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Abstract. iPhones are generally considered to be the most secure in
their category. Indeed, unlike the Android ecosystem, Apple has the
advantage of controlling both the hardware and the software part of its
phones. As a result, it is possible for them to directly take advantage of
the latest advances in hardware as soon as they are available.

This article aims at showing that the $2M bounty from Zerodium for a
remote iOS jailbreak might not be overrated.

1 Introduction

Since Apple released its first iPhone back in 2007, there has been a
growing interest in the ability to jailbreak it, allowing the user to gain
root access to his device and install custom applications, without relying
on the official Apple Store.

While first jailbreaks just consisted in flashing patched firmwares
through legitimate mechanisms, Apple quickly introduced protections
preventing this trick. Jailbreakers then started looking for security
vulnerabilities to gain code execution on the device. Most of these vulner-
abilities required plugging the iPhone on a computer via USB and booting
it in a special mode for the vulnerability to be exploited.

For the sake of simplicity, the website jailbreakme.com appeared
shortly after, allowing to jailbreak a vulnerable iPhone by simply visit-
ing a web page through the Safari browser. This website had multiple
versions exploiting different vulnerabilities, starting from a buffer over-
flow in libtiff for iPhone OS 1.x directly allowing a jailbreak, to
full exploit chains on iOS 4.x exploiting an initial bug to gain arbitrary
code execution, followed by another one that elevates privileges to root
(Star [19] and Saffron [18] jailbreaks). The latest jailbreak running
through Safari, TotallyNotSpyware, targets 64-bits iOS 10.x devices
by chaining a Safari and a kernel exploit.

While these websites have created a huge fan base of iPhone users,
they also provided free stable exploit chains which could easily be reused
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by malicious parties to gain arbitrary code execution with high privileges
on the targeted devices.

Over the years, Apple fixed a bunch of vulnerabilities and added several
mitigations to harden its devices, on both the software and hardware parts,
to prevent attackers or jailbreakers from exploiting the browser, the
kernel, and gaining persistence on the iPhones. Nowadays, jailbreaks

are usually simple applications embedding a kernel exploit and patching
some userland services to allow unsigned code to run on the device; the
whole chain including the browser exploit and the persistence mechanism
having become too costly in time to develop.

On the offensive side, vulnerability brokers announce very high prices
to acquire such a full exploit chain: Zerodium recently raised the bar to 2
millions dollars [38]!

In this article, we will detail all the barriers an attacker has to defeat
to obtain a remote iOS jailbreak.

2 Definitions

2.1 iOS Sandbox

The sandbox is the first obstacle faced by an attacker. It is imple-
mented in the kernel and is able to block or allow specific actions and
to grant privileges. Each process can have a unique sandbox profile. A
sandbox profile is a set of rules that describes how to make the decision to
allow/grant each filtered action/privilege. If the action is forbidden, the
sandbox profile can choose to report the violation in the logs. Sandbox
rules have access to specific variables such as the process entitlements, the
uid, the arguments passed to the filtered function, the type of the kernel
build (debug or release), etc.

Sandbox rules are written in SandBox Profile Language (SBPL), a
Scheme-based language, which is compiled into a bytecode interpreted by
the kernel. In iOS, the sandbox profiles are stored directly in the kernel in
read-only pages. It is technically possible to create other sandbox profiles
but this doesn’t seem to be used by iOS. The sandbox profile is usually
specified by name in the executable entitlement, it could also be provided
by the parent process by using the undocumented posix_spawn attributes
or by using mac_execve but this doesn’t seem to be used in iOS.
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2.2 amfid

On iOS, a binary can either be signed by Apple, which is the case for
all classic applications, or have its hash directly embedded in the kernel,
which makes it a platform binary. In the first case, part of the signature
verification is delegated to amfid, a userland daemon.

This makes sense because the signature verification process is very
complex: amfid doesn’t just check whether the signature is cryptographi-
cally correct, it also has to check that the certificate is not revoked, that
the provisioning profile—if any—is correct, that it has been approved by
the user in case of an enterprise profile, etc.

2.3 TrustedBSD MAC Framework

A lot of the security mechanisms in XNU are built around the Trust-
edBSD Mandatory Access Control Framework (abbreviated MACF in the
XNU sources and in this article). To quote the TrustedBSD documentation:

Mandatory access controls extend operating system access control
policy by allowing administrators to enforce additional constraints
on user and application behavior. The TrustedBSD MAC Frame-
work is a kernel programming interface allowing loadable modules
to augment the system security policy in order to implement manda-
tory access control in a flexible manner.

Before executing sensitive functions, the kernel will call the MACF
hooks to let them decide if the current process is authorized to do the
operation or not.

