
DLL shell game and other misdirections: the

Windows’s native loader is a magician

Lucas Georges
lucas.georges@synacktiv.com

Synacktiv

Abstract. Windows developers extensively use shared libraries (DLLs)
in order to maximize code reuse and update subcomponents independently
on deployed systems. However, using shared libraries also opens up a
myriad of issues coming from DLL incompatibilities, also known as DLL
Hell (or more generically speaking dependency hell). That’s why over the
years the Windows core team has implemented various magic tricks based
on DLL redirection to keep systems up to date while retaining backwards
compatibility.

In this article we present several of these sleight of hands as well as other
ways to dynamically load libraries, and some vulnerabilities that can be
exploited via DLL hijacking still present in modern software.

Finally, this article also present Dependencies [7], a tool written by the
author to analyze and troubleshoot DLL dependency issues on modern
Windows binaries.

1 Introduction

A DLL (Dynamic-link library) is a shared library that has the same
file format as Windows EXE files: the PE (Portable Executable). It is
usually used to provide code that can be executed by other applications
and to allow them to be structured in a modular fashion.

For example, if a programmer wants to write code with registry access,
he can use the functions exported by the library advapi32.dll that
exports code to manipulate the Windows registry.

A DLL implements and provides exported functions for any application
that can import and call them. The PE file header includes information
about external functions used from a library and functions to be used by
other applications. This information is stored respectively in the Import
and the Export Directories and are parsed by the Windows loader to
resolve the dependencies.

A DLL can be loaded at process creation if it is present in the
executable’s Import Directory entries, or dynamically through the
LoadLibrary function.

2 DLL shell game and other misdirections

1.1 Dependency resolution

When a process is created, the kernel performs some operations such
as setting up the EPROCESS object, initializing the PEB and mapping
ntdll.dll in the process memory space.

A thread is created by the kernel in the process context and the
function LdrInitializeThunk is executed. It is exported by ntdll.dll

and is used to initialize the loader. The functions that are part of the
loader are easily identified (their names begin with Ldr*) and are located
in the ntdll module.

Among other things, the Windows loader is responsible for parsing
the PE File header and resolve the dependencies.

1. The Import Directory from the PE Header is parsed to know which
DLLs are needed. For each DLL, a first check is done to know if it
is already loaded by checking the structure PEB_LDR_DATA from the
PEB. This structure contains a list of the loaded modules. If the
DLL is a known DLL, it has already been loaded at startup and is
accessible through the global memory mapped file. Otherwise the
DLL is loaded and mapped in the process address space (relocations
are also performed if needed by parsing the .reloc section).

2. When the DLL is loaded, the EAT (Export Address Table), which
contains the offset (RVA) of the functions exported by the module,
is parsed to look for the functions needed by the application. The
absolute address of these functions are then computed by adding
the module base address. The IAT (Import Address Table) of the
application will be filled with these addresses. The IAT is a table of
function pointers. It is useful because a static address of a function
exported by a DLL cannot be called directly 1. Indeed, at compile
time, the addresses where the modules will be loaded in the process
are not known. So a function pointer located in the IAT will be
called (filled by the loader during dependencies resolution).

3. Last but not least, the main entry function DllMain is called for
each of the modules loaded in the process address space 2.

There is also a special type of exported functions that only act as
forwarder. For example, the function EnterCriticalSection exported

1. Except if the flag IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE of the DLLCharac-
teristics field from the PE Header is not set.

2. It does not happen if the flag IMAGE_FILE_DLL is not set in the field
Characteristics in the PE File Header.

L. Georges 3

by Kernel32 acts only as a redirection to RtlEnterCriticalSection

exported by another DLL. In the case of a forwarded export, the loader
perform the exact same steps as above.

1.2 Windows Search folders

When an application does not provide the full path of a DLL to be
loaded or does not use other mechanisms such as a manifest or a DLL
redirection, Windows attempts to locate the DLL by searching through a
list of locations in a fixed order.

1. The directory from which the application is loaded,

2. The system directory (for example, C:\Windows\System32),

3. The 16-bit system directory (for example, C:\Windows\System),

4. The Windows directory (for example, C:\Windows),

5. The current directory,

6. Directories that are listed in the PATH environment variable.

This order is the one that is used nowadays with the Safe DLL search

mode enabled. When it is disabled (by default on Windows XP), Windows
will look for the file to be loaded in the current directory before looking
at the system directory.

Malware authors have used this search feature for years by placing
a malicious DLL in the same folder as an application that loads a DLL
without providing the full path. If the DLL has the same name and the
same export names as the legit one, it will be used by the application [13].

The standard search order can be changed by calling the function
LoadLibraryEx with the flag LOAD_WITH_ALTERED_SEARCH_PATH or by
calling the SetDllDirectory function [12]. By using these functions, a
specific directory can be specified to look for the DLL. In this case, the
system will begin to search in this directory and then (if the DLL was not
found), in the other folders in the default search order 3.

1.3 Dependency Walker, a tool to analyze loading dependencies

Dependency Walker [14] is a program used to list dependent modules
of a Windows 32/64-bit Portable Executable file. It displays a recursive

3. The function Add/SetDllDirectory or the function LoadLibraryEx can be called
with other flags such as LOAD_LIBRARY_SEARCH_DLL, LOAD_LIBRARY_SEARCH_SYSTEM32

to tweak the search order.

4 DLL shell game and other misdirections

tree of all dependent modules and can list all the exported and imported
functions for each of the modules.

It was included in several Microsoft products such as Visual Studio or
the Windows SDK but it was never publicly supported by Microsoft. The
project seems to be discontinued as the last version was built in 2006.

Fig. 1. Dependency Walker.

