensions and new revisions. Moreover, it also has an integrated Full Speed
USB PHY (12 Mb/s capable) and can achieve High Speed (480 Mb/s)
using an external PHY. This last feature is not necessary in order to
interface the device with the ChipWhisperer but can be useful for the
development phase, for a standalone mode of the Reader, as well as for
future improvements.

4.4 Designing a measurement device

Designing a measurement device implies preserving signal integrity,
which is why the loss associated with PCB transmission lines constitutes
an important topic [21,31,38,40].

Low frequency signals are almost unaffected with parasitic responses,
unless the transmission medium is particularly long. However, many
parasitic effects become visible at high frequency, and even short lines can
suffer from problems such as crosstalk, ground loop, etc. This seriously
hampers the response of the signal and damages its integrity. These
problems can be overcome by good design practices and by following
simple layout guidelines. Here are the PCB layout rules that have been
applied to the whole design:

— Current-carrying traces should be as thick and short as possible.
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— The board should have a low impedance ground.
— The TOE should have its own power circuit including ground

(GND) and power (VDD) plans.
— Sensitive signals should be shielded from noisy traces.

PCB layout. We designed the LEIA board on a classical 4-layer stack-
up: 2 signals layers, 1 ground plane (GND) and 1 power plan (VDD).
As both VDD and GND are planes, this will provide a very low ground
impedance path to the microcontroller and help to reduce Electromagnetic
Interference (EMI) [39, 43] that could interfere with the signal under
scrutiny. In addition, we flooded other layers with closely spaced vias (VIA
stitching) in order to keep the impedance low. PCB vias become inductive
at high frequencies and will therefore increase the ground impedance.
Having multiple closely spaced vias in a plane will reduce this effect as
the parasitic inductances are in parallel [43].

The PCB material is a classical FR-4 PCB laminate material which is
commonplace in the electronic industry. It is a cost effective solution for
most digital designs (allowing to convey signals up to 2.5 − 3 GHz range).
The maximum frequency of our design is far from the 2.5 GHz limit, even
if we update our design to use the USB High Speed interface (480 MB/s).
The full description of the PCB material and stack-up specification can
be found on OshPark 7 website [11].

Fig. 10. CW308 UFO connector specification.

The geometry of the PCB is mostly imposed by the CW308 UFO
motherboard since LEIA will be interfaced through the CW308 UFO

7. Oshpark is a company that produces bare printed circuit boards. Their commercial
model is focused on the needs of prototyping, hobby design, and light production.
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connector (see figure 10). Nevertheless, due to the galvanic separation
between the TOE (power and signals lines) and the Reader we have
diverged from the standard target rectangle board shape. The resulting
shape of our study is a T shaped PCB as presented on figure 9.

Isolated power domain and signal transmission. Power domain
isolation (uncorrelated VDD and GND for the TOE and the Reader) helps
to prevent EMI propagation between different parts of a circuit. It also
prevents ground loops. This is why the LEIA PCB is split into two parts
as shown on figure 9. However, isolating power domains adds complexity
to the transmission chain between the TOE and the Reader. In addition,
the load impedance of the signals and measurement lines is matched to
50 Ω [34,42]. This guarantees to transfer the maximum amount of power
and preserves the quality of the signals.

