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Abstract. While Baseboard Management Controllers (BMC) grow in
popularity as solutions to manage and monitor servers remotely, several
critical vulnerabilities targeting them have recently been found. On
servers manufactured by HP, it has been published that the compromise
of the BMC enables attackers to read and write the memory of the main
operating system through Direct Memory Access (DMA) channels. As
these communication channels are not specific to HP, it can be expected
that a vulnerability allowing attackers to execute arbitrary code on a
BMC from another manufacturer provides a similar access.

In 2018, a remote code execution vulnerability targeting Dell’s BMC
(named iDRAC) was published. The access provided by the exploitation
of the vulnerability puts attackers in a similar position to being in the
datacenter with physical access to the server: they can watch the screen,
use a keyboard and a mouse, reboot the server, etc. However, they cannot
read or write the RAM of the server. More precisely, nobody has described
how the iDRAC could perform DMA to the main RAM of a server.

On a Dell PowerEdge server, the iDRAC has a low-level access to many
hardware components, for example in order to monitor the power and
temperature of the CPU. It does not usually perform DMA with the main
memory, but this might be possible to achieve if the iDRAC has access
to the relevant hardware interfaces. This article digs into the interfaces
used by iDRAC 8 in order to find out whether it can access the main
memory. It also focuses on components that are more likely to provide
such an access, like the virtual USB devices, the CPLD connected to the
iDRAC and the PCIe device that previous iDRAC revisions exposed. In
the end, none of these devices seem to provide an access to the memory
of the main operating system. Nevertheless the iDRAC interracts with a
H8S microcontroller that appears to be closely related to the PCIe bus.
The analysis of this new microcontroller is still a work in progress.

1 Introduction

Several server manufacturers have been developing systems to monitor
and manage servers out-of-band, through a dedicated network interface and
operating system. These systems, called Baseboard Management Controller
(BMC), run on their dedicated processors and measure the performance
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of server components (temperature, power consumption, fans, state of
memory, etc.).

Dell has been developing a BMC named Dell Remote Access Controller
(DRAC) at least since 1999. This product was first a pluggable device
and later became an integrated chipset on the server motherboard (with
iDRAC 6). Nowadays, every generation of Dell PowerEdge servers comes
with a new revision of the chipset: iDRAC 7 appeared with the 12th
generation (in 2012), iDRAC 8 with the 13th one (in 2014) and iDRAC
9 with the 14th one (in 2017). Since iDRAC 6, the architecture and the
capabilities of the iDRAC have changed several times. For example Dell
introduced in 2016 a HTML5 remote console (replacing a Java applet) and
implemented the Redfish API (a standardised REST API over HTTPS to
perform several operations related to system management). Moreover, one
of the most important changes with the release of iDRAC 9 has been the
transition from a Renesas SuperH CPU (named SH4) to an ARMv7 CPU.

Nowadays, the firmware of iDRAC is similar to a usual Linux system.
It is based on a GNU/Linux kernel, uses systemd as its init system and
OpenSSL library for cryptographic operations. Over the years, several
vulnerabilities have been found and fixed in iDRAC. For example, a
critical one was discovered last year, CVE-2018-1207. It allows anyone
to get a root shell and to execute arbitrary code on an iDRAC. Using
such a vulnerability, someone can get access to the iDRAC administration
console and perform actions such as controlling the virtual keyboard and
mouse, watching the content of the screen, inserting a virtual CD-ROM
from a file, rebooting the managed server, and using the network interface
controller dedicated to the iDRAC to communicate with neighbor systems.
These actions are similar to the ones that can be performed by attackers
who managed to sneak into the datacenter and have physical access to the
server. Nevertheless, attackers executing code on an iDRAC are not next
to a server, they are inside it. This leads to the following question: from a
root shell on an iDRAC system, is it possible to read data in the main
physical memory of the server, to compromise passwords or cryptographic
keys? Is it possible to modify it? Can the main operating system prevent
such unintended accesses, like configuring an IOMMU 1 appropriately?

Even though the iDRAC of a Dell server has a low-level access to
many hardware components, it does not usually access the data located
in the main memory. This article therefore describes the interfaces used
by iDRAC in order to find out whether it can access the main memory.

1. The Input-Output Memory Management Unit is a component that restricts the
access to the main memory from devices.
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After a short description of the legitimate and documented capabilities
provided by iDRAC, it focuses on components which are more likely to
provide this access. More precisely, it studies the devices shared between
the iDRAC and the main operating system, such as some USB devices
and the screen. As these devices do not provide an access to the PCIe bus
from the iDRAC, it continues by describing components that are more
specific, such as the CPLD 2 that is used and a mysterious PCIe endpoint
called “PBI device”. This analysis ends with the discovery of a file used
by iDRAC’s bootloader to flash a component called “PCIe bridge”. This
file contains what seems to be code using an uncommon instruction set,
H8S, as well as the 16-bit identifiers of some PCIe switches and bridges
seen from the main operating system. The analysis of this code is still a
work in progress and it is unclear whether the component running the
H8S code could perform DMA requests to the main memory.

As all promising leads have failed for now, the iDRAC does not seem to
be able to directly access the PCIe bus in order to read the main memory.
It is not known whether such an access could be possible in an indirect
way, for example by modifying the firmware of the PCIe bridge which is
flashed by iDRAC’s bootloader.

The work which is presented in this article has been made possible
thanks to the ANSSI, which provided the author with a Dell PowerEdge
R730 server (13th Generation). This server came with iDRAC 8 version
2.40.40.40 and some vulnerabilities. There are major differences with
iDRAC 9 (like the CPU architecture), so it is expected that many aspects
of what is written in this article do not apply to iDRAC 9 and future
versions.

2 State of the art

Implementations of Baseboard Management Controllers (BMC) have
been available for more than twenty years: Dell’s first Remote Access
Controllers (DRAC) existed at least since 1999, HP launched the ProLiant
BL20p with its iLO (integrated Lights-Out) in 2002, Intel implemented
the Active Management Technology (AMT) on its Management Engine
(ME) that can be found on chipsets launched in 2005, etc.

Since the birth of these systems, many vulnerabilities have been
discovered. The most recent ones include an authentication bypass on

2. The Complex Programmable Logic Device is a programmable logic device that
can be used to implement algorithms without manufacturing a custom chipset.
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AMT (CVE-2017-5689) and on iLO (CVE-2017-12542), several post-
authentication remote code execution vulnerabilities on iLO (CVE-2017-
12542, CVE-2018-7078 and CVE-2018-7105) and on iDRAC (CVE-2018-
1207) and a heap corruption on iDRAC (CVE-2018-1000116).

Several BMC implement a set of specifications named Intelligent Plat-
form Management Interface (IPMI). These specifications and their imple-
mentations have been studied in length over the years. In 2013, Anthony
Bonkoski, Russ Bielawski and J. Alex Halderman described several im-
plementations (HP’s iLO, Dell’s iDRAC, Oracle’s iLOM, and Lenovo’s
IMM) and some vulnerabilities targeting them [1]. In 2015, Felix Emmert
analyzed the features provided by iDRAC 7 and wrote a short description
of the firmware [2]. In 2017, Mark Ermolov and Maxim Goryachy from Pos-
itive Technology presented at Black Hat Europe their research on Intel’s
ME and AMT [3]. The same year, CERT-FR published some guidelines
related to IPMI configuration [4]. In 2018, Fabien Périgaud, Alexandre
Gazet and Joffrey Czarny presented their work on HP’s iLO at several
conferences (Recon Brussels [6], SSTIC [5] and ZeroNights [7]). During
the summer of 2018, Matias Soler, Sebastian Soler and Nico Waisman
from Immunity, Inc. presented at Black Hat USA other vulnerabilities
targeting HP’s iLO and Dell’s iDRAC [8]. Among these vulnerabilities
was CVE-2018-1207, allowing a remote unauthenticated user to get their
code run as root on iDRAC.