As shown in figure 1, Dependency Walker is outdated as it does not
handle the API-sets introduced in Windows 7. The main motivation
behind writing Dependencies [7], presented in figure 2 was to have an
open-source alternative that could be maintained and evolve along the
Windows DLL loader.

Fig. 2. Dependencies.

L. Georges 5

2 Redirection mechanisms

2.1 API Set DLLs

API Set DLLs is a fairly documented feature of Windows (though
mainly by third-party researchers [2]) introduced by Microsoft since Win-
dows 7. They were part of a major refactoring necessary to accommodate
the fact that Windows uses the “same” NT kernel for a great diversity
of platforms (desktops, servers, XBox and historically Windows Phone).
You can read more on this, straight from Windows developers themselves:
One Windows Kernel [11].

API Sets DLLs like api-ms-win-eventing-provider-l1-1-0.dll

are “virtual” DLLs in the sense they are not actually present on disk. In-
stead there is a mapping (the API Set schema) which indicates which “host”
DLL actually implements the API Set contract (e.g. kernelbase.dll for
desktop Windows). This mapping is stored as a hash table present in every
user process memory mapping and is accessible via the PEB.ApiSetMap

pointer. Here is how the API Set schema itself is loaded (see also figure 3):

1. winload.exe (Windows Bootloader) loads the ApiSetSchema.dll

from an hard-coded path in System32, and extract its .apiset

section into a member of KeLoaderBlock, the loading context used
to pass data between boot world and kernel world.

2. winload.exe loads and hand over to ntoskrnl.exe, Windows NT
kernel. ntoskrnl.exe is actually compiled as a Windows driver (a
special one though) and winload.exe’s KeLoaderBlock is passed
through ntoskrnl.exe’s “DriverEntry” as its DriverObject.

3. On kernel startup, MiInitializeApiSets is called, and copies the
API Set schema from the KeLoaderBlock into an undocumented
static variable (called nt!g_ApiSetSchema in the drawing).

4. On a new user process creation (NtCreateProcess),
PspSetupUserProcessAddressSpace is called, and calls
MmMapApiSetView in order to create a new memory map-
ping and copy the API Set schema into the user process virtual
memory. The user process EPROCESS->Peb->ApiSetMap variable
is then modified to point to this new memory mapping.

Once the ApiSetMap is set, the API Set redirection is handled entirely
in userland [5], via the use of helpers such as:

— ntdll!ApiSetQueryApiSetPresence: high-level API which only
checks whether the specified DLL name is associated with an API
Set contract;

6 DLL shell game and other misdirections

— ntdll!ApiSetResolveToHost: high-level API to lookup the host
DLL possibly associated with an API Set contract name;

— ntdll!ApiSetpSearchForApiSet: ApiSetMap hash table lookup;
— ntdll!ApiSetpSearchForApiSetHost: discriminate between hosts

DLL in the (rare) case an API Set contract points to several hosts.

Fig. 3. API Set Schema load mechanism.

2.2 WinSxS

WinSxs (also known as SxS, side-by-side assemblies or Fusion) is a file
redirection mechanism specifically created to fix the “DLL dependency
Hell” issue.

There is a special resource called a Manifest, which can be either
embedded within the process PE file or in an external file. In this man-
ifest, specific dependencies can be added, and more importantly their
“compatibility version” can be specified. This is mainly used to handle
comctl32.dll dependency (which orchestrates the GUI side and gives
applications a Windows “look and feel”) in order to keep a program’s
“theme” consistent across Windows OS versions.

L. Georges 7

Every SxS dependency is declared using an external file via
the <file> anchor like in the Chrome (listing 1), or by using the
<dependentAssembly> XML anchor for a Publisher dependency, as
Microsoft.Windows.Common-Controls for notepad.exe (listing 2).

<assembly

xmlns =’urn:schemas - microsoft - com:asm .v1 ’ manifestVersion =’1.0 ’>

<assemblyIdentity

name=’71.0.3578.98 ’

version =’71.0.3578.98 ’

type=’win32 ’/>

<file name=’chrome_elf .dll ’/>

</ assembly >

Listing 1. C:\Program Files (x86)\Google\Chrome\Application\

71.0.3578.98\71.0.3578.98.manifest external manifest

<assembly xmlns =" urn:schemas - microsoft - com:asm .v1" manifestVersion ="

1.0">

<assemblyIdentity name=" Microsoft . Windows . Shell . notepad "

processorArchitecture =" amd64 " version =" 5.1.0.0 " type=" win32 " /

>

<description >Windows Shell </ description >

<dependency >

<dependentAssembly >

<assemblyIdentity type=" win32 " name=" Microsoft . Windows .Common -

Controls " version =" 6.0.0.0 " processorArchitecture ="*"

publicKeyToken ="6595 b64144ccf1df " language ="*" />

</ dependentAssembly >

</ dependency >

<trustInfo xmlns =" urn:schemas - microsoft - com:asm .v3">

<security >

<requestedPrivileges >

<requestedExecutionLevel level =" asInvoker " uiAccess =" false "

/>

</ requestedPrivileges >

</ security >

</ trustInfo >

<application xmlns =" urn:schemas - microsoft - com:asm .v3">

<windowsSettings >

</ windowsSettings >

</ application >

</ assembly >

Listing 2. C:\Windows\System32\notepad.exe embedded manifest

WinSxS redirection is handled by csrss.exe, another critical pro-
cess of Windows and part of the “legacy” win32 subsystem (along with
smss.exe, lsass.exe, winit.exe, winlogon.exe and services.exe).
On a new process creation, the csrss.exe service in charge for the
corresponding session is notified by the kernel, and tries to parse the

8 DLL shell game and other misdirections

application’s manifest. The manifest is used to create an “activation con-
text” listing every DLL that needs to be side-loaded for this process. This
activation context is then injected into the newly created target process
PEB, and accessed by ntdll.dll on a module load.

