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Who are we

 Eloi Benoist-Vanderbeken

@elvanderb

 Fabien Perigaud

@0xf4b

 Working for Synacktiv:
 Offensive security company
 55 ninjas
 3 teams: pentest, reverse engineering, development
 4 sites: Paris, Toulouse, Lyon, Rennes

 Reverse engineering team coordinator and vice-coordinator
 21 reversers
 Focus on low level dev, reverse, vulnerability research/exploitation
 If there is software in it, we can own it :)
 We are hiring!
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Introduction

 More and more interest in iOS security
 High demand
 High bounties – up to $2 million on Zerodium

 More and more security features
 Gigacage, S3_4_c15_c2_7, SEP, KTRR, RoRgn, PAC, APRR, PPL, etc.
 Often hardware based

 Hard to follow for a newcomer
 Even if there is more and more public doc on the subject

 Typical chain:
 Initial code execution

zeroclick / one click
 LPE
 Persistence
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Browser exploitation 101

 Apple Safari
 Uses open-source WebKit engine

WebCore: rendering engine

JavaScriptCore: JavaScript engine

 First step: gain arbitrary R/W primitives
 Abuse JavaScript objects allowing arbitrary data 

storage
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Browser exploitation 101

 Array objects
 Pointer to a storage buffer
 Length on 32-bits

 Arbitrary R/W (should be) easy
 Corrupt storage buffer pointer using the vulnerability
 Read or Write the content
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Gigacage

 Enabled for “dangerous” objects

 Idea: “encage” the dangerous storage buffers in a 
32 GB zone

 Size corruption? Still in the gigacage!

 Pointer corruption? Still in the gigacage!
For all accesses, pointer is masked and added to the gigacage base 
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Browser exploitation 101 (again)

 Second step: execute shellcode
 Modern browsers use JIT
 JIT page was allocated as RWX
 Abuse JIT page!

 Execution Howto:
 Create function
 Make it JIT
 Copy shellcode over function code
 Profit! (this still works on macOS)
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iOS RWX considerations

 RWX mapping is forbidden by defaut
 In every iOS process

 Entitlement dynamic-codesigning
 Allows a single RWX mapping

mmap(…, MAP_JIT | … , …)
 Only granted to Safari
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JIT Page protections (< A11)

 Separated WX Heaps
 JIT Page remapped as RW at a random address

 Original JIT Page marked as RX

 A jitted function is created in the RX mapping to 
write to the RW mapping

 This function is marked as X-only 

 A R/W primitive can’t be used alone to write 
arbitrary code to the JIT Page
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JIT Page protections (< A11)

 A ROP Chain is required to be able to call 
jitWriteSeparateHeapsFunction()
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JIT Page protections (A11)

 New system register S3_4_c15_c2_7
 Allows changing permissions on RWX pages 

atomically
 No more separated RX and RW mappings

static inline void* performJITMemcpy(void *dst, const void *src, size_t n)
{
[...]

if (useFastPermisionsJITCopy) {
    os_thread_self_restrict_rwx_to_rw();
    memcpy(dst, src, n);
    os_thread_self_restrict_rwx_to_rx();
    return dst;
}

[...]
}
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JIT Page protections (>= A11)

 PerformJITMemcpy is not exported
 Inlined in functions using it
 ROP made harder: have to jump in the middle of a 

function generating JIT code

 Bypass still possible through ROP on A11
 … but A12 prevents ROP!
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PAC (>= A12)

 Pointer Authentication Code
 Cryptographically sign “dangerous” pointers
 Up to 5 different keys depending on pointer type 

and operation
Instruction pointers → Key A and B

Data pointers → Key A and B

Signature of raw data → Key C
 Specific instructions to sign and authenticate 

pointers
 Signatures are context-dependent!
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PAC (>= A12)

 In userland:
 Pointers use 39-bits + 1-bit (for user/kernel pointer 

distinction)
 24 bits can be used for signature
 … but only 16 bits are used for userland pointers
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PAC (>= A12)

 Examples:
 PACIA X8, X9 → Sign X8 using Instruction 

Pointers Key A, with context X9
 AUTIB X8, X9 → Authenticate X8 signature using 

Instruction Pointers Key B, with context X9
 BLRAAZ X8 → Branch and Link on X8 after 

Authentication with Instruction Key A, and a null 
context
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PAC (>= A12)

 Consequences
 ROP is dead (unless ability to forge B-signed 

pointers)
 Pointers substitution is dead if pointers are signed 

with a non-null context

 Pointers substitution can still be performed 
if signed with a null context!
 In iOS 12.0, JavaScriptCore objects vtables were 

signed with a null context
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PAC (>= A12) – Public attack

 Attack from Brandon Azad (Google Project-
Zero)
 AUT* instructions only set a specific bit in the 

signature field if authentication is invalid
 PAC* instructions only flips a bit after computing the 

signature if the given pointer is invalid

 What happens if an attacker can call a 
function performing a signature context 
change?
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PAC (>= A12) – Public attack

 LDR         X10, [X11,#0x30]!

 AUTIA       X10, X11

 PACIZA      X10
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PAC (>= A12) – Public attack

 LDR         X10, [X11,#0x30]!

 AUTIA       X10, X11

 PACIZA      X10

X10 0x0023fe71cc038fe8

Invalid signature (attacker-crafted)
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PAC (>= A12) – Public attack

 LDR         X10, [X11,#0x30]!