Many published vulnerabilities resulted in the possibility of executing
arbitrary code on a BMC. Once this was achieved, an attacker could,
depending on the platform:

— steal local credentials used by the BMC (unencrypted account
passwords on iLO, password hashes on iDRAC, etc.);

— connect to the virtual keyboard-video-mouse interface to interact
with the main operating system;

— use the virtual keyboard-video-mouse and virtual media interfaces
to reboot the server and run an arbitrary operating system;

— use Direct Memory Access (DMA) controllers to read or modify
the content of the main physical memory (RAM), on iLO;

— transmit network traffic to devices connected to the same network,
using the Ethernet interfaces that the BMC can use;

— upgrade BMC’s firmware and other key components of a server,
eventually with backdoored firmware images;

— etc.

The authors usually described what actions they achieved to perform
and the internals of the vulnerabilities they used. This approach enabled
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readers to consider the criticality of a vulnerability, while keeping a fair
amount of shade about what was really possible to achieve once arbitrary
code would be executed on a BMC.

For example, accessing the main memory from the BMC has been
shown to be feasible on iLO. However, it has not been described from a
compromised iDRAC. Does it mean that such an access is not possible? If
it was possible, it would be provided by a hardware component accessible
from the iDRAC. This is why, compared to other works, this article gives
a greater focus on the hardware components of a server and less on the
services that are available from the network.

3 Discovery of an iDRAC 8 system

3.1 Services using standard protocols

When iDRAC 8 is configured on a server, it provides many services for
users to manage the server. These services are implemented using several
standard protocols:

— HTTPS, used by the web server, which provides:
— a remote view of the screen using HTML5 WebSockets;
— a JSON:API 3 endpoint implementing Redfish 1.0 API;

— SSH, used by the command line interface (SMASH CLP);
— IPMI over UDP and SNMP, used by their respective services;
— IPMI over SMBus, used for communications between the main

operating system and the iDRAC.

The study of these interfaces helps getting a better understanding of
the low-level capacity of the iDRAC.

As described in previous publications [1], these interfaces may require
a user to authenticate themself before performing actions. For example,
the main page of the web server consists in a form that asks for a user
name and a password (figure 1).

Authenticated users can launch a virtual console (at URL
/virtualconsolehtml5.html) in order to display the content of the screen
of the server and to interact with it using their keyboards and mouses
(figure 2). The pressed keys and the mouse movements are transmitted
through the web browser and the iDRAC to the main operating system,
which sees them as coming from a USB-HID device named “Avocent Key-
board/Mouse Function” connected to a USB Hub named “Dell Computer

3. JSON:API is the name of a specification of building an Application Programming
Interface in JavaScript Object Notation, https://jsonapi.org/.
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Fig. 1. Login Page on iDRAC 8.

Fig. 2. Remote console on iDRAC 8.
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Corp. Hub”. This means that the iDRAC is able to simulate some USB
devices to the main operating system. Section 4 gives more detail about
this interaction.

From the authenticated part of the website, users can also reconfigure
the iDRAC, trigger a reboot of the server, change the state of a UID
LED 4, etc. All these features require the iDRAC to share access to some
mainboard components with the main operating system.

The web server also implements Redfish 1.0 API under the URL
/redfish/v1/. This API enables an authenticated user to perform most
of the actions provided by the BMC (monitor the server, add accounts to
the iDRAC 5, etc.) but in a way that is easier to integrate with programs.
On the web server used by iLO from HP, this interface has been vulnerable
to an authentication bypass (CVE-2017-12542) and Périgaud, Gazet and
Czarny published a way to fully compromise a HP server with it [6]. Even
though this vulnerability did not exist on iDRAC, this proves the power of
this API and the fact that iDRAC’s web server needs a privileged access to
the hardware components of a server. The fact that Dell’s implementation
made the web server run as root can be related to this needed access.

The actions provided by Redfish API are also provided by the SMASH
CLP (Systems Management Architecture for Server Hardware - Command
Line Protocol) available over SSH. Even though iDRAC uses a GNU/Linux
kernel, the prompt that appears when a user authenticates to the iDRAC
SSH server is a SMASH CLP prompt instead of a usual shell like bash.

3.2 Firmware freedom

Dell uses much free software in iDRAC. This can be seen for example
in the changelogs that are published with firmware updates. For example,
iDRAC 8’s update to version 2.50.50.50 6 contains changes such as “Up-
dated OpenSSH to 7.4p1” and “Upgraded to OpenSSL 1.0.2k”. Moreover,
Dell distributes the source code of these software, with the changes it did,
in a place which can be found via the “About” page of iDRAC’s website.
This page contains the following text:

A portion of the software below may consist of open source software, which you
can use as per the terms and conditions of the specific license under which the
open source software is distributed. For certain open source software licenses,

4. The Unit ID LED is a light-emitting diode on a server that helps identifying it.
5. Accounts can be added using the /redfish/v1/Managers/iDRAC.Embedded.1/

Accounts endpoint.
6. https://www.dell.com/support/home/us/en/04/drivers/driversdetails?

driverId=278FC
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you are also entitled to obtain the corresponding source files. You may find
corresponding source files for this program at https://opensource.dell.com.

Several gigabytes of compressed data from iDRAC 8 components can
indeed be downloaded from https://opensource.dell.com/releases/

idrac8/. Once extracted, this data contains:

— the source code of some free-software projects used by iDRAC (in
externalsrc/):
— the GNU/Linux kernel in externalsrc/linux-yocto/, with

files specific to iDRAC’s System-on-Chip (SoC), such as
arch/sh/boards/board-sh7757lcr.c ;

— Dell’s custom kernel modules used by iDRAC’s firmware in
externalsrc/linux-drivers/ ;

— the U-Boot bootloader in externalsrc/u-boot-idrac8/,
with files specific to iDRAC’s SoC in the directory
u-boot_B0/board/renesas/sh7757lcr/ ;

— OpenSSL, patches for OpenSSH, etc.;
— many binary executable files (programs and shared libraries in ELF

format), in ipk-dropbox/, that were compiled for a SH4 CPU;
— many other directories (meta-drac, meta-oe, poky, etc.).

The comments that are written in the distributed source code give a
better understanding on how iDRAC firmware uses the hardware.

Furthermore, the firmware updates are not encrypted. An update
package for Linux consists in a shell script merged with an archive in
tar.gz format. This archive can be extracted using tools found in usual
Linux systems (such as command tar). It contains several tools that can
be used on a Dell server running Linux to upgrade iDRAC’s firmware using
Linux’s IPMI driver (through /dev/ipmi0). The new firmware is located
in file payload/firmimg.d7 and contains a U-Boot image header, a Linux
kernel, and two filesystems in Squashfs format that can be extracted using
Binwalk. One of the filesystems is the root filesystem of iDRAC, with
usual directories (/bin, /dev, /etc, /usr, etc.). Information about the
Linux distribution that has been used in order to produce the firmware
can be found in several files:

— /etc/issue is “Poky 8.0 (Yocto Project 1.3 Reference Distro) 1.3”;
— /bin/net-snmp-config is a shell script containing op-

tions for sh4-poky-linux-gcc, such as --sysroot=

/home/jenkins/jenkins_slave_builds_prod/workspace/

idrac-13g-ducati1.5-master-release-A-Rev/

build-yocto-sh4/tmp/sysroots/idrac8;
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— many binary files refer to this Jenkins directory when referencing
paths to their source files.