Signals isolation. In order to allow the communication between the
TOE and the Reader which have separate power domains, we use galvanic
isolation. We have based the isolation on an optocoupler-based setup.
By definition optocouplers are mono-directional. While this not an issue
for monodirectional lines (clock, reset, power, and ground), it becomes a
problem for the I/O line that is bidirectional (for half-duplex transmission).
The solution we adopted is to use two optocouplers arranged head-to-tail
and two multiplexers. The first optocoupler allows transition from the
Reader to the TOE and the second provides the reverse path. The signal
is then routed to one or to the other path using two multiplexers both
driven by the Reader. Of course, on the target side the multiplexer is not
driven directly by the STM32, but through a dedicated optocoupler. The
switching between the transition direction is handled by the Reader using
a GPIO. After each smartcard command the IO line is reconfigured. This
slows down the communication but it is not an issue since the Reader is
master and is the one imposing the clock frequency to the smart card.
Moreover, the ISO7816 fmax (20 Mhz) is only a maximum value that does
not prevent using lower values. Nonetheless, it is important to keep in mind
the ISO7816 fmax when choosing the optocouplers because most of them
are designed for lower communication frequencies. It is also interesting to
check the maximum propagation delay that will be added to the output
signal. With all these elements we decided to build our galvanic isolation
around ten FOD8001 produced by ON Semiconductor / Fairchild. These
optocouplers support up to 25 Mbit/s data rate and have a 40 ns maximum
propagation delay with a 6 ns maximum pulse width distortion.
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The UART signals (RX,TX) used for the communication between the
Reader and the controlling device (in other words the ChipWhisperer
capture) are also isolated using the FOD8001 optocouplers.

4.5 Smart card interface and signal acquisition

Side-channel attacks are divided into two phases: signal acquisition and
signal statistical analysis. The quality of the acquisition of side-channel
signal is essential to get proper results during the analysis phase. This is
why the acquisition circuitry must be designed with great care.

Over time, many different methods of acquisition and exploitation
of side-channel signals have been experimented. Among them are the
traditional power signals measurement, the electromagnetic signals (using
dedicated probes), time-based information (to exploit timing attacks), etc.
On the ChipWhisperer the leakage signal used for the side channel signals
capture is the power consumption in the form of current sensing on the
power lines.

Current sense. When sensing current, the designer can choose to place
the sensors (usually a serial resistor on the power line) either between the
supply voltage (VCC) and load, or between the load and ground. The
former is called high-side sensing whereas the latter is called low-side
sensing.

High-side sensing has the advantage that the load is directly connected
to the ground GND. In other words, there is no change on the load side
except a small power drop due to the current sensor on the VCC line.

Nevertheless the main disadvantage is that we have to use a differential
probe to measure the current. In low-side sensing the current is sensed in
the ground return path (GND) of the power line to the monitored load.
This has the advantage to produce a ground referenced measured signal
but the load is no more directly connected to GND.

In our design the TOE, the Reader and the ChipWhisperer can have
separate power domains, since we do not want the noise produced by
the power switching supply of ChipWhisperer to be visible in the mea-
surements. We choose to use a low-side measurement as it minimizes the
amount of hardware to support all the power domains.

Shunt Resistor. The shunt resistor is the element that is used in a
circuit to redirect currents around the measuring device. The addition of
a shunt resistor induces a voltage drop at the maximum current rating.
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This is why the value of the Shunt Resistor must be selected carefully.
Important parameters include the resistance tolerance, the power rating
and the temperature coefficient:

— The power rating indicates the amount of electrical power that
the resistor can dissipate at a given ambient temperature without
being damaged nor changing the resistor parameters.

— The temperature coefficient describes the relative change of resistor
value according to the temperature.

— Resistance tolerance is the accuracy the constructor guarantees on
the component’s characteristics.

ISO7816 Class A devices, which are the most power-consuming devices
among smart cards, can draw at most 160 mA for 400 ns and continuously
draw at most 60 mA. We want the voltage drop at maximum current to be
at most 50 mV for not disturbing nominal working of the TOE whatever
class tho TOE belongs to. Thus we decided to use a 0.1 Ω resistor with
a tolerance of 1%, a temperature coefficient of 300 PPM/C and a power
rating of 100 mW. It is a widespread, easily available component that
meets our needs. This resistor, as it induces a maximum voltage drop far
from the limit, allows us to get clean measurements.

Connectors and measurement. In order to provide high quality mea-
surements, we use SMA End Launch Connectors since they offer reliable
broadband performance from DC to 18 GHz with low reflection and
constant 50 Ω impedance.

5 LEIA software design

5.1 Implementation rationale

The project aims at providing an implementation of the ISO7816
protocol on the STM32 microcontroller.

