
Date: 05/06/2019

For: SSTIC

Presenters: Eloi Benoist-Vanderbeken, Fabien Perigaud

WEN ETA JB?

A 2 million dollars problem

2 / 40

Who are we

 Eloi Benoist-Vanderbeken

@elvanderb

 Fabien Perigaud

@0xf4b

 Working for Synacktiv:
 Offensive security company
 55 ninjas
 3 teams: pentest, reverse engineering, development
 4 sites: Paris, Toulouse, Lyon, Rennes

 Reverse engineering team coordinator and vice-coordinator
 21 reversers
 Focus on low level dev, reverse, vulnerability research/exploitation
 If there is software in it, we can own it :)
 We are hiring!

Introduction

4 / 40

Introduction

 More and more interest in iOS security
 High demand
 High bounties – up to $2 million on Zerodium

 More and more security features
 Gigacage, S3_4_c15_c2_7, SEP, KTRR, RoRgn, PAC, APRR, PPL, etc.
 Often hardware based

 Hard to follow for a newcomer
 Even if there is more and more public doc on the subject

 Typical chain:
 Initial code execution

zeroclick / one click
 LPE
 Persistence

5 / 40

Introduction

 More and more interest in iOS security
 High demand
 High bounties – up to $2 million on Zerodium

 More and more security features
 Gigacage, S3_4_c15_c2_7, SEP, KTRR, RoRgn, PAC, APRR, PPL, etc.
 Often hardware based

 Hard to follow for a newcomer
 Even if there is more and more public doc on the subject

 Typical chain:
 Initial code execution

zeroclick / one click
 LPE
 Persistence

Browser
Exploitation

7 / 40

Browser exploitation 101

 Apple Safari
 Uses open-source WebKit engine

WebCore: rendering engine

JavaScriptCore: JavaScript engine

 First step: gain arbitrary R/W primitives
 Abuse JavaScript objects allowing arbitrary data

storage

8 / 40

Browser exploitation 101

 Array objects
 Pointer to a storage buffer
 Length on 32-bits

 Arbitrary R/W (should be) easy
 Corrupt storage buffer pointer using the vulnerability
 Read or Write the content

9 / 40

Gigacage

 Enabled for “dangerous” objects

 Idea: “encage” the dangerous storage buffers in a
32 GB zone

 Size corruption? Still in the gigacage!

 Pointer corruption? Still in the gigacage!
For all accesses, pointer is masked and added to the gigacage base

10 / 40

Browser exploitation 101 (again)

 Second step: execute shellcode
 Modern browsers use JIT
 JIT page was allocated as RWX
 Abuse JIT page!

 Execution Howto:
 Create function
 Make it JIT
 Copy shellcode over function code
 Profit! (this still works on macOS)

11 / 40

iOS RWX considerations

 RWX mapping is forbidden by defaut
 In every iOS process

 Entitlement dynamic-codesigning
 Allows a single RWX mapping

mmap(…, MAP_JIT | … , …)
 Only granted to Safari

12 / 40

JIT Page protections (< A11)

 Separated WX Heaps
 JIT Page remapped as RW at a random address

 Original JIT Page marked as RX

 A jitted function is created in the RX mapping to
write to the RW mapping

 This function is marked as X-only

 A R/W primitive can’t be used alone to write
arbitrary code to the JIT Page

13 / 40

JIT Page protections (< A11)

 A ROP Chain is required to be able to call
jitWriteSeparateHeapsFunction()

14 / 40

JIT Page protections (A11)

 New system register S3_4_c15_c2_7
 Allows changing permissions on RWX pages

atomically
 No more separated RX and RW mappings

static inline void* performJITMemcpy(void *dst, const void *src, size_t n)
{
[...]

if (useFastPermisionsJITCopy) {
 os_thread_self_restrict_rwx_to_rw();
 memcpy(dst, src, n);
 os_thread_self_restrict_rwx_to_rx();
 return dst;
}

[...]
}

15 / 40

JIT Page protections (>= A11)

 PerformJITMemcpy is not exported
 Inlined in functions using it
 ROP made harder: have to jump in the middle of a

function generating JIT code

 Bypass still possible through ROP on A11
 … but A12 prevents ROP!