2.4 Mach subsystem

The iOS kernel, XNU, is a hybrid kernel built on BSD and Mach.
Basically, the Mach subsystem is built around ports receiving messages. A
port is an interface to a service provided by a server. The server owns the
unique receive right on the port and clients use their send right to send
messages to the server. Mach messages can contain payloads of almost
arbitrary size and port rights. In userland, a port is identified by a port
name which is basically an index that is similar to handles in Windows.

Depending on the context and by metonymy, the word port can design
a port name or a port send/receive right. In this article, the word port
will be used to refer to a port send right.

A Mach service can be provided by a userland process or by the kernel.
In the latter case, the port identifies a kernel object which can be a task
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(the Mach representation of a process), a thread, the host, etc. A task port
can be used to read and write a process memory and a thread port can
be used to suspend, resume a thread and to modify its context. As thread
ports can be retrieved via a task port right thanks to the task_threads

function, having a task port was sufficient to completely take over a process
until Apple added some hardening. . .

2.5 Dyld shared cache

To save on RAM and speed-up the loading and runtime of libraries on
iOS and macOS, system libraries are merged into a big cache named the
dyld shared cache. The dependencies are resolved offline to eliminate the
indirect branches and memory accesses, thus accelerating the code. As the
shared cache code is not position independent, it is loaded at the same
virtual address in all the processes (like Windows and unlike Linux). This
considerably eases the exploitation of privileged services by eliminating all
the benefit of the ASLR against code reuse attacks. At least up to A12. . .

2.6 Entitlements

To provide a more granular permission level and more in-depth security,
Apple introduced the entitlement concept. Signed, applications and
executable files can be bound with entitlements, which represent different
permissions at the application level. An entitlement is characterized by
a name, such as com.apple.developer.networking.networkextension,
and by a value that is often a boolean, but can also be another structured
type (array, dictionary...).

Entitlements are checked by services and the kernel in order
to choose whether the requested action is allowed. For example, the
entitlement com.apple.private.kernel.global-proc-info is manda-
tory to access any API that lists information about running processes,
task_for_pid-allow gives a process the right to get the task of another
process, get-task-allow is used to authorize debuggers to attach to the
process which has this entitlement, etc.

Third party developers or entities such as companies can only sign
binaries with a limited set of entitlements.
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3 Initial RCE

3.1 Targetting the web browser

Usually, exploit chaining starts by gaining code execution in the context
of a process exposed to the outside world. There are several endpoints
running on an iPhone which can be directly targeted in a zero-click or
one-click scenario, such as:

— Baseband: this is the component handling all the radio communi-
cation. Attack surface is quite huge and it usually lacks the latest
software mitigations.

— SMS/MMS on the application side: the applications handling these
messages can be reached without user interaction, but exploiting
a vulnerability can be quite complicated because of the lack of a
scripting environment.

— Documents parsers (PDF, Office files): the applications handling
documents usually provide means to manipulate the memory layout
but still lack a real scripting environment.

— Web browsers: this is the easiest target to exploit because of the
ability to execute arbitrary JavaScript code, leading to strong
memory manipulation and action chaining primitives.

Safari is iOS default browser, based on the open-source WebKit en-
gine [2]. During the last few years, a huge effort has been performed to
introduce new mitigations complicating exploitation, which will be the
main topic of this section.

3.2 Gaining read and write primitives

One of the first goals in the process of making an exploit is to gain
arbitrary read and write (R/W) primitives to the process memory, in order
to achieve effective code execution. Gaining these primitives is usually
achieved by abusing one of the objects allowing arbitrary data storage in a
backend buffer, such as JavaScript Array, ArrayBuffer and TypedArray

objects.

ArrayBuffers and TypedArrays are the best targets, since they pro-
vide methods to store various data types directly in the backing buffer,
such as 8, 16 and 32 bits signed and unsigned integers, as well as floats.

On the other hand, Arrays can contain mixed content, and thus values
are usually stored in their boxed form. In WebKit, JavaScript values
are stored as JSValues. A JSValue is a 64-bits integer, where the upper
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16-bits are used as a marker defining the encoded data type. The following
types can be encoded in JSValues:

— Integers: the 16 upper bits are set to 1, and a 32-bits integer is
stored in the lower 32-bits.

— Pointers: the 16 upper bits are set to 0, and a pointer is stored in
the remaining 48 bits, which is sufficient because iOS on AArch64

only addresses 39 bits of memory.
— Floats: any other value for the 16 upper bits. The actual float value

is computed by substracting 1 « 48.

For the sake of optimization, when all the elements contained in an
Array share the same type, they are stored in their unboxed form (e.g. a
float is directly stored as a float, and an integer as an integer). Thus, an
Array containing only floats is also a good target, since you can almost
fully control the 64-bits of data written in the backing buffer.

