
Date: 05/06/2019

For: SSTIC

Presenters: Eloi Benoist-Vanderbeken, Fabien Perigaud

WEN ETA JB?

A 2 million dollars problem

2 / 40

Who are we

 Eloi Benoist-Vanderbeken

@elvanderb

 Fabien Perigaud

@0xf4b

 Working for Synacktiv:
 Offensive security company
 55 ninjas
 3 teams: pentest, reverse engineering, development
 4 sites: Paris, Toulouse, Lyon, Rennes

 Reverse engineering team coordinator and vice-coordinator
 21 reversers
 Focus on low level dev, reverse, vulnerability research/exploitation
 If there is software in it, we can own it :)
 We are hiring!

Introduction

4 / 40

Introduction

 More and more interest in iOS security
 High demand
 High bounties – up to $2 million on Zerodium

 More and more security features
 Gigacage, S3_4_c15_c2_7, SEP, KTRR, RoRgn, PAC, APRR, PPL, etc.
 Often hardware based

 Hard to follow for a newcomer
 Even if there is more and more public doc on the subject

 Typical chain:
 Initial code execution

zeroclick / one click
 LPE
 Persistence

5 / 40

Introduction

 More and more interest in iOS security
 High demand
 High bounties – up to $2 million on Zerodium

 More and more security features
 Gigacage, S3_4_c15_c2_7, SEP, KTRR, RoRgn, PAC, APRR, PPL, etc.
 Often hardware based

 Hard to follow for a newcomer
 Even if there is more and more public doc on the subject

 Typical chain:
 Initial code execution

zeroclick / one click
 LPE
 Persistence

Browser
Exploitation

7 / 40

Browser exploitation 101

 Apple Safari
 Uses open-source WebKit engine

WebCore: rendering engine

JavaScriptCore: JavaScript engine

 First step: gain arbitrary R/W primitives
 Abuse JavaScript objects allowing arbitrary data

storage

8 / 40

Browser exploitation 101

 Array objects
 Pointer to a storage buffer
 Length on 32-bits

 Arbitrary R/W (should be) easy
 Corrupt storage buffer pointer using the vulnerability
 Read or Write the content

9 / 40

Gigacage

 Enabled for “dangerous” objects

 Idea: “encage” the dangerous storage buffers in a
32 GB zone

 Size corruption? Still in the gigacage!

 Pointer corruption? Still in the gigacage!
For all accesses, pointer is masked and added to the gigacage base

10 / 40

Browser exploitation 101 (again)

 Second step: execute shellcode
 Modern browsers use JIT
 JIT page was allocated as RWX
 Abuse JIT page!

 Execution Howto:
 Create function
 Make it JIT
 Copy shellcode over function code
 Profit! (this still works on macOS)

11 / 40

iOS RWX considerations

 RWX mapping is forbidden by defaut
 In every iOS process

 Entitlement dynamic-codesigning
 Allows a single RWX mapping

mmap(…, MAP_JIT | … , …)
 Only granted to Safari

12 / 40

JIT Page protections (< A11)

 Separated WX Heaps
 JIT Page remapped as RW at a random address

 Original JIT Page marked as RX

 A jitted function is created in the RX mapping to
write to the RW mapping

 This function is marked as X-only

 A R/W primitive can’t be used alone to write
arbitrary code to the JIT Page

13 / 40

JIT Page protections (< A11)

 A ROP Chain is required to be able to call
jitWriteSeparateHeapsFunction()

14 / 40

JIT Page protections (A11)

 New system register S3_4_c15_c2_7
 Allows changing permissions on RWX pages

atomically
 No more separated RX and RW mappings

static inline void* performJITMemcpy(void *dst, const void *src, size_t n)
{
[...]

if (useFastPermisionsJITCopy) {
 os_thread_self_restrict_rwx_to_rw();
 memcpy(dst, src, n);
 os_thread_self_restrict_rwx_to_rx();
 return dst;
}

[...]
}

15 / 40

JIT Page protections (>= A11)

 PerformJITMemcpy is not exported
 Inlined in functions using it
 ROP made harder: have to jump in the middle of a

function generating JIT code

 Bypass still possible through ROP on A11
 … but A12 prevents ROP!