16 / 40

PAC (>= A12)

 Pointer Authentication Code
 Cryptographically sign “dangerous” pointers
 Up to 5 different keys depending on pointer type

and operation
Instruction pointers → Key A and B

Data pointers → Key A and B

Signature of raw data → Key C
 Specific instructions to sign and authenticate

pointers
 Signatures are context-dependent!

17 / 40

PAC (>= A12)

 In userland:
 Pointers use 39-bits + 1-bit (for user/kernel pointer

distinction)
 24 bits can be used for signature
 … but only 16 bits are used for userland pointers

18 / 40

PAC (>= A12)

 Examples:
 PACIA X8, X9 → Sign X8 using Instruction

Pointers Key A, with context X9
 AUTIB X8, X9 → Authenticate X8 signature using

Instruction Pointers Key B, with context X9
 BLRAAZ X8 → Branch and Link on X8 after

Authentication with Instruction Key A, and a null
context

19 / 40

PAC (>= A12)

 Consequences
 ROP is dead (unless ability to forge B-signed

pointers)
 Pointers substitution is dead if pointers are signed

with a non-null context

 Pointers substitution can still be performed
if signed with a null context!
 In iOS 12.0, JavaScriptCore objects vtables were

signed with a null context

20 / 40

PAC (>= A12) – Public attack

 Attack from Brandon Azad (Google Project-
Zero)
 AUT* instructions only set a specific bit in the

signature field if authentication is invalid
 PAC* instructions only flips a bit after computing the

signature if the given pointer is invalid

 What happens if an attacker can call a
function performing a signature context
change?

21 / 40

PAC (>= A12) – Public attack

 LDR X10, [X11,#0x30]!

 AUTIA X10, X11

 PACIZA X10

22 / 40

PAC (>= A12) – Public attack

 LDR X10, [X11,#0x30]!

 AUTIA X10, X11

 PACIZA X10

X10 0x0023fe71cc038fe8

Invalid signature (attacker-crafted)

23 / 40

PAC (>= A12) – Public attack

 LDR X10, [X11,#0x30]!

 AUTIA X10, X11

 PACIZA X10

X10 0x40000001cc038fe8

Error code

24 / 40

PAC (>= A12) – Public attack

 LDR X10, [X11,#0x30]!

 AUTIA X10, X11

 PACIZA X10

X10 0x00f831a1cc038fe8

Valid signature with bit 54 flipped

25 / 40

PAC (>= A12) – Public attack

 LDR X10, [X11,#0x30]!

 AUTIA X10, X11

 PACIZA X10

X10 0x00f831a1cc038fe8

X10 0x00b831a1cc038fe8

Valid signature with bit 54 flipped

Valid signature is retrieved

26 / 40

PAC (>= A12) – Current state

 No real bypass nowadays

 Known weaknesses have been fixed by Apple

 Only instruction pointers are signed in
WebKit for now

 In the future:
 Gigacage pointers will be replaced by signed data

pointers
 We can expect more and more signed pointers

Privilege
Escalation

28 / 40

Privilege escalation

 Goal
 To execute arbitrary code
 With arbitrary entitlements

 Attack surface
 User daemons
 Kernel extensions (KEXTs)
 Kernel

 Considerably reduced by the sandbox
 More and more actions are restricted
 More and more daemons are sandboxed
 More and more restrictions on existing profiles

29 / 40

The Sandbox KEXT

 Based on MACF framework
 Inherited from TrustedBSD
 Hooks in the kernel called before sensitive operations

 Can also be called via special syscalls
 For example by launchd to verify if a process can interact with a

daemon

 Decisions are based on rules
 Written in SandBox Profile Language (SBPL)

Scheme-based language
 Decide whether an action/a privilege is authorized/granted