 AUTIA       X10, X11

 PACIZA      X10

X10 0x40000001cc038fe8

Error code
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PAC (>= A12) – Public attack

 LDR         X10, [X11,#0x30]!

 AUTIA       X10, X11

 PACIZA      X10

X10 0x00f831a1cc038fe8

Valid signature with bit 54 flipped
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PAC (>= A12) – Public attack

 LDR         X10, [X11,#0x30]!

 AUTIA       X10, X11

 PACIZA      X10

X10 0x00f831a1cc038fe8

X10 0x00b831a1cc038fe8

Valid signature with bit 54 flipped

Valid signature is retrieved
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PAC (>= A12) – Current state

 No real bypass nowadays

 Known weaknesses have been fixed by Apple

 Only instruction pointers are signed in 
WebKit for now

 In the future:
 Gigacage pointers will be replaced by signed data 

pointers
 We can expect more and more signed pointers
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Privilege escalation

 Goal
 To execute arbitrary code
 With arbitrary entitlements

 Attack surface
 User daemons
 Kernel extensions (KEXTs)
 Kernel

 Considerably reduced by the sandbox
 More and more actions are restricted
 More and more daemons are sandboxed
 More and more restrictions on existing profiles
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The Sandbox KEXT

 Based on MACF framework
 Inherited from TrustedBSD
 Hooks in the kernel called before sensitive operations

 Can also be called via special syscalls
 For example by launchd to verify if a process can interact with a 

daemon

 Decisions are based on rules
 Written in SandBox Profile Language (SBPL)

Scheme-based language
 Decide whether an action/a privilege is authorized/granted

 Since iOS 10, there is a system-wide sandbox profile
 Always evaluated even if the process is already sandboxed
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Code signature

 Enforced on iOS

 Is used to grant entitlements
 Root of lots of security mechanisms

 Checked by the AppleMobileFileIntegrity (AMFI) KEXT

 Two possibilities
 Hash of the binary is stored in the kernel (Trust Cache) → platform binaries
 Hash is signed by a trusted certificate → 3rd party apps

 Certificate checks are complicated
 Delegated to a userland daemon, amfid
 Target of choice for years

 Apple considerably reduced amfid power over the years
 Impossible to fake a platform-binary from amfid
 Since iOS12, certificate chain is validated by CoreTrust, a KEXT
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Userland daemons

 “Easy” target
 A “lot” of code is reachable

~120 services from WebKit

~280 from a normal application
 Versatile code base

 Can be used to reach a less sandboxed 
context
 To later attack an other, more privileged daemon or a 

KEXT for example

 Or to directly get access to sensitive data
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Userland daemons – mitigations

 Platform binaries (PB)
 Have their hashes directly embedded in the kernel 

Not checked by amfid
 Gives special rights and restrictions
 All daemons are platform binaries

 Mach API hardening
 Task ports give complete control over the corresponding 

task

A little bit like process handles on Windows

Simplifies a lot the post-exploit steps
 Since iOS 10, a non-PB binary cannot use PB task ports
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Userland daemons – mitigations

 PAC
 Kills ROP
 All process share the same A key…

Still possible to JOP
 But the AppStore doesn’t allow arm64e 3rd party apps (yet?)

Impossible to sign pointers in 3rd party apps
 There are 2 versions of the dyld shared cache loaded at 

different (random) addresses

dyld shared cache addresses are unusable in AppStore apps

 It’s easier to exploit daemons from Safari than 
from WhatsApp
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Kernel and KEXTs

 Directly give the highest privileges
 But instantly crash the phone if something wrong happens…

 Very few KEXTs can be reached from the sandbox
 ~20 IOKit user client classes reachable from an application

Main way to interact with a KEXT
 ~15 from WebContent

 But you can send IOKit user client from an exploited 
daemon to your process

 Kernel APIs are also restricted by the sandbox
 File/process creation/manipulation, IOCTLs, sockets, IPC, 

sysctl etc.
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Kernel protections

 RoRgn/KTRR
 Hardware protection introduced in the A10 processor
 Mark physical memory range as read only (RoRgn)
 Mark physical memory range as executable at EL1 (KTRR)
 KTRR is (of course) included in RoRgn
 Bypassed by Luca Todesco because not correctly reset after a deep 

sleep

But no bypass since it was patched
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Kernel protections

 PAC
 Complicate arbitrary code exec

Already bypassed by bazad but now patched

May eventually completely block arbitrary code exec
 Two options

perform data-only exploitation

leak and reuse pointers authenticated with a null context
 Not really a problem for the attackers

Arbitrary kernel memory read/write is sufficient

Isn’t it?…
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Kernel protections

 PPL/APRR
 Tries to protect against arbitrary read/write/exec
 Protects the page table and the virtual mapping of the 

physical memory
 Protects the codesigning structures

Page code signing information

Trustcache

JIT entitlements

May be used to protect more data!
 You need a PPL bypass to write some pages

The most obvious one require an arbitrary code exec
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Conclusion

 Apple takes defense in depth very seriously
 This not a jailbreak-only motivation :)

 Full jailbreak is now highly-costly
 Public jailbreaks do not provide persistence anymore

 Future will be harder for attackers/jailbreakers
 Expect more PAC signed pointers
 ARM v8.5-A Memory Tagging is coming…

 A LOT more information is in the paper, read it :)



  

THANK YOU FOR YOUR ATTENTION

ANY QUESTIONS?
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