16 / 40

PAC (>= A12)

 Pointer Authentication Code
 Cryptographically sign “dangerous” pointers
 Up to 5 different keys depending on pointer type

and operation
Instruction pointers → Key A and B

Data pointers → Key A and B

Signature of raw data → Key C
 Specific instructions to sign and authenticate

pointers
 Signatures are context-dependent!

17 / 40

PAC (>= A12)

 In userland:
 Pointers use 39-bits + 1-bit (for user/kernel pointer

distinction)
 24 bits can be used for signature
 … but only 16 bits are used for userland pointers

18 / 40

PAC (>= A12)

 Examples:
 PACIA X8, X9 → Sign X8 using Instruction

Pointers Key A, with context X9
 AUTIB X8, X9 → Authenticate X8 signature using

Instruction Pointers Key B, with context X9
 BLRAAZ X8 → Branch and Link on X8 after

Authentication with Instruction Key A, and a null
context

19 / 40

PAC (>= A12)

 Consequences
 ROP is dead (unless ability to forge B-signed

pointers)
 Pointers substitution is dead if pointers are signed

with a non-null context

 Pointers substitution can still be performed
if signed with a null context!
 In iOS 12.0, JavaScriptCore objects vtables were

signed with a null context

20 / 40

PAC (>= A12) – Public attack

 Attack from Brandon Azad (Google Project-
Zero)
 AUT* instructions only set a specific bit in the

signature field if authentication is invalid
 PAC* instructions only flips a bit after computing the

signature if the given pointer is invalid

 What happens if an attacker can call a
function performing a signature context
change?

21 / 40

PAC (>= A12) – Public attack

 LDR X10, [X11,#0x30]!

 AUTIA X10, X11

 PACIZA X10

22 / 40

PAC (>= A12) – Public attack

 LDR X10, [X11,#0x30]!

 AUTIA X10, X11

 PACIZA X10

X10 0x0023fe71cc038fe8

Invalid signature (attacker-crafted)

23 / 40

PAC (>= A12) – Public attack

 LDR X10, [X11,#0x30]!

 AUTIA X10, X11

 PACIZA X10

X10 0x40000001cc038fe8

Error code

24 / 40

PAC (>= A12) – Public attack

 LDR X10, [X11,#0x30]!

 AUTIA X10, X11

 PACIZA X10

X10 0x00f831a1cc038fe8

Valid signature with bit 54 flipped

25 / 40

PAC (>= A12) – Public attack

 LDR X10, [X11,#0x30]!

 AUTIA X10, X11

 PACIZA X10

X10 0x00f831a1cc038fe8

X10 0x00b831a1cc038fe8

Valid signature with bit 54 flipped

Valid signature is retrieved

26 / 40

PAC (>= A12) – Current state

 No real bypass nowadays

 Known weaknesses have been fixed by Apple

 Only instruction pointers are signed in
WebKit for now

 In the future:
 Gigacage pointers will be replaced by signed data

pointers
 We can expect more and more signed pointers

Privilege
Escalation

28 / 40

Privilege escalation

 Goal
 To execute arbitrary code
 With arbitrary entitlements

 Attack surface
 User daemons
 Kernel extensions (KEXTs)
 Kernel

 Considerably reduced by the sandbox
 More and more actions are restricted
 More and more daemons are sandboxed
 More and more restrictions on existing profiles

29 / 40

The Sandbox KEXT

 Based on MACF framework
 Inherited from TrustedBSD
 Hooks in the kernel called before sensitive operations

 Can also be called via special syscalls
 For example by launchd to verify if a process can interact with a

daemon

 Decisions are based on rules
 Written in SandBox Profile Language (SBPL)

Scheme-based language
 Decide whether an action/a privilege is authorized/granted