 Since iOS 10, there is a system-wide sandbox profile
 Always evaluated even if the process is already sandboxed

30 / 40

Code signature

 Enforced on iOS

 Is used to grant entitlements
 Root of lots of security mechanisms

 Checked by the AppleMobileFileIntegrity (AMFI) KEXT

 Two possibilities
 Hash of the binary is stored in the kernel (Trust Cache) → platform binaries
 Hash is signed by a trusted certificate → 3rd party apps

 Certificate checks are complicated
 Delegated to a userland daemon, amfid
 Target of choice for years

 Apple considerably reduced amfid power over the years
 Impossible to fake a platform-binary from amfid
 Since iOS12, certificate chain is validated by CoreTrust, a KEXT

31 / 40

Userland daemons

 “Easy” target
 A “lot” of code is reachable

~120 services from WebKit

~280 from a normal application
 Versatile code base

 Can be used to reach a less sandboxed
context
 To later attack an other, more privileged daemon or a

KEXT for example

 Or to directly get access to sensitive data

32 / 40

Userland daemons – mitigations

 Platform binaries (PB)
 Have their hashes directly embedded in the kernel

Not checked by amfid
 Gives special rights and restrictions
 All daemons are platform binaries

 Mach API hardening
 Task ports give complete control over the corresponding

task

A little bit like process handles on Windows

Simplifies a lot the post-exploit steps
 Since iOS 10, a non-PB binary cannot use PB task ports

33 / 40

Userland daemons – mitigations

 PAC
 Kills ROP
 All process share the same A key…

Still possible to JOP
 But the AppStore doesn’t allow arm64e 3rd party apps (yet?)

Impossible to sign pointers in 3rd party apps
 There are 2 versions of the dyld shared cache loaded at

different (random) addresses

dyld shared cache addresses are unusable in AppStore apps

 It’s easier to exploit daemons from Safari than
from WhatsApp

34 / 40

Kernel and KEXTs

 Directly give the highest privileges
 But instantly crash the phone if something wrong happens…

 Very few KEXTs can be reached from the sandbox
 ~20 IOKit user client classes reachable from an application

Main way to interact with a KEXT
 ~15 from WebContent

 But you can send IOKit user client from an exploited
daemon to your process

 Kernel APIs are also restricted by the sandbox
 File/process creation/manipulation, IOCTLs, sockets, IPC,

sysctl etc.

35 / 40

Kernel protections

 RoRgn/KTRR
 Hardware protection introduced in the A10 processor
 Mark physical memory range as read only (RoRgn)
 Mark physical memory range as executable at EL1 (KTRR)
 KTRR is (of course) included in RoRgn
 Bypassed by Luca Todesco because not correctly reset after a deep

sleep

But no bypass since it was patched

36 / 40

Kernel protections

 PAC
 Complicate arbitrary code exec

Already bypassed by bazad but now patched

May eventually completely block arbitrary code exec
 Two options

perform data-only exploitation

leak and reuse pointers authenticated with a null context
 Not really a problem for the attackers

Arbitrary kernel memory read/write is sufficient

Isn’t it?…

37 / 40

Kernel protections

 PPL/APRR
 Tries to protect against arbitrary read/write/exec
 Protects the page table and the virtual mapping of the

physical memory
 Protects the codesigning structures

Page code signing information

Trustcache

JIT entitlements

May be used to protect more data!
 You need a PPL bypass to write some pages

The most obvious one require an arbitrary code exec

Conclusion

39 / 40

Conclusion

 Apple takes defense in depth very seriously
 This not a jailbreak-only motivation :)

 Full jailbreak is now highly-costly
 Public jailbreaks do not provide persistence anymore

 Future will be harder for attackers/jailbreakers
 Expect more PAC signed pointers
 ARM v8.5-A Memory Tagging is coming…

 A LOT more information is in the paper, read it :)

THANK YOU FOR YOUR ATTENTION

ANY QUESTIONS?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