As described on Poky’s website 7, “Poky is a reference distribution of
the Yocto Project R©”. The Yocto Project R© is a project whose goal is to
produce tools and processes that enable the creation of Linux distributions
for embedded and IoT software that are independent of the underlying
architecture of the embedded hardware 8. The files that were found show
that Poky is the distribution that Dell used in order to build iDRAC’s
firmware.

3.3 Obtaining a shell

Matias Soler, Sebastian Soler and Nico Waisman presented at Black
Hat USA 2018 a way to exploit vulnerability CVE-2018-1207 in order
to execute arbitrary commands on an iDRAC [8]. This exploit enables
attackers to upload a shared library through iDRAC’s website and to load
it in a process started from the browser. Using functions that are executed
as soon as the library is loaded, attackers can run arbitrary code as root

on iDRAC. The researchers used the exploit to launch a reverse-shell from
the web server (by establishing a TCP connection and binding it to a
new instance of /bin/sh). This shell is spawned as user root. It would be
easier to analyze the iDRAC if this shell was directly available via SSH.

The initial content of /etc/passwd is given on listing 1. The shell of
racuser is /usr/bin/clpd, which is the program that implements the
SMASH CLP. Experiments show that racuser is the user that iDRAC
uses to create processes resulting from a SSH connection 9. After replacing
racuser’s shell with /bin/sh (using the reverse-shell obtained with CVE-
2018-1207), when a user connects to the iDRAC through SSH, a real shell
is launched instead of the SMASH CLP.

root :x :0:0: root :/:/ bin/sh

user1 :x :500:500: Linux User , , ,:/:/ bin/sh

racuser :x :1000:500: Linux User ,,,:/ tmp :/ usr/bin/ clpd

avahi :x :70:70: Avahi mDNS /DNS -SD Stack :/ var/run/avahi - daemon :/ sbin /

nologin

sshd :x :74:74: Privilege - separated SSH :/ var/ empty / sshd :/ bin/ false

messagebus :x :999:997::/ var/lib/ dbus :/ bin/ false

_lldpd :x :1001:1001: Linux User ,,,:/ home / _lldpd :/ bin/sh

Listing 1. original /etc/passwd from iDRAC firmware.

7. https://www.yoctoproject.org/software-item/poky/

8. https://en.wikipedia.org/wiki/Yocto_Project

9. This behavior is caused by a patch allegedly written by Avocent and published
by Dell in the releases available on https://opensource.dell.com/releases/idrac8/

in file meta-drac/recipes-yoctofixes/openssh/files/avocent.patch.
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Nevertheless, this shell runs as user racuser, which is not as privileged
as root. Thanks to command su, it is possible to spawn a privileged
shell, but only if the password of the root account is known. iDRAC’s
firmware update contains a file named /etc/shadow that holds the hashes
of passwords (listing 2). The hash of user1’s password matches password
“user1234”, but root’s password does not seem to be publicly available,
even though its hash was published a few years ago by Emmert [2].

root : $1$fY6DG6Hu$OpwCBE01ILIS1H /Lxq /7 d0 :13502:0:99999:7:::

user1 : $1$nVOr80rB$HDAd6FRlG24k / WN4ZuYPC0 :0:0:99999:7:::

racuser :!:0:0:99999:7:::

avahi :!!:15569::::::

sshd :*:11880:0:99999:7: -1: -1:0

messagebus :!:15873:0:99999:7:::

_lldpd :!:16555:0:99999:7:::

Listing 2. original /etc/shadow from iDRAC firmware.

Even though this password is unknown, the previous vulnerability
allows overwriting its value in /etc/shadow. This allows running a shell
as root over SSH on the iDRAC. Some commands can then be issued
in order to collect precise information about the firmware version and
iDRAC’s environment, as shown in listing 3.

[ SH7757 / flash / data0 / home / root ]$ su

root ’s password :

[ SH7757 / flash / data0 / home / root ]$ id

uid =0( root ) gid =0( root ) groups =0( root )

[ SH7757 / flash / data0 / home / root ]$ uname -a

Linux MpCOZlZ 3.4.11 #1 Thu Aug 18 13:03:21 CDT 2016 sh4a GNU/ Linux

[ SH7757 / flash / data0 / home / root ]$ cat / proc / version

Linux version 3.4.11 ( jenkins@gitbuild12g105 ) (gcc version 4.7.2 (

GCC) ) #1 Thu Aug 18 13:03:21 CDT 2016

[ SH7757 / flash / data0 / home / root ]$ cat /etc/ issue

Poky 8.0 ( Yocto Project 1.3 Reference Distro ) 1.3 \n \l

[ SH7757 / flash / data0 / home / root ]$ cat / flash /pd0/ fw_ver

2.40.45.40.40

2.40.40.40.107

built for - system

Thu Aug 18 13:26:24 CDT 2016

160818132624

IDRAC SVN Rev =

Hudson Project = idrac -13g- ducati1 .5- master - release -A-Rev

Hudson Build # = 619

Release ID =

MSC Revision = https :// pgre - svn2 .us. dell .com/svn/LC /13g/ branches /

rts_PlusPlusPlus /msc 4876
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[ SH7757 / flash / data0 / home / root ]$ cat / flash /pd0/ lc_ver ; echo

2.40.40.40.107

[ SH7757 / flash / data0 / home / root ]$ cat / proc / cpuinfo

machine : SH7757LCR

processor : 0

cpu family : sh4a

cpu type : SH7758

cut : 11.x

cpu flags : fpu perfctr llsc

cache type : split ( harvard )

icache size : 32 KiB (4- way)

dcache size : 32 KiB (4- way)

address sizes : 32 bits physical

bogomips : 576.00

[ SH7757 / flash / data0 / home / root ]$ cat / proc / cmdline

root =/ dev/ mmcblk0p2 rootwait rw rootfstype = squashfs mem =239616 k

console =ttyS2 ,115200 <NULL >

mac1 =18:66: DA:XX:XX:XX mac2 =18:66: da:xx:xx:xx

mode = normal reset_cause =ac nmi_buf =0 x83000000 quiet

console =ttySC2 ,115200 init =/ sbin / init

[ SH7757 / flash / data0 / home / root ]$ ls -l / sbin / init

lrwxrwxrwx 1 root 0 20 Aug 18 2016 / sbin / init -> /lib/ systemd /

systemd

Listing 3. some commands from a root shell on iDRAC 8.

When exploring the system which is now accessible, something seems
wrong: even though the iDRAC uses accounts (for its web interface,
SMASH CLP, etc.), their usernames and passwords are different from the
Linux user accounts. This difference is caused by a custom configuration
of PAM subsystem 10. Indeed, /etc/pam.d/ contains files that refer to
modules pam_ldap_manager.so and pam_local_manager.so (listing 4).

auth sufficient pam_ldap_manager .so

auth sufficient pam_local_manager .so use_first_pass

auth required pam_auth_status .so caller = login sessiontype =CLP

Listing 4. extract from /etc/pam.d/login in iDRAC 8.

Library /lib/security/pam_local_manager.so uses functions
from other libraries (libosi.so.1.2.3, libaim.so.1.2.3 and
libfnmgr-client.so.9.9.9) to verify account credentials, none of them
related to the usual functions getpwnam() and getspnam() from glibc.