Therefore, gaining arbitrary R/W primitives could be achieved by
forging one of these objects in memory, or modifying an existing one (by
changing the pointer to their backing buffer by the pointer where we want
to read or write data).

3.3 Here comes the Gigacage

To prevent using these objects to gain R/W primitives, WebKit intro-
duced a new allocation zone called the Gigacage.
For each dangerous object type, a 32 GB zone is allocated, and all the
backing buffers are allocated in this zone. Finally, a 32 GB runway zone
is also allocated, with PROT_NONE protection.

At the time of writing this article, there are only two kinds of
Gigacages:

— Primitive: this Gigacage contains the ArrayBuffers backing
buffers and the WASM allocations.

— JSValue: this one contains the Butterflies allocations, which is
the structure used as the backing buffer for various objects, such
as Arrays.

Using a 32 GB size means that if one can corrupt the size (which is
stored as an unsigned 32-bits integer) of an object storing the biggest
items (up to 8 bytes), the access will still land in one of the zones or in the
runway zone, ensuring that no harmful data would be corrupted. As the
Primitive cage can receive arbitrary values, the runway zone is allocated
just after it.
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A third kind of Gigacage, String, was originally introduced to hold
the String objects buffers, but removed in May 2018 [10] because of
performance issues. This decision has a strong impact on security: String

objects can now be used to build an arbitrary read primitive. However, as
Strings are immutable in JavaScript, they cannot be used to build a
write primitive.

Fig. 1. Array object pointing to the Gigacage.

Using these new allocation zones would be meaningless if the pointers
were simply used as-is when getting or setting data in the backing buffers.
In fact, whenever one of these Gigacage pointers (named CagedPtr)
are accessed, its value is masked to make it an offset into a Gigacage,
and added to the Gigacage base pointer corresponding to its kind (see
listing 1).

void * caged ( Kind kind , void * ptr) {

void * gigacageBasePtr = basePtr ( kind );

if (! gigacageBasePtr )

return ptr;

return gigacageBasePtr + (ptr & mask ( kind ));

}

Listing 1. Simplified caged function.

Using this access method ensures that, even if the backing buffer pointer
is corrupted to point outside of a Gigacage, read and write accesses will
be performed inside a Gigacage.

Attackers wanting an arbitrary write primitive will thus have to find
other objects to corrupt, and might end up with a less convenient primitive.

3.4 Shellcode execution

After having gained arbitrary R/W primitives, the next goal usually
consists in achieving arbitrary shellcode execution. While this seems to
be an easy task, such an execution in an iOS process is not just a matter
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of allocating RWX memory. Indeed, for every sandboxed process, the XNU

kernel forbids mapping RWX memory. Processes needing this feature for JIT

purpose, which requires dynamically writing code that will be executed
later, must have the specific entitlement dynamic-codesigning. This
entitlement allows the process to map RWX memory only once, using the
MAP_JIT mmap flag.

Despite this hardening, executing a shellcode in WebKit is just a
matter of finding the JIT page location, which is an exported symbol
(startOfFixedExecutableMemoryPool), and overwriting a jitted func-
tion code with a shellcode. While this can still be done to get shellcode
execution on MacOS, iOS introduced new mitigations to prevent direct
usage of the JIT page.

Separated WX Heaps. On devices with a SoC prior to A11, a second
mapping of the JIT page is performed at a random address. This second
mapping is marked as RW, while the first one is marked as RX, and a jitted

function is created to transparently write in the RW mapping when trying
to copy data in the RX one. Finally, this function is marked as execute-only
to prevent getting the RW mapping address by reading its code.

Fig. 2. JIT pages in memory.

With this mitigation in place, writing to the JIT page should be
quite painful: there is no way to find the page location to use it
with the write primitive. However, the execute-only function created
to handle writes in the JIT page is marked as export, allowing an
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attacker with a read primitive to find its address by looking at the
jitWriteSeparateHeapsFunction symbol. Therefore, the only thing left
before shellcode execution is finding a small ROP chain to call this function
with arbitrary parameters and flush the cache, which should not be so
difficult given the quantity and size of modules loaded in Safari.

A11 and A12 SoCs. With iPhones 8 and X came the A11 SoC introducing
new hardware features to harden even more the JIT page usage. Indeed,
a new system register S3_4_c15_c2_7 allows dynamically and atomically
changing permissions on RWX pages in the process. Therefore, WebKit uses
macros to change permissions to RW, performs a memcpy, then restores
permissions to RX (see listing 2).

static inline void * performJITMemcpy ( void *dst , const void *src ,

size_t n)

{

[...]

if ( useFastPermisionsJITCopy ) {

os_thread_self_restrict_rwx_to_rw ();

memcpy (dst , src , n);

os_thread_self_restrict_rwx_to_rx ();

return dst;

}

[...]