WinSxS redirection is extremely complicated and so ancient probably
not even most Windows developers know exactly what’s going on under-
neath, but here is a basic searching sequence (taken from the MSDN [1]):

1. Side-by-side searches the WinSxS folder (\\SystemRoot\WinSxs\).

2. $(PWD)\<assemblyname>.DLL

3. $(PWD)\<assemblyname>.manifest

4. $(PWD)\<assemblyname>\<assemblyname>.DLL

5. $(PWD)\<assemblyname>\<assemblyname>.manifest

This is confirmed by looking at sxs.dll, the DLL in charge of probing
and parsing application manifests (see figure 4).

Fig. 4. sxs.dll!SxspGenerateManifestPathForProbing

As an example of external manifest redirection, figure 5 describes
signtool.exe, an executable distributed with the WDK for developers
to sign their PE binaries with a valid Authenticode signature, loading
wintrust.dll, mssign32.dll and appxsip.dll via WinSxS side-loading.

This example is pretty egregious since wintrust.dll is actually a
KnownDll, and should not be subject to DLL redirection.

WinSxS has also a fairly special (and fairly dangerous) redirection
mechanism since it respects the old .LOCAL resolution order, where a
DLL located in a .local folder (in the same current directory) can have
precedence over a DLL present in a system path. This is the equivalent
of the LD_PRELOAD macro in Linux, and has pretty much disappeared in
modern Windows systems since it has been widely abused for UAC bypasses
and privilege escalations.

As a rule of thumb, do not run trusted or privileged code from an
untrusted location (e.g. a world writable folder) if WinSxS is involved
since it allows an attacker a good variety of DLL redirections, based on
the primitive he has.

L. Georges 9

(a) without an external manifest (b) with an external manifest

Fig. 5. Impact of an external manifest on signtool’s modules dependency reso-
lution: wintrust.dll which is usually loaded from C:\Windows\System32 is now
loaded from the current directory.

2.3 KnownDlls

KnownDlls is an old Windows “trick” used to speed up process initial-
ization by caching “hot” system DLLs that are pretty much always required
(e.g. ntdll.dll, kernel32.dll, kernelbase.dll, etc.). The KnownDlls

feature is implemented inside smss.exe, Windows Session Manager.
When a new process is launched, instead of loading ntdll.dll from

the disk, the NT loader first checks if the module name is present in
a special section called \KnownDlls (for x64 binaries) and, if present,
maps it directly into the process memory using a Copy-On-Write (COW)
mechanism. This caching feature has the big advantage to reduce disk
I/O by compensating with a larger memory footprint (which is plentiful
on modern systems anyway).

The DLLs to load as KnownDlls are listed under the registry key
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session

Manager\KnownDLLs.

PS C:\ Users \User > cd HKLM :\

PS HKLM :\> cd SYSTEM \ CurrentControlSet \ Control \ Session Manager \

KnownDLLs

PS HKLM :\ SYSTEM \ CurrentControlSet \ Control \ Session Manager \ KnownDLLs >

Get-ItemProperty .

_wow64 : wow64 .dll

_wow64cpu : wow64cpu .dll

10 DLL shell game and other misdirections

_wow64win : wow64win .dll

_wowarmhw : wowarmhw .dll

advapi32 : advapi32 .dll

clbcatq : clbcatq .dll

combase : combase .dll

COMDLG32 : COMDLG32 .dll

coml2 : coml2 .dll

DifxApi : difxapi .dll

gdi32 : gdi32 .dll

gdiplus : gdiplus .dll

IMAGEHLP : IMAGEHLP .dll

IMM32 : IMM32 .dll

kernel32 : kernel32 .dll

MSCTF : MSCTF .dll

MSVCRT : MSVCRT .dll

NORMALIZ : NORMALIZ .dll

NSI : NSI.dll

ole32 : ole32 .dll

OLEAUT32 : OLEAUT32 .dll

PSAPI : PSAPI .DLL

rpcrt4 : rpcrt4 .dll

sechost : sechost .dll

Setupapi : Setupapi .dll

SHCORE : SHCORE .dll

SHELL32 : SHELL32 .dll

SHLWAPI : SHLWAPI .dll

user32 : user32 .dll

WLDAP32 : WLDAP32 .dll

WS2_32 : WS2_32 .dll

Listing 3. KnownDlls in registry.

However, there are sightly more KnownDlls listed in the \KnownDlls

section than in the registry key, since the NT loader will cache every DLLs
in the registry key but also their own DLL dependencies.

By listing the DLLs present in the \KnownDLLs section (listing 4), one
can see that ntdll.dll is present in this section while not being part of
the values in the registry (listing 3), since it’s probably loaded by almost
every DLL registered in the registry key.