10. The Pluggable Authentication Modules subsystem is a set of libraries and config-
uration files commonly used on Linux-based systems to authenticate users and manage
sessions.
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In the end, the account credentials are stored in a credential vault filesys-
tem which is configured by /etc/init.d/credential-vault-13g.sh.
This script mounts an encrypted file 11 on both /flash/13g-cv and
/flash/data0/cv. The credentials of iDRAC’s accounts are located in
/flash/13g-cv/avctpasswd and the passwords are hashed with salted
SHA256 12.

4 Hardware from a Linux point-of-view

The previous section described the main services exposed by iDRAC,
explained how the firmware and some source code can be downloaded and
extracted, and presented a way to get a root shell on an iDRAC. All of
this enable studying iDRAC’s interactions with the hardware of a server
in order to find communication channels with the main operating system.

4.1 The hardware seen from the main operating system

The main operating system communicates with the iDRAC using
several channels provided by hardware components. When the OS is
Linux, the virtual filesystem in /sys gives detailed information about the
available hardware. With a tool such as graph-hw 13 (which has already
been presented at SSTIC 14), this information can be represented as a
graph that is easier to analyze (figure 3).

The hardware peripherals that are exposed are the following ones:

— USB-HID devices (keyboard, mouse) named “Avocent Keyboard /
Mouse Function” connected to a USB hub named “Dell Computer
Corp. Hub”, itself connected to a USB hub from Intel that is
connected to a USB controller. Moreover, when a USB device is
connected to the front panel of the studied Dell server, it appears
below the same Intel USB hub. This makes it likely for this hub
to be a real device in the server. The iDRAC then uses real USB

11. The file is /mmc1/.cv.img and is mounted with losetup, dmsetup create and
mount. The encryption cipher which is used is aes-ecb-essiv:sha256 with a key that is
hard-coded in script /etc/init.d/credential-vault-13g.sh and that does not seem
to be customized in each installation.

12. When considering each line of /flash/13g-cv/avctpasswd as a list of fields
separated with “:”, field #0 is the username, field #15 is a 16-byte-long salt encoded
in hexadecimal and field #14 is SHA256(password || salt) in hexadecimal.

13. https://github.com/fishilico/home-files/blob/master/bin/graph-hw

14. The rump session entitled Représenter l’arborescence matérielle is available at
https://www.sstic.org/2018/presentation/2018_rumps/.
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Fig. 3. Extract of device tree from the main operating system (green: PCIe devices,
blue: USB devices, orange: HID and graphics devices, gray: I2C devices).
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connectivity to connect its virtual keyboard and mouse to the
hardware tree of the main operating system 15.

— The graphics card (a Matrox G200eR2 identified thanks to device
nodes /dev/fb0 and /dev/dri/card0 on the right part of figure 3)
is accessed through a chain of PCI switches and bridges. Several of
these devices are named “Renesas [...] SH7758” (figure 4), which is
the name of the CPU used by the iDRAC. This could mean that
the iDRAC CPU has direct access to the PCIe bus.

— The Linux kernel creates a device node named /dev/ipmi0 which
can be used to issue IPMI commands to the iDRAC. The driver
stack of this device uses kernel modules ipmi_devintf, ipmi_si,
ipmi_ssif and ipmi_msghandler in order to transmit and receive
IPMI messages over the SMBus (System Management Bus) with
protocols such as KCS (Keyboard-Controller Style), SMIC (System
Management Interface Chip) or BT (Block Transfer).

Vendor ID Device ID Vendor name Device name

8086 8d1e Intel Corporation
C610/X99 series chipset PCI
Express Root Port #8

1912 001d Renesas Technology Corp. SH7758 PCIe Switch [PS]

1912 001a Renesas Technology Corp. SH7758 PCIe-PCI Bridge [PPB]

102b 0534
Matrox Electronics

G200eR2
Systems Ltd.

Fig. 4. Table of PCIe device identifiers on the path to the graphics card, as seen
from the main operating system.

More interfaces between the iDRAC and the main operating system
might exist and might be more difficult to discover. Focusing on the
interfaces that were enumerated, how are they used by iDRAC’s firmware?

4.2 The hardware seen from the iDRAC

As iDRAC’s firmware has been build from Linux, information about
the hardware accessible from the iDRAC can be gathered by browsing
/dev and /sys, reading kernel logs and /proc/iomem, etc. Moreover, the
firmware uses custom kernel modules, which source files are freely available
on https://opensource.dell.com/. These source files allow getting a
better understanding of hardware components.

15. This is major difference between Dell iDRAC and HP iLO4, as the later implements
a virtual USB controller in its firmware.



N. Iooss 15

First, iDRAC’s firmware does not see any PCI device tree: there is
neither /sys/bus/pci/ nor any PCI device in /sys/devices/. There
exists nevertheless a USB Device Controller (UDC) named “R8A66597”.
This controller exposes several USB gadget devices (figure 5).

Directory name in
Driver name Device nodes

/sys/devices/platform/

r8a66597_udc.0 g_hub

r8a66597_udc.1 g_kbdmouse /dev/avct/usb_keyboard

/dev/avct/usb_mouse

r8a66597_udc.2 g_mass_storage /dev/avct/usb_iface1

r8a66597_udc.3

r8a66597_udc.4 g_mass_storage1 /dev/avct/usb_iface2

r8a66597_udc.5 g_mass_storage2 /dev/avct/usb_iface3

r8a66597_udc.6 g_mass_storage3 /dev/avct/usb_iface4

r8a66597_udc.7 g_ether network interface usb1

Fig. 5. Table of USB gadget devices used by iDRAC’s R8A66597 UDC.

The USB keyboard and mouse match the USB devices that were seen
from the main operating system. The mass storage USB devices can appear
on the main operating system when a user enables a virtual CDROM or a
virtual Floppy in the remote console. The Ethernet network interface was
not present in USB devices from the main operating system. Nevertheless,
by investigating the available commands on the iDRAC, it appears that
it is possible to enable this interface with a command accessible from
iDRAC’s shell (SHASH CLP), using a subcommand named “racadm”
(listing 5). The network interface will then appear on the main operating
system as an Ethernet-over-USB interface next to the keyboard/mouse
USB device. On systems running systemd, this interface is named idrac

and can be configured like usual network interfaces. Researchers from
Immunity, Inc. found that this command can also be used from the main
operating system, through the IPMI channel [8].

[ SH7757 / flash / data0 / home / root ]$ clpd

/admin1 -> racadm get iDRAC .OS -BMC

[Key= iDRAC . Embedded .1#OS -BMC .1]

AdminState = Disabled

OSIpAddress =0.0.0.0

# PTCapability = Capable

PTMode =usb -p2p

UsbNicIpAddress =169.254.0.1

/admin1 -> racadm set iDRAC .OS -BMC. AdminState Enabled

[Key= iDRAC . Embedded .1#OS -BMC .1]

Object value modified successfully

Listing 5. Enabling a network interface from iDRAC’s shell.
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The server graphics card does not seem to be accessible in usual ways
from the iDRAC, as the filesystem does not show /dev/dri/ nor /dev/fb0

nor /sys/class/drm/. However, /proc/iomem contains some entries that
refer to a video device (listing 6).

[ SH7757 / flash / data0 / home / root ]$ grep video / proc / iomem

fe900000 - fe90003b : aess_video

fea02000 - fea02fff : aess_video

ff000030 - ff000047 : aess_video

ffc10000 - ffc1013f : aess_video

Listing 6. Entries related to video in /proc/iomem.