}

Listing 2. Writing to the JIT page on post-A11 devices.

These macros write magic values present in memory, at addresses
0xfffffc110 and 0xfffffc118 respectively, in the aforementioned system
register.

Unlike the function used to write in the RW mapping on older devices,
the performJITMemcpy is not exported and is usually inlined in the func-
tion using it. Therefore, there is no easy way to simply call it to perform
a write in the JIT page.

In order to write in the JIT page on A11 devices used in recent
exploits [30], one must build a ROP chain which jumps in the middle of a
higher-level JIT function: JSC::LinkBuffer::copyCompactAndLinkCode.
This requires setting up the right context to prevent crashing and setting
the stack cookie to allow the function to correctly reach its end, which is
not very generic.

On A12 devices (iPhones XS and XR) however, this trick can’t be
directly used because of the new PAC feature, and there are no known
working public exploits at the time of writing this article.
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3.5 PAC: Pointer Authentication Code

PAC is a feature introduced in ARMv8.3-A to prevent pointers modifi-
cation or reuse. It basically adds new instructions to sign and verify both
instruction and data pointers, either using a context or not, a context
being either a fixed arbitrary value or a register content. This theoretically
allows signing every pointer before storing them in memory, and verifying
them before using them again.

The specification allows two different keys (A and B) for each pointer
type ((I)nstruction and (D)ata), as well as a fifth key used to compute a
MAC on arbitrary data.

iOS on AArch64 uses a 39-bit addressing scheme, which leaves 24 bits
for a signature, because 1 bit is used to keep the pointer origin information
(userland or kernel). In practice, in userland, it seems that 16 bits of the
pointer are used to store the signature and the 17th stores the value of
the original extension bits, leaving the 8 upper bits set to 0.

Fig. 3. Signed pointer using PAC.

While the ARMv8.3-A specification indicates that QARMA can be used
as the signature algorithm, the one used in iOS is unknown. About the
instructions supporting PAC, the following categories exist:

— PAC*: add signature to a pointer.
— AUT*: check and remove signature from a pointer.
— XPAC*: remove signature from a pointer, without checking it.
— RETAA / RETAB: check X30 (register holding return address) using

SP as a context and return.
— BR* / BLR*: check signature and branch (or branch and link).
— LDRAA / LDRAB: check signature and load from memory.

Listing 3 shows a use of such instructions in Safari for A12 devices.
— PACIBSP is used to sign X30 with instruction key B and SP value

as context.
— BLRAA is used to authentify X8 with instruction key A and X9 as

context, then perform a branch and link.
— RETAB is used to authentify X30 with instruction key B and SP

value as context, then return.
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WebCore : __text :189 D79A50 PACIBSP

WebCore : __text :189 D79A54 STP X29 , X30 , [SP ,# var_10 ]!

WebCore : __text :189 D79A58 MOV X29 , SP

WebCore : __text :189 D79A5C BLRAA X8 , X9

WebCore : __text :189 D79A60 LDP X29 , X30 , [SP +0 x10+ var_10 ] ,#0 x10

WebCore : __text :189 D79A64 RETAB

Listing 3. Function using PAC instructions on A12 devices.

As every function saving the link register on the stack now uses PAC

instructions, it is no longer possible to build a ROP chain without being
able to sign arbitrary pointers. However, PAC usage in WebKit is not fully
complete yet: there is a huge use of instruction pointers signing, but it
still lacks data pointers signing. Enabling such a feature would make it
really harder to corrupt the JavaScript objects backing buffers to gain
the initial R/W primitives.

Regarding a potential bypass, the initial Safari release in iOS 12.0

used pointers signed with zero context in JSValues vtables (see listing 4),
making them vulnerable to pointers substitution attacks: an attacker
could replace a pointer in the vtable with another zero-context signed
pointer providing him with a new primitive. This was however hardened
in version 12.1.

AND X8 , X8 , #0 xFFFFFFFFFFFFC000

LDR X8 , [X8 ,#0 x3ED8 ]

LDR W9 , [X0]

LDR X8 , [X8 ,#0 x100 ]

AND X9 , X9 , #0 x7FFFFFFF

LDR X8 , [X8 ,X9 ,LSL #3]

LDR X8 , [X8 ,#0 x40]

LDR X8 , [X8 ,#0 x48]

BLRAAZ X8

Listing 4. Zero-context signed pointer called in JSValue vtable.

Brandon Azad, from Google Project Zero, presented a weakness
in the current PAC implementation allowing him to forge arbitrary zero-
context signed pointers given an execution primitive [9]. Although his
attack targets the XNU kernel, the same patterns can also be found in
userland.

When changing a pointer signature, e.g. from a context-signed pointer
to a zero-context signed pointer, the compiler produces the following code:

LDR X10 , [X9 ,#0 x30 ]!