PS C:\ Users \User > .\ Dependencies .exe - knowndll

C:\ WINDOWS \ system32 \ advapi32 .dll

C:\ WINDOWS \ system32 \ bcryptPrimitives .dll

C:\ WINDOWS \ system32 \ cfgmgr32 .dll

C:\ WINDOWS \ system32 \ clbcatq .dll

C:\ WINDOWS \ system32 \ combase .dll

C:\ WINDOWS \ system32 \ COMCTL32 .dll

C:\ WINDOWS \ system32 \ COMDLG32 .dll

C:\ WINDOWS \ system32 \ coml2 .dll

C:\ WINDOWS \ system32 \ CRYPT32 .dll

C:\ WINDOWS \ system32 \ difxapi .dll

C:\ WINDOWS \ system32 \ FLTLIB .DLL

C:\ WINDOWS \ system32 \ gdi32 .dll

C:\ WINDOWS \ system32 \ gdi32full .dll

L. Georges 11

C:\ WINDOWS \ system32 \ gdiplus .dll

C:\ WINDOWS \ system32 \ IMAGEHLP .dll

C:\ WINDOWS \ system32 \ IMM32 .dll

C:\ WINDOWS \ system32 \ kernel . appcore .dll

C:\ WINDOWS \ system32 \ kernel32 .dll

C:\ WINDOWS \ system32 \ KERNELBASE .dll

C:\ WINDOWS \ system32 \ MSASN1 .dll

C:\ WINDOWS \ system32 \ MSCTF .dll

C:\ WINDOWS \ system32 \ msvcp_win .dll

C:\ WINDOWS \ system32 \ MSVCRT .dll

C:\ WINDOWS \ system32 \ NORMALIZ .dll

C:\ WINDOWS \ system32 \NSI.dll

C:\ WINDOWS \ system32 \ ntdll .dll

C:\ WINDOWS \ system32 \ ole32 .dll

C:\ WINDOWS \ system32 \ OLEAUT32 .dll

C:\ WINDOWS \ system32 \ powrprof .dll

C:\ WINDOWS \ system32 \ profapi .dll

C:\ WINDOWS \ system32 \ PSAPI .DLL

C:\ WINDOWS \ system32 \ rpcrt4 .dll

C:\ WINDOWS \ system32 \ sechost .dll

C:\ WINDOWS \ system32 \ Setupapi .dll

C:\ WINDOWS \ system32 \ SHCORE .dll

C:\ WINDOWS \ system32 \ SHELL32 .dll

C:\ WINDOWS \ system32 \ SHLWAPI .dll

C:\ WINDOWS \ system32 \ ucrtbase .dll

C:\ WINDOWS \ system32 \ user32 .dll

C:\ WINDOWS \ system32 \ win32u .dll

C:\ WINDOWS \ system32 \ windows . storage .dll

C:\ WINDOWS \ system32 \ WINTRUST .dll

C:\ WINDOWS \ system32 \ WLDAP32 .dll

C:\ WINDOWS \ system32 \ wow64 .dll

C:\ WINDOWS \ system32 \ wow64cpu .dll

C:\ WINDOWS \ system32 \ wow64win .dll

C:\ WINDOWS \ system32 \ WS2_32 .dll

Listing 4. List of DLLs present in the \KnownDLLs section.

The KnownDlls load mechanism also doubles down as a security feature
since its has the most precedence over regular search folders, and the loader
is assured to load a “good” image.

The folder where the loader searches for
KnownDlls used to be under the registry key
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session

Manager\KnownDLLs\DllDirectory. Instead, it’s hard-coded using the
undocumented ntdll.dll API RtlGetNtSystemRoot (which points to
C:\Windows) and the values in figure 6

The KnownDlls registry key can only be updated by the
TrustedInstaller user in order to prevent attackers from backdoor-
ing the KnownDLLs feature (although getting TrustedInstaller is not
that big of an hassle for an attacker with a remote access, as shown by
J.Forshaw [3]).

12 DLL shell game and other misdirections

Fig. 6. sms!SmpInitializeKnownDlls is the function responsible to initialize
KnownDlls sections based on the constants shown above.

smss.exe actually “abuses” the fact that LdrVerifyImage-

MatchesChecksumEx provides a callback feature which is called on every
import found in the checked Image in order to recursively add every DLL
dependencies found in the KnownDLLs list, as shown on listing 5 4.

NTSTATUS NTAPI LdrVerifyImageMatchesChecksumEx (HANDLE Image ,

LDR_VERIFY_IMAGE_INFO * VerifyInfo)

{

// Load and map DLL Image

status = NtCreateSection ();

status = ZwMapViewOfSection ();

/* [...] */

// actually check the checksum

4. Take note that this transitive dependency load only applies to “direct” imports
but not for delay-load imports, this will be of significance later on in this article.

L. Georges 13

if (! LdrVerifyMappedImageMatchesChecksum (NULL ,

_ImageSectionOffset , _ImageInformation . EndOfFile . LowPart))

status = STATUS_IMAGE_CHECKSUM_MISMATCH ;

/* [...] */

// Retrieve IMPORT_DATA_DIRECTORY

status = RtlpImageDirectoryEntryToDataEx (

NULL , NULL ,

IMAGE_DIRECTORY_ENTRY_IMPORT ,

& _LastRvaSection ,

& Import

);

// Iterate over IMAGE_IMPORT_DESCRIPTOR entries

while (1)

{

ImportNameRVA = Import -> Name ;

if (! ImportNameRVA)

break ;

ImportNameAscii = RtlImageRvaToVa (NtHeaders , NULL , ImportNameRVA

, & _LastRvaSection);

// VerifyInfo -> CallbackInfo . Callback is in reality sms .exe !

SmpProcessModuleImports (HANDLE SmpContext , char * ImportName)

// which add every import dependencies to the KnownDlls list .

VerifyInfo -> CallbackInfo . Callback (

VerifyInfo -> CallbackInfo . CallbackParameter ,

ImportNameAscii

);

++ Import ;

}

return status ;

}

Listing 5. Recursive processing of KnownDlls imports.

2.4 Delay-load DLL

Delay-loading is an hybrid way to load DLL at runtime. The idea
behind it is to speed up process initialization by loading some dependencies
in a lazy way: the actual DLL load (and associated cost from disk I/O)
will be done the first time the parent process calls the import API. This
is the same lazy loading idea that have been applied to various resources:
virtual memory commits (via #PF interrupts), modern websites “infinite
scrolling”, etc.