There also exist some special files related to the video device:

— /dev/avct/video is a character device with major number 253 and
minor number 0. /proc/devices tells that this device is handled
by a kernel module named aess_video.

— /proc/aess_video gives some information about a video device
(memory addresses, checksums, etc.).

The source code of aess_video 16 contains some comments that de-
scribe the role of the memory regions identified in /proc/iomem (listing 7).

/*

* DVC5 register base addres

*/

# define PBASE_DVC5_ADDR 0 xFEA02000

# define VIDEO_CORE_REG_SIZE 0 x1000

/*

* Graphic controller register base address

*/

# define PBASE_GCTRL_ADDR 0 xFFC10000

# define GCTRL_REG_SIZE 0x140

/*

* ECD register base address

*/

# define PBASE_ECD_ADDR 0 xFE900000

# define ECD_REG_SIZE 0x3C

/*

* SH7757 Version and Product registers

*/

# define PBASE_VERSION_ADDR 0 xFF000030

# define VERSION_REG_SIZE 0x18

Listing 7. externalsrc/linux-drivers/video_driver/aess_video.h.

16. The externalsrc/linux-drivers/video_driver directory comes from archives
downloaded from https://opensource.dell.com/.
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This kernel module uses components that are named with acronyms
that do not have a clear definition: “DVC Engine” and “ECD/ECC”.
“DVC” is also used in a function comment in another file, to de-
scribe a video file format (listing 8). This function does not seem
to be used anywhere in iDRAC’s firmware, but a function nearby,
named avct_vkvm_capture_screen is directly usable through command
avct_control in order to take a screenshot in PNG format (listing 9). Us-
ing strace in order to understand how avct_control interacts with the
screen, it is observed that the only relevant operations that avct_control

does consists in sending a message to /sbin/avct_server over a Unix
socket located in /tmp/rpSocket.

/*!

* Description : Start capture of host video in DVC format to the

specified file .

*

* szName - The file name ( including path ) to store the file to.

* ulSize - The maximum size for the video file .

*/

int avct_vkvm_start_video_capture ( const char *szName , uint32_t

ulSize );

Listing 8. Extract from header file ipk-dropbox/librpipc/image/usr/

include/librpipc/avct/rpipc.h.

[ SH7757 /dev/shm]$ avct_control --file $(pwd)/my - screen .png capture

Capturing screen to file ’/dev/shm/my - screen .png ’...

Captured .

[ SH7757 /dev/shm]$ hd < /dev/shm/my - screen .png

00000000 89504 e470d0a1a0a 0000000 d49484452 |. PNG ........ IHDR |

00000010 0000050000000400 080200000031 f163 |.............1. c|

00000020 1400002000494441 547801 eddd4192a3 |... . IDATx ...A..|

00000030 b8120050bba3161c 8 fa58fe825c7f3f2 |... P ........%...|

...

Listing 9. Screenshot from iDRAC’s SSH.

In the end, the iDRAC does not use the PCIe bus in order to interact
with the graphics card but uses specific components to retrieve the content
of the screen.

4.3 The CPLD, a large GPIO device

Several files, programs and libraries on the iDRAC refer to a CPLD 17,
a programmable logic device that can be used to implement features and

17. Complex Programmable Logic Device. On the studied server, it is an Intel Altera
MAX II whose part number is EPM2210F324C5N.
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algorithms without manufacturing a custom chipset. Such a device might
be used to implement a PCIe endpoint, which is why studying its use on
iDRAC is interesting.

iDRAC 8’s CPLD can be used by programs through a library,
/usr/lib/libcpld.so.1.2.3, which uses a character device node,
/dev/dell_cplddrv, to get and set bits in the CPLD. The operations on
this node are implemented by a kernel module named dell_cplddrv.ko,
which source code is available on https://opensource.dell.com/. The
code contains some references to USB removable events (cf. listing 10).

/* save interrupt cause for user retrieval */

intrcause = ( cpld_read (0 x10)&0 xf); // ID Button latch

if( intrcause & ID_LATCH_MASK ){

cpld_rmw ( ID_LATCH_MASK , ID_LATCH_MASK , 0x10); // clear

interrupt

}

/* ... */

/* Check if the CPLD 0 x14000019 Bit 1 is Asserted */

if( USB_REMOVAL_MASK == ( cpld_read (0 x19) & USB_REMOVAL_MASK ) )

{

cpld_rmw ( CPLD_USB_PCH_REMOVAL_MASK ,

CPLD_USB_PCH_REMOVAL_MASK , CPLD_USB_CONFIG_OFFSET ); //

clear interrupt

intrcause |= CPLD_INT_PCH_USB_REMOVE ;

up (& pchusb_removal_sem );

}

Listing 10. Extract of the cpldisr_13g function, from file
externalsrc/linux-drivers/cpld_driver/dell_cplddrv.c.

Some bits of the CPLD are used by the iDRAC to read the state of
the “ID button” of the server. Others are used to connect and disconnect
virtual USB devices such as the mouse and keyboard used by the virtual
console. The analysis of the use of the CPLD gives the impression that
it behaves like GPIO devices: each bit has a specific meaning and can
be used as an boolean input/output interface. It seems therefore unlikely
for iDRAC’s CPLD to provide a way to access the main memory of the
server. Moreover, some architecture diagrams (figure 6) shows the CPLD
device as being in the opposite side to the buses between the iDRAC and
the main CPU. This makes it difficult for the CPLD to be a way to reach
the main memory from the iDRAC.

4.4 The mysterious PBI device

When looking for data about the PCIe bridges that were seen between
the PCIe root complex and the graphics card (section 4.1), several search
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engines give pages on Ubuntu Certified hardware’s website 18. For ex-
ample https://certification.ubuntu.com/catalog/component/pci/

1912%3A001d/ gives a list of Dell servers that share a “Renesas Technology
Corp. SH7758 PCIe Switch [PS]”.

Fig. 6. Diagram of iDRAC hardware.
Source: https://www.manualslib.com/manual/624251/Dell-Poweredge-R820.html?page=54

Another page, https://certification.ubuntu.com/catalog/

component/pci/1912%3A001b/ gives a list of servers that has a PCIe
endpoint device named “Renesas Technology Corp. SH7758 PCIe
End-Point [PBI]”. This device does not seem to exist on the studied Dell
PowerEdge R730 server, but a kernel module in the firmware refers to it.
In the files downloaded from https://opensource.dell.com/, directory
externalsrc/linux-drivers/pbi_driver/ contains the source code
of a module described as “Linux driver for PBI shared memory and
mailbox FIFO on the Renesas SH7757 iBMC Controller”. This module

18. https://certification.ubuntu.com/
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uses hardware registers which are mapped at addresses 0xffca0000 and
0xffcaa000. These addresses are invisible from /proc/iomem, but this
does not mean that the studied iDRAC system does not support this
device. Searching for these addresses through iDRAC’s firmware leads to
functions in U-Boot and Linux (listings 11 and 12).