As described in section 3, the implementation of the protocol is mainly
split in two complementary parts: the physical and transmission protocols
layers as described in ISO7816-3; and the APU layer which is specified
by some parts of the ISO7816-4 standard. Some specific cases mix those
layers. For instance, Case 4 APDUs require GET_RESPONSE commands,
and extended APDUs require more elaborate commands defined at the
application layer.

These elements are implemented in the STM32 driver, and the host
PC communicating with the custom smart card reader can implement all
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the application-level logic to forge APDUs and send them to the STM32
that acts as a proxy formatting the necessary TPDUs. Actually, such a
strategy is the same as the one adopted by industrial smart card readers
that offer a PC/SC [12] interface: many high-level features such as Secure
Messaging or on-card file system management are performed in a software
stack on the PC (on Linux, the PC/SC daemon, the OpenSC middleware
and so on forge APDUs that are sent to a reader through a standardized
driver over USB or a serial link).

5.2 STM32F439 ISO7816 hardware: the physical layer

The STM32F439 line of products has USART hardware modules with
a so-called smart card mode. The idea of such a feature is to provide to
the developers some help on the physical layer side. Since the I/O line
described in ISO7816-3 is very close to classical UART, using the same
hardware IP for both seems natural.

When using the USART in smart card mode, the characters trans-
mission on the I/O line is fully handled by the hardware. Hence, the
start and stop bits, the parity bit and so on, become transparent to the
software layer. Parity errors are signaled to the software stack by either
polling a status register or by dedicated interrupts. Similarly, the clock is
automatically generated by the hardware module once the proper baudrate
is set in the dedicated registers.

This means that on the software side, the driver will only have to
configure the clock frequency through its baudrate, and bytes send and
receive primitives are almost “free”. Of course, all the remaining logic and
automatons of the ISO7816 standard have to be implemented in software.

On a side note, it is also possible (and planned to be integrated to
LEIA) to implement both the clock generation and I/O line handling in
a bit banging fashion, using only GPIOs toggling. Thanks to the high
frequency of the STM32F439 MCU, sampling the I/O line in software is
not a problem (196 MHz allows sampling at around 40 MHz easily, which
is far more than enough for ISO7816). This approach has the advantage
of fully controlling the way bits are transferred on the line, as well as
dynamically adapt the clock frequency if necessary (which might prove
tedious to realize using the USART hardware module).
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5.3 STM32 driver features

In order to have a clean separation between the physical layer and the
ISO7816 logical automatons, we have decided to split the driver in two
parts:

— A low-level driver implementing the driver that sends characters on
the I/O line, handles the clock, and handles the time measurement
primitives (for timeouts and so on). This can be either USART
accelerated or bit banged.

— A high-level driver that implements ISO7816 ATR parsing, PPS
negotiation, and the transmission protocols T=0, T=1. This layer
is not adherent to the underlying hardware and is portable across
various architectures. It only expects a specified API with the
low-level driver.

ATR parsing as well as the T=0 and T=1 protocols are fully imple-
mented (although some parts of T=1 for handling S-Blocks still require
some work). An early version of the PPS protocol is also implemented.
There is also a support for extended APDUs both in T=0 and T=1. Due
to the open source aspect of the project, we hope that all these features
will improve with time using the community feedbacks and tests with new
and various smart cards.

5.4 Testing the stack

In order to validate our software stack in versatile conditions, we have
tried to test it with different smart cards of the industry. Around 30 models
from various manufacturers (NXP, Feitian, Gemalto, banking cards, etc.)
have been successfully tested. Both T=0 and T=1 are represented in this
panel, with some cards supporting both (and T=0 or T=1 is negotiated
with PPS) and some only supporting exclusively T=0 or T=1.

Of course, this does absolutely not mean that our software is bug-free,
and it is in constant improvement when testing new cards with new
behaviors (possibly on the edge of the standard). We hope that its open
source aspect will help this improvement with external contributions.