MOV X11 , X9

AUTIA X10 , X11

PACIZA X10

STR X10 , [X9]

Listing 5. Context to Zero-context signed pointer conversion.
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When the signature is invalid, the AUTIA instruction removes the bad
signature from the pointer, and indicates a failure by changing bits 61 and
62, as explained in the ARMv8 Architecture Reference [1].

if ((PAC <54: bottom_PAC_bit > == ptr <54: bottom_PAC_bit >) && (PAC

<63:56 > == ptr <63:56 >)) then

result = original_ptr ;

else

error_code = keynumber :NOT( keynumber );

result = original_ptr <63 >: error_code : original_ptr <60:0 >;

Listing 6. PAC Auth pseudo-code.

When the PACIZA instruction is executed on the invalidated pointer,
it computes the correct signature for the lower 39-bits of the pointer, and
if there is an error in the upper bits, flips bit 54 in the signature.

PAC = ComputePAC ( ext_ptr , modifier , K <127:64 > , K <63:0 >);

// Check if the ptr has good extension bits and corrupt the pointer

authentication code if not;

if ! IsZero (ptr < top_bit : bottom_PAC_bit >) && ! IsOnes (ptr < top_bit :

bottom_PAC_bit >) then

PAC < top_bit -1> = NOT(PAC < top_bit -1 >);

Listing 7. PAC AddPAC pseudo-code.

Thus, this behavior can be abused to forge zero-context signed pointers,
by retrieving the output of a pointer conversion and flipping a single bit!

4 Privilege escalation and Sandbox escape

Once initial RCE is achieved, an attacker still has a lot of work before
completely compromising the system. The usual way to achieve this is to :

1. Attack a service to land in a less sandboxed process (optionally).

2. Exploit a vulnerability in the kernel to create a R/W primitive.

3. Use the kernel R/W primitive to gain arbitrary entitlements/privi-
leges.

4. Since iOS 12: Find a way to bypass CoreTrust.

5. Patch or replace amfid to bypass code signature.

There used to be userland-only jailbreaks [3, 6] but we will see that
Apple made considerable efforts to complicate userland-only jailbreaks

as much as possible.
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4.1 Escaping the sandbox

The sandbox inner workings and the way the bytecode can be decom-
piled were already described in many papers [15, 20, 26]. In this article
we will focus on the previous sandbox bypass, and how the sandbox was
hardened by Apple.

The sandbox has two main roles: to reduce the data or the features
available to an application but also to reduce the OS and services at-
tack surface. Over the years, Apple expanded the sandbox capabilities
by filtering new functions and by applying it to more services, more
aggressively.

The kernel ensures that every non-platform binary process is sand-
boxed, by default with the container sandbox profile. Since iOS 10, in
addition to the process specific sandbox profile, every userland process
is sandboxed with a default system-wide profile which is evaluated first.
That means that even if an attacker manages to achieve arbitrary code
execution in a root unsandboxed service, he will still be sandboxed.

The system sandbox is, however, quite permissive and Apple tries to
tailor a specific sandbox for as many privileged services as possible. In
iOS 9, 117 profiles were defined, whereas in iOS 12, there are now 193.
More and more services which weren’t sandboxed now are. For example,
after Mark Dowd exploited AirDrop [21], Apple added a specific sandbox
profile for the associated service, sharingd.

Profiles are also more and more restrictive. For example, the WebKit

rendering process (com.apple.WebKit.WebContent) used to be able to
connect to the network, because the sandbox was including all the default
system sandbox, but also because of compatibility issues with the AppCache

feature. Now, since changeset 229093 [4], published on February 18th 2018,
all network accesses are forbidden.

Apple also hardens its sandbox by adding new MACF hooks:
iOS 9 had 305 hooks whereas iOS 12 now has 24 extra hooks.
Some of them cover new functionalities like skywalk [28] and apfs

snapshots [27] via, amongst others, the skywalk_flow_check_connect

and mount_check_snapshot_create hooks. Others were created to
block known vulnerabilities such as the process enumeration vul-
nerability discovered by Stefan Esser [22] which is blocked by the
proc_check_get_cs_info hook. Still, others, like socket_check_ioctl,
harden existing functions.

All this hardening means that it becomes more and more necessary to
attack a userland service before being able to trigger a kernel vulnerability.
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4.2 Userland exploitation mitigations

Services used to be the weakest point of the iOS ecosystem. There is a
lot of them and they are often closed source, therefore they are likely to
be less reviewed (compared to the kernel). However, even with multiple
vulnerabilities, it is not that easy to escape the iOS sandbox...

NX. NX is aggressively deployed in iOS. Except for the WebKit renderer
process, processes on iOS can’t map RWX pages. There is no /bin/sh or
interpreter on the device, so basic ret2libc techniques won’t work either.
Logical vulnerabilities or code reuse attacks are mandatory to exploit a
service.