HAL_writel (0x1 , 0 xffca1420 ); // PCIE_BARMAP0 , Mailbox BAR Mapping

HAL_writel (0x4 , 0 xffca1470 ); // PCIE_PBICTL2 , A Reserved Bit ??>

HAL_writel (0x0 , 0 xffca1604 ); // PCIE_BSTCTL0 , Disable Burst Xfer

HAL_writel (0 x30000 , 0 xffca160c ); // PCIE_ENDICTL0

HAL_writel (0x3 , 0 xffca1610 ); // PCIE_ENDICTL1

HAL_writel (0 xffcaa000 , 0 xffca1260 ); // PCIE_LAD0 , Local Address

Register 0

HAL_writel (0 xff2 , 0 xffca1264 ); // PCIE_LADMSK0 , Local Address Mask

Register 0

HAL_writel (0 xe500e000 , 0 xffca1268 ); // PCIE_LAD1

HAL_writel (0x72 , 0 xffca126c ); // PCIE_LADMSK1

/* ... */

/*

* DF533855 PCIe Training fix. I have no idea what this is/ does .

* Renesas says to put it in.

*/

*( u32 *)0 xFFEE0150 = 0 x40010000 ;

snprintf (msg , MAX_MSG_LEN , "Init PCIe mailbox (PCIe 0 xFFEE0150 =0

x40010000 )");

Listing 11. Extract from U-Boot’s function init_mailbox, in externalsrc/

u-boot-idrac8/u-boot_B0/board/renesas/sh7757lcr/util_idrac_main.c.

# define PCIE_BASE 0 xffca0000

# define LADMSK0 ( PCIE_BASE + 0 x1264 )

# define BARMAP ( PCIE_BASE + 0 x1420 )

static int __init sh_pcie_init ( void )

{

printk ( KERN_INFO " enable PCIe shared memory area\n");

__raw_writel (0 x00000ff2 , LADMSK0 );

__raw_writel (0 x00000001 , BARMAP );

return 0;

}

Listing 12. Extract from Dell’s Linux source tree, in externalsrc/

linux-yocto/arch/sh/boards/board-sh7757lcr.c.

In order to read the current configuration of these hardware registers,
it would be possible to craft a program that opens /dev/mem and reads
data from iDRAC’s physical memory. This is nevertheless not needed
as Dell provides two programs that can be used to access this memory:
MemAccess and MemAccess2 (listing 13).
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[ SH7757 /]$ MemAccess2 -rl -a ffca0000

0 xffca0000 = 001 b1912 00100007 : 05000000 00000000

0 xffca0010 = 91901000 91900000 : 00000000 00000000

0 xffca0020 *

0 xffca0030 = 00000000 00000040 : 00000000 000001 ff

Listing 13. Using MemAccess2 to read PBI’s PCIe configuration.

Using lspci on another computer to decode the dumped data leads
to an output that seems reasonable for PCIe configuration registers (list-
ing 14).

$ lspci -nnvvvxxx -F pbi -config - dump .hex

RAM memory [0500]: Renesas Technology Corp . SH7758 PCIe End - Point [

PBI] [1912:001 b]

Control : I/O+ Mem+ BusMaster + SpecCycle - MemWINV - VGASnoop -

ParErr - Stepping - SERR - FastB2B - DisINTx -

Status : Cap+ 66MHz - UDF - FastB2B - ParErr - DEVSEL = fast >TAbort - <

TAbort - <MAbort - >SERR - <PERR - INTx -

Latency : 0

Interrupt : pin A routed to IRQ 255

Region 0: Memory at 91901000 (32 - bit , non - prefetchable )

Region 1: Memory at 91900000 (32 - bit , non - prefetchable )

Capabilities : [40] Power Management version 3

Flags : PMEClk - DSI - D1 - D2 - AuxCurrent =0 mA PME(D0 -,D1 -,D2 -,

D3hot +,D3cold -)

Status : D0 NoSoftRst + PME -Enable - DSel =0 DScale =0 PME -

Capabilities : [50] MSI: Enable - Count =1/8 Maskable - 64 bit+

Address : 0000000000000000 Data : 0000

Capabilities : [70] Express (v2) Endpoint , MSI 07

DevCap : MaxPayload 128 bytes , PhantFunc 0, Latency L0s <64ns

, L1 <1us

ExtTag + AttnBtn - AttnInd - PwrInd - RBE+ FLReset +

SlotPowerLimit 0.000 W

DevCtl : Report errors : Correctable - Non - Fatal + Fatal +

Unsupported +

RlxdOrd + ExtTag + PhantFunc - AuxPwr - NoSnoop + FLReset -

MaxPayload 128 bytes , MaxReadReq 4096 bytes

DevSta : CorrErr - UncorrErr - FatalErr - UnsuppReq - AuxPwr -

TransPend -

LnkCap : Port #0, Speed 2.5 GT/s, Width x1 , ASPM L0s , Exit

Latency L0s unlimited

ClockPM - Surprise - LLActRep - BwNot - ASPMOptComp +

LnkCtl : ASPM Disabled ; RCB 64 bytes Disabled - CommClk -

ExtSynch - ClockPM - AutWidDis - BWInt - AutBWInt -

LnkSta : Speed 2.5 GT/s, Width x1 , TrErr - Train - SlotClk -

DLActive - BWMgmt - ABWMgmt -

DevCap2 : Completion Timeout : Not Supported , TimeoutDis +, LTR

-, OBFF Not Supported

DevCtl2 : Completion Timeout : 50 us to 50ms , TimeoutDis -, LTR

-, OBFF Disabled

AtomicOpsCtl : ReqEn -

LnkCtl2 : Target Link Speed : 2.5 GT/s, EnterCompliance -

SpeedDis -

Transmit Margin : Normal Operating Range ,

EnterModifiedCompliance - ComplianceSOS -
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Compliance De - emphasis : -6dB

LnkSta2 : Current De - emphasis Level : -6dB ,

EqualizationComplete -, EqualizationPhase1 -

EqualizationPhase2 -, EqualizationPhase3 -,

LinkEqualizationRequest -

00: 12 19 1b 00 07 00 10 00 00 00 00 05 00 00 00 00

10: 00 10 90 91 00 00 90 91 00 00 00 00 00 00 00 00

20: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

30: 00 00 00 00 40 00 00 00 00 00 00 00 ff 01 00 00

40: 01 50 03 40 08 00 00 00 00 00 00 00 00 00 00 00

50: 05 70 86 00 00 00 00 00 00 00 00 00 00 00 00 00

60: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

70: 10 00 02 0e 20 80 00 10 1e 59 00 00 11 f4 43 00

80: 00 00 11 00 00 00 00 00 00 00 00 00 00 00 00 00

90: 00 00 00 00 10 00 00 00 00 00 00 00 00 00 00 00

a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

c0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

e0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

f0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Listing 14. Parsing of PBI’s PCIe configuration with lspci.

PBI’s kernel module creates device node /dev/sh_pbi, which can
be used by iDRAC’s userspace programs. iDRAC’s firmware contains
command pbitest and library libpbidrv.so that use this device in
order to communicate with something unknown using a mailbox. After
reading the content of lib_pbidrv.h, it appears that the PBI is used as
a communication channel between the main operating system and the
iDRAC in order to control the LCD screen that may be found on the
front panel of a server: this LCD is managed by the iDRAC and the main
operating system can issue commands to make the iDRAC perform some
actions on it (display a text, read the state of its buttons, etc.).

Looking back at these findings, something seems missing: this PBI
device does not appear in the PCIe device tree of the main operating
system of the studied server, even though it is possible for the main
operating system to control the content of the LCD. Reading more web
pages leads to several scripts and a Dell document named “Using IPMItool
raw commands for remote management of dell PowerEdge Servers” 19. This
document gives two ipmitool commands to write custom messages on the
LCD display (listing 15). ipmitool sends IPMI commands to the iDRAC
through the SMBus or through the network, not through the PCIe bus.

ipmitool raw 0x6 0x58 193 0 0 length ASCII_hex_values

ipmitool raw 0x6 0x58 194 0

Listing 15. Create custom LCD messages with IPMItool.