This can be used via the link directive DELAYLOAD:\$(dll_name)

and, instead of creating an IMAGE_IMPORT_DESCRIPTOR entry in the as-
sembled PE file import data directory, a similar structure entry called
IMAGE_DELAYLOADIMPORT_DESCRIPTOR will be written in the delay-load

14 DLL shell game and other misdirections

data directory. More interesting, the linker will also redirect every call to
the imported APIs that are now delay-loaded by a resolver stub, usually
called __tailMerge_XXXX_dll.

The “new” version of resolving delay-loading rely on call-
ing kernelbase.dll!ResolveDelayLoadedAPI’s API (which relies on
ntdll.dll!LdrResolveDelayLoadedAPI) since it has the advantage of
being always compatible with the current OS the binary is running on.

However, older binaries used the previous version which embed a full
DLL resolver inside the stub 5.

Both versions used LoadLibrary underneath for resolving DLLs loca-
tion, but the older helper does not handle IAT export suppression [9] and
that’s probably the reason why it’s not used anymore.

2.5 System32 redirection for 32-bit binaries

With the introduction of 64-bit architectures, most OSes need to
support running 32-bit as well as 64-bit application (more commonly
known as “multiarch”). While most Linux distributions, like Debian, chose
to create a new folder for 64-bit system shared libs (/lib64/, while /lib/

is for 32-bit binaries), Windows curiously chose to do the opposite.
%windir%\System32\ which used to host system DLLs for 32-bit Win-

dows (also called x86 DLLs) now host 64-bits DLLs on 64-bit architectures
(also called x64) while 32-bits DLLs (also called WoW64) are located in a
new folder called %windir%\SysWow64\. The reason behind this philosophy
is not frankly clear, but it was probably to ensure a smoother transition
from 32- to 64-bit OS architecture. It’s pretty frequent to see hard-coded
%windir%\System32\ paths in binaries that need to start services and
initialize drivers.

However this decision is a major pain point for Windows: it breaks
backwards compatibility. Thanks to WoW64 (Windows on Windows64)
emulation, a previously compiled 32-bit executable can still run in 64-bit
OSes, but tries to access %windir%\System32\ in order to load addi-
tional DLLs or other files. In order to prevent the legacy programs from
breaking, Windows developers have implemented a file system redirection
which symlink %windir%\System32\ to %windir%\SysWow64\ for WoW64
binaries.

This redirection is implemented in userland at WoW emulation level,
handled by wow64.dll, wow64cpu.dll and wow64win.dll binaries, usu-
ally when translating 32-bit system calls into native syscalls. For example,

5. Here an example of a full import resolver: https://gist.github.com/lucasg/

f3168c24615a9852963ae6c762a65926#file-delayload_helper_full-c.

L. Georges 15

wow64.dll!whNtCreateFile is in charge of emulating NtCreateFile for
32-bit binaries, and calls wow64.dll!RedirectPath to actually redirect
file operations on %windir%\System32\ to %windir%\SysWow64\. Table 1
describes these redirections.

Original Path Redirected Path

C:\Windows\System32\ntdll.dll C:\Windows\SysWOW64\ntdll.dll

C:\Windows\Sysnative\ntdll.dll C:\Windows\System32\ntdll.dll

C:\Windows\System32\spool C:\Windows\System32\spool

\prtprocs\x64\winprint.dll \prtprocs\x64\winprint.dll

Table 1. WoW64 folder redirection.

If a WoW64 binary still want to access %windir%\System32\ resources,
it has three ways to do it:

— Disable the file system redirection by calling
kernel32!Wow64DisableWow64FsRedirection. However this
only disable the redirection on the calling thread (by updating a
flag on the current TEB structure) and should be quickly restored,
lest to have unintended consequences.

— Use %windir%\Sysnative\ which is a “virtual” folder (which is
not present on disk) which points to %windir%\System32\ on x64
systems. Wow64 exes can access native system file using this path.

— If the program has admin level privileges, place the resource in
a subfolder which is exempt from wow64 folder redirection (see
listing 6).

static UNICODE_STRING System32Exempts [] = {

RTL_CONSTANT_STRING ("\\ catroot "),

RTL_CONSTANT_STRING ("\\ catroot2 "),

RTL_CONSTANT_STRING ("\\ driverstore "),

RTL_CONSTANT_STRING ("\\ drivers \\ etc"),

RTL_CONSTANT_STRING ("\\ hostdriverstore "),

RTL_CONSTANT_STRING ("\\ logfiles "),

RTL_CONSTANT_STRING ("\\ spool ")

};

Listing 6. Wow64 folder redirection exemptions.

In the end this is a pretty known file redirection, but it can break
WoW64 executables in really subtle ways (for example by mmap-ing the
wrong system DLL).

16 DLL shell game and other misdirections

Process
Initialization

Is Apiset ?

Load
Dependencies

Dyamic Load

Apiset Resolution

Is WinSxs ? WinSxs
Resolution

is KnownDll ? Load from
\KnownDLLs

DLL Search order

Load from
Disk

Y

Y

Y

N

N

N

kernelbase!LoadLibraryEx

LdrpInitializeProcess

LdrpLoadDependentModule

LdrpPreprocessName

LdrpLoadDllInternal

LdrpMapDllNtFilename

ApiSetHostResolveToHost

RtlDosApplyFileIsolationRedirection

DLL
Redirection

DLL
Search

LdrpSearchPath +
LdrpResolveDllName

LdrpLoadKnownDll

Fig. 7. Schematic flow chart of a DLL Dependency resolution and load.