ASLR. Like all modern OS, iOS has ASLR. However, even on recent 64-bit
architectures, it is still possible, under certain conditions, to spray the
heap or the page allocator to get data at a known address. This was used
in several exploits [7,14,31]. To our knowledge, this is still the case on the
latest iOS/macOS versions.

PAC. On A12 devices all the platform binaries are compiled with PAC

support. However, to this day, Apple doesn’t allow developers to push
binaries with PAC support to the store. Because process without PAC

support cannot use signed pointers, on A12 devices the shared cache is
loaded at two different addresses, one with signed pointers, the other
without signed pointers. This means that an application on the store
or not compiled with ARM64e support will not be able to reuse shared
cache addresses or to use PAC instructions to sign pointers. This greatly
complicates the exploitation of daemons.

For the moment, the A key used to sign function pointers is shared
across all the processes that support PAC. This has been exploited by
Ian Beer [13] to forge arbitrary signed pointers to exploit privileged
daemons. This will probably change in the near future as signed pointers
are already segregated in dedicated sections (__auth_ptr, __auth_stubs

and __auth_got) so it would be easy for Apple to just resign those sections
for different keys without wasting too much memory. Different keys could
then be used for different privilege levels: platform binary/third party,
root/mobile, etc.

Before claiming PAC bypass, it is important to keep in mind that this
mitigation is still young and that a lot more could be done with it ; most
notably by signing data pointers, or multiplying keys.
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Mach API. A standard strategy to exploit a service was to force the
server to send its task port to the attacker in a Mach message. The received
port could then be used to call arbitrary functions under the exploited
service identity. Apple was well aware of this method and, in iOS 10

(not macOS), it started to restrict how and by whom a task port could be
used. Indeed, only a platform binary could use another platform binary
task port. This didn’t block a platform binary from exploiting another
one, which was a shame as the WebKit renderer is actually a platform
binary, but it provided a good protection against jailbreaks relying on
an application for their initial code execution. However, the protection
wasn’t sufficient as it was only focused on task ports, it was still possible
to manipulate threads via thread ports. Brandon Azad used this weakness
to exploit the ReportCrash service which gave him the ability to get
arbitrary task ports, ReportCrash being one of the very few binaries to
possess the task_for_pid-allow entitlements [8].

Now, Apple blocked this method by filtering both tasks and thread
ports so even if a non platform binary task manages to get a privileged
task or thread port, it cannot do much with it. This new protection
doesn’t just mitigate logic vulnerabilities that directly give privileged task
or thread ports, it also significantly raises the effort needed to exploit
classical memory corruption vulnerabilities in a privileged service, as there
are not many options left to the attacker other than to ROP/JOP.

4.3 Code signature

One of the goals of an attacker is to be able to run arbitrary code on
a device with arbitrary privileges. It is theoretically possible to achieve
this in-memory, but it is easier to just have the ability to launch arbitrary
executables with arbitrary entitlements and let the system work as intended
instead of manipulating a lot of undocumented or unstable kernel objects
or APIs.

However, before iOS 12, all an attacker had to do to completely
bypass Apple code signature mechanism was to take control of amfid or
to impersonate it. Even if the kernel tried to mitigate this by checking the
identity of the daemon passed by the kernel in the Mach message trailer,
this was easily circumvented by manipulating amfid [6, 12].

In iOS 12 however, Apple decided to remedy it by adding an extra
redundant check in kernelland with the new CoreTrust kext [27]. This kext
will validate the signature, the whole certificate chain, and will ensure that
the root CA is one of three hardcoded ones. If the signature is validated
by CoreTrust, the kernel will continue the classical verification process by
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calling amfid. Otherwise, it will directly reject the binary. Moreover, by
doubling the checks, CoreTrust decreases the probability of an exploitable
bug in the signature verification process.

This means that to bypass Apple code signature, a CoreTrust bypass
is mandatory. It could be a vulnerability directly in CoreTrust to bypass
the code signature or to directly add the hash of the binary in the platform
binary hashes list. An attacker could also just use a valid or stolen developer
certificate.

4.4 Kernel protections

PXN/PAN. Privileged eXecute Never (PXN) and Privileged Access Never
(PAN) are ARM equivalent to Intel Supervisor Mode Execution Prevention
(SMEP) and Supervisor Mode Access Prevention (SMAP). They can be used
to prevent the kernel from reading, writing or executing user memory
pages. On old 32-bit devices, this technology was emulated by having the
userspace unmapped when the kernel was executing, this emulation was
removed on early 64-bit devices (from iPhone 5S to iPhone SE) until
PAN and PXN were introduced in the iPhone 7.