19. https://www.dell.com/downloads/global/power/ps4q07-20070387-Babu.pdf
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Even though using a PCIe device such as the PBI is not needed to
allow the main operating system to define messages displayed on the
LCD display of the server, the PBI still exists. Its PCIe configuration
registers are present in iDRAC’s physical memory but the device seems
to be somehow disabled. A comment in U-Boot’s source code clarifies the
situation: Dell configured the device to be “hidden” (listing 16).

// On 13G systems , fix issue with hiding PBI device . Writing to

PSPPBCTL DRS [1:0] = ’01b’

if( is_sh7758 ())

writel (0 x00000100 , 0 xffd60080 );

Listing 16. Extract from U-Boot’s init_pcie_bridge function, in
externalsrc/u-boot-idrac8/u-boot_B0/board/renesas/sh7757lcr/sh7757lcr.c.

As hiding the device is performed by setting a bit to 1 in a 32-bit value
at 0xffd60080 (in iDRAC’s physical memory), setting this bit to zero
might unhide it. Unfortunately, doing MemAccess2 -wl -a ffd60080 -d

00000000 to clear the bit leads to a freeze of the main operating system,
which is then unable to boot (the screen stays black). Setting the bit
back to one (with MemAccess2 -wl -a ffd60080 -d 00000100) makes
the main operating system boot again. This might be an issue that Dell
experienced which led to the hiding of the PBI device on 13th Generation
servers (using iDRAC 8).

To conclude this part, iDRAC 8’s firmware contains code for a hidden
PCIe device named PBI. It is possible that this device was used to allow
the main operating system to define the content of the LCD display of the
server, but in iDRAC 8 there exists another way to perform this operation,
through IPMI commands. The code hiding the PBI modifies a register
of a component named “PCIe bridge” in U-Boot’s code. The next part
focuses on this component.

4.5 The mythical PCIe bridge’s microcode

While looking at references to the PCIe bus in Dell’s U-
Boot code, several parts refer to a PCIe bridge. For example,
externalsrc/u-boot-idrac8/u-boot_B0/board/renesas/sh7757lcr/

bld_bridge.c defines a usage function which prints:

Usage: bld_bridge <pcie_bridge.src> <7757|7758>

<util_pciebridge775X.c>

This file also contains a comment from Dell’s developers:
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The PCIe section of the Renesas processor requires u-boot to load the PCIe
microcode. Renesas uses a dedicated sector/s to store this info. Dell cannot
leave this as a seperate sectors because the versioning and test matrix make
this a big mess. So we will make it part of u-boot.

The function that loads this PCIe microcode is init_pcie_bridge,
located in sh7757lcr.c (listing 17). It uses four hardware registers:

— PCIEBRG_CTRL_H8S = 0xffd60000 in order to reset and start the
PCIe bridge controller ;

— PCIEBRG_CP_ADDR = 0xffd60010 in order to configure the start
address of the loaded microcode (0x0000) ;

— PCIEBRG_CP_DATA = 0xffd60014 in order to load the microcode
by chunks of 16 bits ;

— PCIEBRG_CP_CTRL = 0xffd60018.

writew (0 xa501 , PCIEBRG_CTRL_H8S ); /* reset */

writew (0 x0000 , PCIEBRG_CP_CTRL );

writew (0 x0000 , PCIEBRG_CP_ADDR );

for (i = 0; i < pcie_cnt ; i += 2) {

tmp = ( data [i] << 8) | data [i + 1];

writew (tmp , PCIEBRG_CP_DATA );

}

writew (0 xa500 , PCIEBRG_CTRL_H8S ); /* start */

if (! is_sh7757_b0 ()) /* Cn or Shasta */

writel (0 x00000001 , PCIE_PBICTL3 ); /* PBI control register3 */

Listing 17. Extract from U-Boot’s init_pcie_bridge function, in
externalsrc/u-boot-idrac8/u-boot_B0/board/renesas/sh7757lcr/sh7757lcr.c.

The microcode which is loaded can be found in the archive published on
https://opensource.dell.com/ next to U-Boot’s code. It indeed comes
from either bridge7757.mot or bridge7758.mot, which are files in Mo-
torola S-Record format. The files can be converted into raw binary files us-
ing a command such as objcopy -I srec -O binary input-file.mot

output-file. In order to find out which file is used on the studied Dell
PowerEdge R730 server, a possible way consists in reading U-Boot’s log
using “dellutil ublog” from iDRAC’s shell (listing 18). As this log
contains “SH7758_A0”, bridge7758.mot contains the loaded microcode.

$ dellutil ublog

INFO : 00:007 SH -4A Product : Major Ver =0 x31 Minor Ver =0 x20 D0 Little

endian

Family =0 x10 Major Ver =0 x30 Minor Ver =0 x0b

...

PASS : 00:008 PCIe SH7758_A0 Ver =0.03 MCTP en , CRC =0 x70ae6992

@0x8efd591c cnt =0 x18000

INFO : 00:008 Init PCIe mailbox ( PCIe 0 xFFEE0150 =0 x40010000 )

Listing 18. Extract from command dellutil ublog.
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The binary content of the microcode starts with a kind of header which
is parsed using struct pcie_brg_hdr in util_idrac_main.c, followed
by some data that starts at offset 0x100. This data does not look random
enough to be compressed or encrypted. The repetitions of 16-bit patterns
suggests that this data contains code for a CPU using a 16-bit instruc-
tion set, which is neither x86 nor SH4. Looking back at the code from
sh7757lcr.c (listing 17), it appears that H8S is the name of a 16-bit
microcontroller series made by Renesas. It belongs to the H8 family, which
also includes the 8-bit H8/300 microcontroller used in LEGO Mindstorms’s
RCX programmable brick.

Hex-Rays’ interactive disassembler (IDA) supports many instruction
sets from the H8 family, including “Hitachi H8S advanced”. This enables to
confirm that the loaded microcode contains code at offset 0x100. Further
analysis gives the following map of bridge7758.mot’s decoded content:

— 0x0000 to 0x003b: firmware header (listing 19).
— 0x0000: address of entry point or reset vector entry (0x0100 as

32-bit Big Endian integer).
— 0x0004: chip version, 0x03 for SH7758 A0 (it is 0x00 for SH7757

A0, 0x01 for SH7757 B0 and 0x02 for SH7757 C0).
— 0x0005: chip slice, 0x00 .
— 0x0006: firmware version, 0x03.
— 0x0007: MCTP (Management Component Transport Protocol)

mode, 0x01 (enabled).
— 0x0030 to 0x003b: probably an interrupt vector table, with

three 32-bit addresses of functions (0x010a, 0x01f8, 0x033c).
— 0x0100 to 0x03a9: code segment using H8S instruction set. This

segment implements interrupt handlers and a reset handler that
resets the stack to 0x00ffc000 and calls a function located at
0x0001685a in a loop. This function is most likely the main function
of the firmware.

— 0x03aa to 0x2105: read-only data segment. This segment contains
16-bit words that match the PCI vendor ID and device ID of the
PCIe bridges listed in figure 4 (section 4.1).

— 0x2106 to 0x16929: code segment, in H8S instruction set. This
segment implements most of the functions of the firmware.

— 0x1692a to 0x017fff: padding with zeros.