L. Georges 17

2.6 Flow Chart

Figure 7 is a diagram summing up the various redirection mechanisms
shown previously. Whether the module is loaded at process initializa-
tion (ntdll!MapAndSnapDependencies) or dynamically at a later time
(kernel32!LoadLibrary), the control flow is the same 6. The names below
each step in the flow match the ntdll function responsible for the step in
question, however those names are internal (coming from PDB files) and
might be subject to future changes.

3 Vulnerabilities

In this part we present two vulnerabilities exhibiting features from
DLL redirection mechanisms presented before:

— a User to Admin local privilege escalation affecting certain ASUS
Zenbook models;

— a User to SYSTEM local privilege escalation affecting Opera, a
major web browser.

The bugs are explained by the fact that privileged processes are
executing code from world-writable folders. Both vulnerabilities have now
been patched, but many others similar issues still probably lurks within
third-party software.

3.1 Delay-load DLL hijack

On some ASUS Zenbook laptops, there is a scheduled task installed by
default which launches an executable running with High Integrity level on
user logon: C:\Program Data\AsTouchPanel\AsPatchTouchPanel.exe.

At this point, what this process does is not exactly obvious, but it seems
to be a software stub for a “faulty” touch panel hardware feature on some
laptops. However, something is sure: this is a bad idea to run privileged
applications inside the Program Data folder, as shown in listing !

PS C:\ ProgramData \ AsTouchPanel > (Get-Acl C:\ ProgramData \

AsTouchPanel \ AsPatchTouchPanel .exe). Access

FileSystemRights : FullControl

AccessControlType : Allow

IdentityReference : NT AUTHORITY \ SYSTEM

6. Actually there is a minor difference: ntdll!LdrpLoadDependentModule (called by
ntdll!MapAndSnapDependencies) is heavily inlined while ntdll!LdrpLoadDLL (called
by kernel32!LoadLibrary) is not, probably a byproduct of PGO (Profile-Guided
Optimization.)

18 DLL shell game and other misdirections

IsInherited : True

FileSystemRights : FullControl

AccessControlType : Allow

IdentityReference : BUILTIN \ Administrators

IsInherited : True

FileSystemRights : ReadAndExecute , Synchronize

AccessControlType : Allow

IdentityReference : BUILTIN \ Users

IsInherited : True

PS C:\ ProgramData \ AsTouchPanel > (Get-Acl C:\ ProgramData \ AsTouchPanel

). Access

FileSystemRights : FullControl

AccessControlType : Allow

IdentityReference : NT AUTHORITY \ SYSTEM

IsInherited : True

FileSystemRights : FullControl

AccessControlType : Allow

IdentityReference : BUILTIN \ Administrators

IsInherited : True

FileSystemRights : 268435456

AccessControlType : Allow

IdentityReference : CREATOR OWNER

IsInherited : True

FileSystemRights : ReadAndExecute , Synchronize

AccessControlType : Allow

IdentityReference : BUILTIN \ Users

IsInherited : True

FileSystemRights : Write

AccessControlType : Allow

IdentityReference : BUILTIN \ Users

IsInherited : True

Listing 7. ACLs sets on the executable and the parent directory

Since C:\Program Data\AsTouchPanel\AsPatchTouchPanel.exe

was created by the Admin user, regular users can’t simply rewrite it.
However, by looking at the last ACL entry shown in listing 7, users have a
Write privilege on the parent folder. Indeed, %PROGRAM_DATA% is a folder
created for applications to store user-independent data (instead of using
the registry or local AppData folders and thus this directory (and any
subfolder that inherit its ACL from it) is User R/W by default.

An authenticated user have several privileges at his disposal. Specif-
ically he can create files and folders in the same directory. With this
primitive, it may be possible to plant a malicious DLL somewhere in the
DLL search path. A first look at the dependency tree in figure 9 obtained

L. Georges 19

Fig. 8. There is actually quite a number of processes running as High Integrity...

Fig. 9. It’s KnownDlls all the way down.

20 DLL shell game and other misdirections

with Dependencies [7] is not very encouraging: AsPatchTouchPanel.exe

imports only KnownDlls that are not hijackable (except from WinSxS
redirection, but this card can’t be played here). And we’ve seen previously
that KnownDlls dependencies are also KnownDlls (as shown on figure 9),
which is recursively unhijackable... but is it really ?

During its main routine, AsPatchTouchPanel.exe calls
Setupapi.dll!SetupDiGetClassDevsW in order to enumerate PnP
nodes on the machine. Underneath, Setupapi.dll relays the call
to devobj.dll!DevObjCreateDeviceInfoList and that’s where it
get interesting. Since devobj.dll is a delay-load DLL loaded by
Setupapi.dll, it’s not part of KnownDlls. This means the NT loader
will try to load the DLL from the current directory before loading it from
C:\Windows\SysWoW64 (see figure 10).

Fig. 10. Procmon trace showing that DLL search hijack is possible.

From this point on this is a walk in the park: plant a custom
devobj.dll in C:\Program Data\AsTouchPanel and gain Admin privi-
leges next time the user logs on.

This vulnerability has been reported to the Asus Security team in
January 2019 and they pushed an update on vulnerable models in February.
Since the TPIC patch v4.0, the ACL on C:\Program Data\AsTouchPanel

has been fixed and is not accessible to users anymore.

L. Georges 21

3.2 WinSxS binary planting

When you install Opera, it sets up a scheduled task for its autoup-
date that runs every day (and at every startup), the binary C:\Program

Files\Opera\Launcher.exe, as NT AUTHORITY\SYSTEM. This task has an
interesting trace on ProcMon, as shown in figure 11.

Fig. 11. Opera autoupdater task procmon trace, running as SYSTEM in %TEMP%.