 Since iOS 10, there is a system-wide sandbox profile
 Always evaluated even if the process is already sandboxed

30 / 40

Code signature

 Enforced on iOS

 Is used to grant entitlements
 Root of lots of security mechanisms

 Checked by the AppleMobileFileIntegrity (AMFI) KEXT

 Two possibilities
 Hash of the binary is stored in the kernel (Trust Cache) → platform binaries
 Hash is signed by a trusted certificate → 3rd party apps

 Certificate checks are complicated
 Delegated to a userland daemon, amfid
 Target of choice for years

 Apple considerably reduced amfid power over the years
 Impossible to fake a platform-binary from amfid
 Since iOS12, certificate chain is validated by CoreTrust, a KEXT

31 / 40

Userland daemons

 “Easy” target
 A “lot” of code is reachable

~120 services from WebKit

~280 from a normal application
 Versatile code base

 Can be used to reach a less sandboxed
context
 To later attack an other, more privileged daemon or a

KEXT for example

 Or to directly get access to sensitive data

32 / 40

Userland daemons – mitigations

 Platform binaries (PB)
 Have their hashes directly embedded in the kernel

Not checked by amfid
 Gives special rights and restrictions
 All daemons are platform binaries

 Mach API hardening
 Task ports give complete control over the corresponding

task

A little bit like process handles on Windows

Simplifies a lot the post-exploit steps
 Since iOS 10, a non-PB binary cannot use PB task ports

33 / 40

Userland daemons – mitigations

 PAC
 Kills ROP
 All process share the same A key…

Still possible to JOP
 But the AppStore doesn’t allow arm64e 3rd party apps (yet?)

Impossible to sign pointers in 3rd party apps
 There are 2 versions of the dyld shared cache loaded at

different (random) addresses

dyld shared cache addresses are unusable in AppStore apps

 It’s easier to exploit daemons from Safari than
from WhatsApp

34 / 40

Kernel and KEXTs

 Directly give the highest privileges
 But instantly crash the phone if something wrong happens…

 Very few KEXTs can be reached from the sandbox
 ~20 IOKit user client classes reachable from an application

Main way to interact with a KEXT
 ~15 from WebContent

 But you can send IOKit user client from an exploited
daemon to your process

 Kernel APIs are also restricted by the sandbox
 File/process creation/manipulation, IOCTLs, sockets, IPC,

sysctl etc.

35 / 40

Kernel protections

 RoRgn/KTRR
 Hardware protection introduced in the A10 processor
 Mark physical memory range as read only (RoRgn)
 Mark physical memory range as executable at EL1 (KTRR)
 KTRR is (of course) included in RoRgn
 Bypassed by Luca Todesco because not correctly reset after a deep

sleep

But no bypass since it was patched

36 / 40

Kernel protections

 PAC
 Complicate arbitrary code exec

Already bypassed by bazad but now patched

May eventually completely block arbitrary code exec
 Two options

perform data-only exploitation

leak and reuse pointers authenticated with a null context
 Not really a problem for the attackers

Arbitrary kernel memory read/write is sufficient

Isn’t it?…

37 / 40

Kernel protections

 PPL/APRR
 Tries to protect against arbitrary read/write/exec
 Protects the page table and the virtual mapping of the

physical memory
 Protects the codesigning structures

Page code signing information

Trustcache

JIT entitlements

May be used to protect more data!
 You need a PPL bypass to write some pages

The most obvious one require an arbitrary code exec

Conclusion

39 / 40

Conclusion

 Apple takes defense in depth very seriously
 This not a jailbreak-only motivation :)

 Full jailbreak is now highly-costly
 Public jailbreaks do not provide persistence anymore

 Future will be harder for attackers/jailbreakers
 Expect more PAC signed pointers
 ARM v8.5-A Memory Tagging is coming…

 A LOT more information is in the paper, read it :)

THANK YOU FOR YOUR ATTENTION

ANY QUESTIONS?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