0000: 0000 0100 0300 0301 0000 0000 0000 0000

0010: 0000 0000 0000 0000 0000 0000 0000 0000

0020: 0000 0000 0000 0000 0000 0000 0000 0000

0030: 0000 010a 0000 01 f8 0000 033c 0000 0000

Listing 19. Hexadecimal dump of bridge7758.mot’s header.
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One of the first steps of the analysis of the firmware consists in find-
ing out how the memory space of the H8S microcontroller is organized.
Studying the performed memory accesses leads to the following layout:

— 0x000000 to 0x017fff: loaded firmware (98304 bytes)
— 0xffa000 to 0xffc000: RAM (8192 bytes, global variables and

stack, which is decreasing from the top)
— 0xffc000 to 0xffffff: memory-mapped input/output (many hard-

ware registers)

The H8S microcontroller uses 24-bit addresses. This makes it difficult
to perform the analysis using usual software, as most of them either restrict
the address space to 16 bits or to 32 bits. For example Hex-Rays’ IDA
software extends 16-bit addresses to 32 bits when using processor “Hitachi
H8S advanced (h8s300a)”, which messes up with the references of data
located in RAM and IO regions. Thankfully, IDA’s processor “Hitachi
H8/300H advanced (h8300a)” extends 16-bit addresses to 24 bits, so this
processor module can be used instead of H8S.

When reading the code of many functions of the firmware, a common
pattern stands out: nearly all functions starts by setting a 16-bit variable
at address 0xffa9be to a constant value. For example the function starting
from 0x002106 sets this value to 0x64, the one starting from 0x002156

to 0x65, the one from 0x0021a4 to 0x66, etc. This seems to indicate a
kind of unique function identifier, which can help to produce traces when
debugging the code.

The value of this global variable is only read in one function of the
firmware: the one starting at 0x00010a. This function could be an interrupt
handler (for example to handle a timer). It starts by reading the least
significant bit of the byte located at 0xffd033. If this bit is set, it resets
it, reads a 16-bit integer from 0xffd034 and runs instructions depending
on the value. The function then writes a 16-bit integer to 0xffd022 that
comes from the instructions that were executed.

In short, the interrupt handler at 0x00010a parses a 16-bit operation
code from a hardware register, performs the specified operation and writes
the result to another hardware register. Figure 7 enumerates the possible
commands.

Can the iDRAC issue commands to the H8S through these 16-bit
opcodes? The study of the use of the hardware register located in 0xffd000

leads to several facts:

1. In several locations, the firmware sets 0xffd000 to value 0xa501

and register sp (the stack pointer) to 0xffc000.
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2. The iDRAC resets the H8S microcontroller by setting 0xffd60000

(in iDRAC’s physical memory) to value 0xa501 (cf. listing 17).

3. 0xffd000 is next to the addresses used by the function at 0x00010a,
in H8S microcontroller’s memory.

Opcode Description

0x0XXX Get the 16-bit integer at 0xffc000 + (0xXXX&0xffe)
with 0xXXX ≤ 0x7ae (this is the beginning of the memory-mapped I/O region)

0x0800 Get the 16-bit integer at 0x000004 (which is 0x0300)

0x0802 Get the 16-bit integer at 0x000006 (which is 0x0301)

0x0900 Get the 16-bit integer at 0xffa9be (the function identifier)
This value can also be read by commands 0x70bc and 0x70bd.

0xXYYY Get the 32-bit integer at
with 0xX ≥ 1 0xffa000 + ((0xX − 1) × 0x180) + (0xYYY&0xffc)

and 0xYYY ≤ 0x157 and use the least significant 16-bit word if 0xYYY&2 = 0,
the most one otherwise.

Others Do not change the value at 0xffd022

Fig. 7. Table of commands implemented by the H8S microcontroller. All integers
are Big Endian, 0xX is a notation meaning “a digit in base 16” (aka. a hexdigit)
and & is the bitwise-AND operation.

Therefore the register located at address 0xffd60000 in iDRAC could
match the one at 0xffd000 in the microcontroller. The other registers do
not map as well, but brute-forcing some registers leads to discovering that
the iDRAC can indeed issue commands to the H8S (figure 8).

iDRAC’s address H8S’s address Description

0xffd60000 0xffd000 PCIEBRG_CTRL_H8S in U-Boot’s source code:
writing value 0xa501 resets the microcontroller
writing value 0xa500 starts the microcontroller

0xffd60028 0xffd022 Command result (16-bit Big Endian)

0xffd60030 0xffd033 Command trigger:
writing 0x01 triggers a command execution

0xffd60034 0xffd034 Command opcode (16-bit Big Endian)

Fig. 8. Alleged mapping of hardware registers shared by the iDRAC and the H8S.

For example, running the commands written in listing 20 from a shell
on the iDRAC leads to confirming that command 0x0802 returns 0x0301.

MemAccess2 -ww -c 1 -a 0 xffd60034 -d 0802

MemAccess2 -ww -c 1 -a 0 xffd60030 -d 0001

MemAccess2 -rw -c 1 -a 0 xffd60028

Listing 20. Executing operation 0x0802 on H8S microcontroller.



28 Analysis of iDRAC

In summary, when the iDRAC boots, its bootloader loads a firmware
to a H8S microcontroller named “PCIe bridge”. This firmware contains
references to some PCIe components that are located between the PCIe
root complex and the graphics card (figure 4 in section 4.1). The analysis
of the firmware led to the discovery of a communication channel that
allows the iDRAC to issue commands on this new microcontroller.

5 Conclusion

The iDRAC is quite powerful in a Dell server, but it does not seem
to be able to directly access the PCIe bus in order to read and write to
the main memory. More precisely, the devices that are closely related to
the PCIe bus (the virtual USB devices, the graphics card, the PBI device,
etc.) do not provide such an access.

The analysis achieved to uncover a curious component named “PCIe
bridge” by iDRAC’s bootloader. This component uses a H8S microcon-
troller which is related to the PCIe bus of the Dell server. It has not yet
been found whether this microcontroller could craft DMA requests to the
main memory. When this article was written (in April 2019), the work of
analyzing the H8S firmware was still in progress.

Anyway, it is recommended to restrict the access to the services
provided by iDRAC (web server, SSH, IPMI, SNMP, etc.) for example
by exposing them only on a dedicated network and by disabling services
that are not used. It is also recommended to keep iDRAC’s firmware up
to date in order to prevent attackers from being able to exploit known
critical vulnerabilities, such as CVE-2018-1207. French-speaking readers
can refer to recommendations published by CERT-FR for more details [4].

A Glossary

BMC: Baseboard Management Controller, an almost-almighty computer
inside a computer.

DMA: Direct Memory Access, a way for peripherals to read and write
data in the main memory (RAM) of a computer.

iDRAC: integrated Dell Remote Access Controller, Dell’s BMC.

IOMMU: Input-Output Memory Management Unit, a device that restricts
the use of DMA on a computer.

IPMI: Intelligent Platform Management Interface, a standard which is
implemented by BMC to help users managing a computer.
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KVM: Keyboard-Video-Mouse interface, which is the main way to interact
with a computer in the Real World. A BMC can provide a virtual KVM
for remote users.
SMASH CLP: Systems Management Architecture for Server Hardware -
Command Line Protocol, a standard which is implemented by BMC in
order to help command-line users managing a computer.
SMBus: System Management Bus, a simple 2-wire bus derived from I2C.
SSIF: SMBus System InterFace, a protocol that can be used over SMBus
to interact with a BMC that supports it, like Dell’s iDRAC.
UDC: USB Device Controller, a component that controls USB devices.
On a server, such a component may host virtual USB devices provided by
a BMC.
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