Without really reversing launcher.exe, we can get the gist of it:

1. launcher.exe copy installer.exe from C:\Program

Files\Opera\$(version)\installer.exe into a temporary
directory, C:\Windows\Temp\opera autoupdate

2. launcher.exe calls CreateProcess on the temporary executable

3. installer.exe is executed and also drops a temporary DLL
C:\Windows\Temp\Opera_installer_$(timestamp).dll which
it then loaded.

4. C:\Windows\Temp\opera autoupdate\installer.exe is auto-
matically deleted when the process exits.

The real issue here is to use %TEMP% (which still point to a world
writable folder even for SYSTEM processes) to run elevated processes.

At this point, we can attack this vulnerability from several points: you
can try to win the race between the moment where launcher.exe drops
installer.exe (TOC) and the moment where it launches the installer
(TOU) locking the executable from overwriting it. You can also try to
win the race on the DLL dropped, since the “random” part of the name
is pretty predictable. Or you can take advantage of the existing WinSxS
redirection (see figure 12).

installer.exe usually loads comctl32.dll from the WinSxS pub-
lisher folder, but you can force it to load it from the current directory by
planting a particular path (see figure 13).

The exploit code for the fake proxy DLL that creates a custom Sched-
uledTask using NT AUTHORITY\SYSTEM privileges is provided online [6].

22 DLL shell game and other misdirections

Fig. 12. WinSxS .local redirection is possible here.

Fig. 13. You need to craft a correct proxy DLL if you don’t want to crash the process.

Since Opera 58.0.3135.118, this vulnerability is fixed by setting correct
ACL on the opera autoupdate folder, making it only accessible from
admin level, as shown in listing 8.

PS C:\ Windows \Temp > (Get-Acl "C:\ Windows \Temp\ opera autoupdate ").

Access

FileSystemRights : 268435456

AccessControlType : Allow

IdentityReference : NT AUTHORITY \ SYSTEM

IsInherited : False

FileSystemRights : FullControl

AccessControlType : Allow

IdentityReference : NT AUTHORITY \ SYSTEM

IsInherited : False

FileSystemRights : 268435456

AccessControlType : Allow

IdentityReference : BUILTIN \ Administrators

IsInherited : False

FileSystemRights : FullControl

AccessControlType : Allow

IdentityReference : BUILTIN \ Administrators

IsInherited : False

Listing 8. Opera temporary folder’s ACL for autoupdate.

L. Georges 23

3.3 API Set Extensions abuse

There are two ways to extend the current API Set scheme:

— using a DynamicSchema extension;
— using an API Set Extension.

The dynamic method is a way to add optionals entries to the
schema based on the value of an associated predicate. The extension
list is currently hardcoded within the bootloader and used to load
traceext.sys only if an undocumented boot flag is set (this is checked
by winload!OslpDtraceExtensionEnabled):

More interestingly, the other method to extend the API Set schema
is done via an API Set Extension. API Set Extension are additional files
which “override” the default API Set schema that is also loaded at boot
time by winload.exe.

First things first, winload.exe checks if the current schema is
“sealed” (winload!ApiSetIsSchemaSealed): every API Set schema starts
with an API_SET_NAMESPACE struct entry which has a flag mem-
ber describing if the current schema is sealed. If set to true, the
current schema cannot be modified. However, the schema under
C:\Windows\System32\ApiSetSchema.dll is not currently sealed (but
maybe in the future).

winload!ApiSetpLoadSchemaExtensions enumerates every subkeys
within ApiSetSchemaExtensions registry key and tries to load the pointed
API Set file under the Filename key. Listing 9 shows an example of a
correct key set that will trigger a load.

PS C:\ Users \user > cd HKLM :\

PS HKLM :\> cd " SYSTEM \ CurrentControlSet \ Control \ Session Manager \

ApiSetSchemaExtensions \ CustomExt "

PS HKLM :\ SYSTEM \ CurrentControlSet \ Control \ Session Manager \

ApiSetSchemaExtensions \ CustomExt > Get-ItemProperty .

Filename : apisetschema-mylittleextensions .dll

Listing 9. Registering a new API Set extension;

The loaded API Set file must respect the same file format as the
original apisetschema.dll, and must be present in SystemRoot folder
(usually C:\Windows\System32). The extension API Set schema must be

24 DLL shell game and other misdirections

located at the start of a custom PE section called .apiset, and must
respect the file format described in figure 14.

Fig. 14. File format for an apiset extension schema. API_SET* structures are
defined in the Github repository for Windows internals [8]

This is a pretty annoying flat structure to craft since every field is
accessed by its offset from the start of the structure, and the whole schema
must be contained in a valid PE. 7

Here’s below the implementation of ApiSetComposeSchema which is
called to merge the default API Set schema and the extension we provide.

7. There are examples of how to make a single redirection schema using only C
code. [4]

L. Georges 25

There are several constraints we need to respect if we want winload.exe

to properly load our extension:
— The API Set contract must be of the form XXXXXXXXXXX-YY.dll.

ApiSetComposeSchema will rstrip everything after the last dash
char found: this is because API Set DLLs are versioned in the
following form: api-min-win-XXXXXXX-lM-m-p.dll with M, m and
p standing for major version, minor and patch. The rstrip operation
effectively ignores patch version.

— More importantly, the API Set contract must already be present in
the current API Set schema. Unfortunately, we can’t extend the
schema by adding new entries.

— Lastly, the API Set API_SET_VALUE_ENTRY that will be updated
must not be sealed.