5.5 The compatibility with the ChipWhisperer SDK

The ChipWhisperer SDK comes with its own software ecosystem,
and beyond the hardware compatibility described in the hardware design
section 4, we must also ensure a software compatibility.
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When adding a new daughter board in the ChipWhisperer project, the
SDK must be adapted in order to integrate it both for the firmware and
for the SDK Python code. This way, the host and the daughter board can
exchange data according to a predefined protocol. This one is very specific
to LEIA and allows to use all the features previously listed and can be
easily extended. In this protocol, the host sends commands to the Reader
which then answers. A command is a simple list of bytes sent through the
UART line:

1. The host sends the byte command (1 byte).

2. The host sends the payload size (4 bytes).

3. The host sends the payload (up to 232 − 1 bytes).

4. The reader sends the response size (4 bytes).

5. The reader sends the response (up to 232 − 1 bytes).

The available commands are the following :

n With this command, the host can force different parameters to the
reader during PPS negotiation:

— The frequency of the ISO7816 clock.
— The ETU.
— The preferred protocol T=0 or T=1.

a This command does not take any argument, so the payload size
should be set to 0x0000. The reader answers with the ATR.

s This command sends an APDU to the reader. Due to the diversity of
APDU/TPDU formats given by the ISO7816 standard (T=0, T=1,
extended APDUs, etc.), we choose to encapsulate the APDU in a
format that can be clearly interpreted by the reader and correctly
formatted. This flexibility allows to run some ISO7816 compliance
tests.

t This command allows to set the trigger strategy. Currently, the
trigger handling in ChipWhisperer is quite straightforward: for the
AES analysis, the trigger is set high just before calling the algorithm
in the victim. For smart cards power consumption analysis things
are a bit more complicated since the target is a “black box”, and
different triggering strategies can be adopted. One would prefer
to trigger at the end of the command APDU, or at the beginning
of the RESP response from the card, or at any other interesting
timing of the protocol. We extend the public ChipWhisperer SDK
to handle such triggering strategies.
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This protocol is implemented in both the firmware of the MCU of
LEIA, and in the Python SDK of ChipWhisperer. Since the Firmware
SDK of ChipWhisperer includes the official STM32F4 HAL, it requires
almost no effort to integrate the protocol and the ISO7816 stack.

Concerning the Python SDK, its flexibility makes adding a new protocol
or a target quite easy. The main divergence with the upstream version
of the SDK is on the PC host side. Because our STM32 on the daughter
board is not the TOE target but only an APDU proxy, the ChipWhisperer
framework is updated in order to handle this specific feature. This is
possible since the SDK is open source and open to pull requests.

5.6 Standalone mode

The fact that the communication between the daughter board and the
host is performed through an UART serial line makes it possible to use
LEIA without the CW308. This specific use case can be useful when the
user wants to make some tests on the smart card and the way it handles
the ISO7816 protocol. The way the APDU commands are abstracted on
the STM32 makes it easy to send various commands (even invalid ones
according to the ISO7816 standard). Even if it is not the core contribution
of LEIA, it helps to check the compliance of ISO7816 slave stacks, and
allowed us to find small divergence and quirks with some cards.

6 Use case: ASCAD

In a purpose of testing LEIA, we reproduce the publicly available
database on the public 8-bit ATMega8515 target with a software AES
implementation described in [41]. Because of a lack of space in the article,
the results are detailed in the extended LEIA article [10].

7 Conclusion

This article presents LEIA, a low-cost, highly modular smart card
reader which is compatible with the ChipWhisperer-Pro (CW1200) and
the ChipWhisperer-Lite. The combination of the ChipWhisperer and LEIA
enables reliable Side-Channel Analysis (SCA) like Simple Power Analysis
(SPA), Differential Power Analysis (DPA) or Correlation Power Analysis
(CPA) on smart cards.

Beyond the mere signal acquisition platform, LEIA offers a custom
ISO7816 platform that could be used in an independent fashion (specifically
a versatile software stack).
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We aim at sharing LEIA with the research community with the hope
that it becomes an educational platform, and serves as a comparison basis
for open research on smart cards.

Finally, we must emphasize on the fact that countermeasures exist to
protect against side-channel analysis. Certified secure ICs are available,
and we encourage industries to base their development on these platforms.
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