This complicates the development of a kernel exploit because the
attacker cannot use its own address space to store data or code.

Watchtower/KTRR. Watchtower (also called Kernel Patch Protection,
KPP) and its successor RoRgn/KTRR are designed to circumvent kernel
patches and kernel code injection.

Watchtower was introduced in iOS 9 for all the pre iPhone 7 arm64

devices. Its code runs at the secure monitor privilege level (EL3), the
highest privilege level on ARM and periodically checks the state of the
kernel. It has been bypassed because it is a passive mechanism and relies
on the kernel to be called. All an attacker has to do to bypass it is to
make sure that the kernel is clean before calling Watchtower and to find
a way to regain code execution after Watchtower execution [23,37]. Even
if the second step, regaining code execution, can be made more and more
difficult by Apple, it is just a cat and mouse game that the attacker is
sure to win with enough effort. That’s why Apple introduced RoRgn/KTRR

in the A10 processor, first used in the iPhone 7 on iOS 10.

RoRgn/KTRR (allegedly for Read-only Region/Kernel Text Region
Range) are built on hardware extensions made by Apple, probably in the
memory controller of their SOC. At each boot and after each processor
wakeup, very early in the code, RoRgn and KTTR registers are set and
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locked via a MMIO [32]. RoRgn is used to mark a physical region of the
memory as read only and KTTR is used to restrict the range of physical
region mappable as executable in kernel mode (EL1). Any attempt to
write in the RoRgn region or to execute code outside the KTTR region in
EL1 will panic the phone. Of course the KTTR range is included in the
RoRng one so it’s impossible to patch the kernel code. Because KTTR was
not correctly reset after a deep sleep, Luca Todesco was able to modify
the kernel mapping and thus to bypass KTRR [5, 34]. After Apple patched
this flaw, no public exploit has been released that bypass KTRR.

KASLR. Kernel Address Space Layout Randomisation or KASLR was
introduced in iOS 6. The basic idea of KASLR is to hide the kernel memory
structure to the attacker. As a lot of exploits will need the kernel to access
data, either to execute ROP chains or to create fake objects, PAN will force
an attacker to place controlled data in the kernel and the ASLR will force
him to find a way to leak its address.

In iOS, KASLR is quite weak and it is possible to generically bypass part
of it by spraying data in the kernel, as demonstrated by Qixun Zhao [39].

PAC: Pointer Authentication Code. PAC, introduced in section 3.5,
is also used in the kernel. This forces the attacker to perform data only
exploitation or to leak and reuse authenticated pointers. A technique
for forging arbitrary kernel authenticated pointers has been described
by Brandon Azad [9] and then patched by Apple. Blocking arbitrary
kernel code execution significantly increases the cost of developing a full
jailbreak or to attack other security mechanisms like codesigning, SEP,
rootfs protection etc. However, from an attacker point of view, having
arbitrary kernel code execution is not necessary to get access to all the
data stored on a phone, having arbitrary read or write is sufficient. Apple
is well aware of that and is trying to force an attacker to get code execution
to be able to modify some sensitive kernel values.

4.5 PPL/APRR

PPL, which meaning is unknown, is in direct line with RoRgn/KTRR as
it is a hardware protection designed to block an attacker from performing
sensitive operations even though he might have gained arbitrary kernel
R/W primitives. Instead of permanently blocking write access to a given
physical region like RoRgn, PPL is more subtle and only blocks write
access to virtual pages unless a specific MSR is set to a specific value
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(0x4455445564666477) [29, 35]. Because PAC blocks arbitrary function
calls and RoRgn/KTRR block arbitrary kernel code addition or modification,
this means an attacker cannot easily write in those protected pages nor
abuse the functions called when write access is enabled.

For the moment, PPL is only used to protect physical page mapping and
code signing information, but it could also be used to protect other dynamic
sensitive data. Nothing stops Apple from creating other specialized physical
regions for other purposes.

5 Persistence on the system

Breaking all the iOS protections is hard, doing it after each reboot
is even harder. An attacker who wants to achieve this goal will have to
circumvent two problems:

— How to bypass code signature.
— How to get its code executed.

5.1 Signature bypass

Legitimate certificates. The easiest way is probably by not bypassing
code signature in the first place, by just using a valid certificate. There
are two different kinds of certificates in iOS that could be used to sign
arbitrary code:

— Development certificates: designed to debug code during application
development, they are tied to iPhones via their UDIDs, stored in the
application provisioning profile. The UDIDs need to be registered
on Apple website, which is obviously problematic for attackers if
they don’t want Apple to know who they are targeting...

— Enterprise certificates: they are not tied to any device but require a
valid enterprise identity. The user also needs to manually trust the
profile and an internet connection is required to verify the validity
of the profile.