After several hours debugging the windows bootloader, I managed
to extend ext-ms-win-hyperv-hvplatform-l1-1 which originally points
to winhvplatform.dll to make it point towards a controlled binary in
system32 called grosminet.dll:

<#

Before loading apiset extensions

#>

PS > .\ Dependencies .exe - apisets | Select-String hyper

ext-ms-win-hyperv-compute-l1-1 -> [vmcompute .dll]

ext-ms-win-hyperv-hgs-l1-1 -> [vmhgs .dll]

ext-ms-win-hyperv-hvemulation-l1-1 -> [winhvemulation .dll]

ext-ms-win-hyperv-hvplatform-l1-1 -> [winhvplatform .dll]

<#

After loading apiset extensions

#>

PS > .\ Dependencies .exe - apisets | Select-String hyper

ext-ms-win-hyperv-compute-l1-1 -> [vmcompute .dll]

ext-ms-win-hyperv-hgs-l1-1 -> [vmhgs .dll]

ext-ms-win-hyperv-hvemulation-l1-1 -> [winhvemulation .dll]

ext-ms-win-hyperv-hvplatform-l1-1 -> [grosminet .dll , winhvplatform .

dll , grosminet .dll]

Listing 10. Apiset redirection customization using Apiset extension.

This API Set schema extension is potentially “dangerous” in a back-
dooring scenario since an attacker with admin privileges can use it as
a non-obvious rootkit mechanism, where a legit API Set contract can
point to attacker’s binaries only on specific hosts. The API Set schema
is probably never verified on an organization level since cross-examining
redirections to look for discrepancies is not the easiest thing to do (and it’s
contrary to the API Set design which is to allow custom DLL redirections).

26 DLL shell game and other misdirections

Fortunately, Microsoft enforces the API Set extension to be “correctly”
signed to be loaded (same as hal.sys or other kernel drivers). And thanks
for that since there are bound checks missing in winload.exe parsing
routines for the API Set schema extension, as shown in figure 15.

Fig. 15. winload.exe is dereferencing an API Set value entry way outside the
API Set extension’s bounds

4 Conclusion

In conclusion, while most of the redirection mechanisms shown previ-
ously were already known and for the most part somewhat documented,
there is no previous work 8 which attempts to find the order in which
they are applied (to the author’s knowledge). In the end the way these
redirections are layered is pretty straightforward, but that’s with the
benefit of hindsight.

This article also showcased vulnerabilities impacting well-known main-
stream products, indicating that DLL hijacking vulnerabilities are still
moderately present in third-party software (and this study didn’t ever
cover the class of issue that is binary planting for persistence where the
attacker already has admin level privileges).

That is maybe the result of poor tooling: apart from Dependency
Walker, there are few system tools, whether it’s antivirus software, pen-
testing frameworks or auditing software like the Sysinternals, that take

8. Even the ever great Windows Internals series is pretty unequal when describing
DLL loading and DLL name redirection [10].

L. Georges 27

DLL name redirections into account and try to automate away the issue
of DLL hijacking. 9

Hopefully, this public study as well as the open source software
Dependencies [7] that was built upon it may help security software
developers understand better the different aspects of DLL loading, and in
turn build better tooling on top of it.

In the end, I would like to thanks my colleague Nicolas Correia for
helping me write this article, as well as Tristan, Bruno and Fabien for
reviewing it.

References

1. Microsoft Dev Center. Assembly Searching Sequence. https://docs.microsoft.

com/en-gb/windows/desktop/SbsCs/assembly-searching-sequence.

2. Geoff Chapell. The API Set Schema. https://www.geoffchappell.com/studies/

windows/win32/apisetschema/index.htm, 2016.

3. James Forshaw. The Art of Becoming TrustedInstaller. https://tyranidslair.

blogspot.com/2017/08/the-art-of-becoming-trustedinstaller.html.

4. Lucas Georges. Apiset extension implementation. https://gist.github.com/

lucasg/f3168c24615a9852963ae6c762a65926#file-apiset_extension-h.

5. Lucas Georges. Apiset Resolution. https://lucasg.github.io/2017/10/15/Api-

set-resolution/.

6. Lucas Georges. COMCTL32 proxy dll. https://gist.github.com/lucasg/

f3168c24615a9852963ae6c762a65926#file-comctl32_proxy_dll-c.

7. Lucas Georges. Dependencies. https://www.github.com/lucasg/Dependencies.

8. Pavel Yosifovich; Alex Ionescu. Windows Internals Github repository. https:

//github.com/zodiacon/WindowsInternals/blob/master/APISetMap/ApiSet.h.

9. Pavel Yosifovich; David A. Solomon; Alex Ionescu. Windows Internals, Part 1:
System architecture, processes, threads, memory management, and more. https:

//books.google.com/books?id=y83LDgAAQBAJ&pg=PT1062, 2015.

10. Pavel Yosifovich; David A. Solomon; Alex Ionescu. Windows Internals, Part 1:
System architecture, processes, threads, memory management, and more. https:

//books.google.com/books?id=y83LDgAAQBAJ&pg=PT281, 2015.

11. The Windows kernel team. One Windows Kernel. https://techcommunity.

microsoft.com/t5/Windows-Kernel-Internals/One-Windows-Kernel/ba-

p/267142, 2018.

12. Microsoft. Dynamic-Link Library Search Order. https://docs.microsoft.com/en-

us/windows/desktop/dlls/dynamic-link-library-search-order.

13. Palo Alto Networks. PlugX Uses Legitimate Samsung Application for DLL
Side-Loading. https://unit42.paloaltonetworks.com/plugx-uses-legitimate-

samsung-application-for-dll-side-loading/.

14. Dependency Walker. Dependency Walker 2.2. http://www.dependencywalker.com.

9. All the vulnerabilities in this article were found “by hand” by the author.