Enterprise certificates were already exploited to achieve persistence [21,
40] and to gain initial code execution by the Pangu Team [33].

Static code signature bypass. Several static code signature bypasses
were released in the past, in binaries [24], libraries [25] and shared cache [36].
However, the attack surface is quite small and Apple considerably hardened
the code used to parse and load mach-o files.
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debugserver manipulation. debugserver is the daemon used to debug
applications on an iPhone. As it needs to put breakpoints, it is able to
execute arbitrary code in the binaries it debugs. Only binaries with the
get-task-allow entitlement can be debugged, without this entitlement,
the debugger may get a task port but will not be able to modify the code
without triggering a code-signing violation. There is one Apple signed
binary which has this entitlement to allow developers to debug VPN
extensions: neagent. This executable has already been exploited in the
past by Pangu [36] to gain initial code execution on the iPhone and the
CIA [17] used multiple clever tricks to launch and manipulate debugserver

at each boot to force it to execute an arbitrary shellcode.

It is hard for Apple to mitigate this because this is a wanted fea-
ture. The different vulnerabilities have been patched by sandboxing
debugserver so it cannot launch neagent by itself and by patching the
hole that let the CIA execute arbitrary commands, but debugserver will
probably always be able to execute arbitrary code in a running neagent.

Scripting language. In the past, a JavaScript console, jsc, was included
in the JavaScriptCore framework and could be used to execute arbitrary
JavaScript code. This was exploited by the CIA [16] and NSO [11]
associated with a jsc vulnerability to gain arbitrary code execution on
reboot on iOS.

5.2 Code execution

launchd. The obvious way to get code execution at reboot is to register a
new service. Services under iOS are managed by launchd, the first process
launched by the kernel which owns the PID 1. Apple made it impossible
to register new services by embedding the services list in launchd spe-
cial section __TEXT.__config so patching it means invalidating launchd

signature. Also, to make sure that an attacker does not replace a service
executable with one of his own, launchd makes sure that the service is a
platform binary, a binary which signature is directly stored in the kernel
trust cache.

To bypass this, an attacker must rely on platform binaries and find a
way to pivot to execute non-platform binaries. For example, the CIA [16]
used dhcpd configuration files to have dhcpd execute arbitrary commands.
As the commands were launched by dhcpd, the restriction of being a plat-
form binary didn’t apply and they could run arbitrary signed executables.
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Legitimate methods. Before iOS 10, VOIP applications could be auto-
matically started at each reboot. This could be exploited to gain early
code execution on the phone [40]. Now VOIP applications need to use the
PushKit API that will only start the application when a notification is
received.

Extensions (network extensions, custom keyboards) or MDM applica-
tions could also be used to gain code execution after each reboot.

Both solutions however would ask some efforts to hide the installed
application to the user.

5.3 Rootfs

To modify services executables or configurations, an attacker often has
to modify the rootfs of the device. To do this, an attacker would have to
bypass multiple protections put in place by Apple over the years.

At first, no special protection was used on the rootfs and all an
attacker had to do was to remount it as a read-write volume. Apple then
added some checks in the kernel to block the remount of the rootfs. Those
checks were first bypassed by patching the code and then by modifying
the rootfs flags in kernel memory before remounting it when KPP/KTRR

blocked kernel patches.

In iOS 11.3 Apple moved to APFS, a file system that support snap-
shots, and restored a base snapshot of the rootfs at each boot. Even
if attackers managed to modify the rootfs, it was restored at the next
reboot. Moreover, as the snapshot was mounted read-only, trying to re-
mount it in read-write mode would crash the kernel. This was bypassed
by deleting the snapshot used at each reboot, by managing to remount
the file system as read-write in another directory.

6 Conclusion

There are voices in the jailbreak community claiming that Apple
adds protections that would only hinder jailbreakers and not real-
world attackers. This is simply not true. Even if attackers don’t need a
full jailbreak to exfiltrate sensitive data, for example by exploiting a
vulnerability in a mobile daemon, they need something similar to persist
on a phone or to plant a backdoor. Blocking attackers necessarily means
blocking jailbreaks.

Through this article, we showed that Apple takes their devices security
very seriously, using an incremental approach to add new mitigations as
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soon as a new exploitation method has been made public. While their first
implementations of such mitigations might have been incomplete and/or
easily bypassable, they have completed them across various minor versions
to finally obtain a robust mechanism.

Furthermore, their ability to add custom features directly in their SOCs

gives them a leg-up on Android phones constructor, which do not control
both the hardware and the software sides.

As a conclusion, it has now become highly costly to build a stable and
complete jailbreak for modern iPhones. The new upcoming hardware
features, such as Memory Tagging described in ARM v8.5-A, will make
vulnerabilities exploitation on such platforms even harder, killing entire
vulnerability classes.
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