
Journey to a RTE-free X.509 parser

Arnaud Ebalard, Patricia Mouy, and Ryad Benadjila
prenom.nom@ssi.gouv.fr

ANSSI

Abstract. The C programming language is a security nightmare. It
is error-prone and unsafe, but, year after year, the conclusion remains
the same: no credible alternative will replace C in a foreseeable future;
especially in low-level developments or for constrained environments.
Additionally, even though some C developers are keen to drop this lan-
guage when possible for more robust ones like ADA or Rust, converting
the existing code basis to safer alternatives seems unrealistic.
One of the positive aspects with C is nevertheless that its inherent flaws
became a long time ago a full-time research topic for many people. Various
static analysis tools exist to try and verify security aspects of C code,
from the absence of run-time errors (RTE) to the verification of functional
aspects.
At the time of writing, none of these tools is capable of verifying the
full-fledged C source code from most well-known software projects, even
the smallest ones. Those tools are nonetheless getting better, and they
may be able to handle large software code bases in the near future.
Doing some steps in the direction of static analysis tools is sometimes
sufficient to achieve full verification of a complex piece of code. This
article details this kind of meet-in-the-middle approach applied to the
development in C99 of a X.509 parser, and then its later verification using
Frama-C.

Table of Contents

Journey to a RTE-free X.509 parser . 1
A. Ebalard, P. Mouy, R. Benadjila

1 Introduction . 4
2 X.509 . 5

2.1 Introduction . 5
2.2 ASN.1, BER and DER encoding . 6
2.3 X.509 format . 8
2.4 Vulnerabilities . 8

CVE-2017-7932 . 9
3DS flawed ASN.1 parser . 10
CVE-2016-5080 . 10
CVE-2017-2781 . 10
CVE-2017-9023 . 11
CVE-2017-2800 . 11

3 Parser development . 11
3.1 Strategy for X.509 support . 11
3.2 Development constraints . 12
3.3 Testing and validating the X.509 parser 14

Implementation decisions . 14
Unit and regression tests . 20

4 Introduction to program analysis . 20
4.1 Functional and security verifications, absence of RTE 20

Functional verifications: . 20
Security verifications, absence of RTE 21

4.2 Static and dynamic analyses, soundness and completeness . 21
5 Working with Frama-C on the parser . 22

5.1 Frama-C presentation . 22
5.2 ACSL code annotations in Frama-C . 23
5.3 ACSL by example . 25
5.4 Rte, EVA and WP plugins . 25
5.5 Frama-C interactive and iterative workflow 26
5.6 Manual code annotations . 29
5.7 Dealing with function pointers . 32

6 Results and feedback . 33
6.1 Results overview . 33
6.2 Annotation work complexity . 34

A. Ebalard, P. Mouy, R. Benadjila 3

6.3 Frama-C learning curve . 34
6.4 Conclusions about Frama-C usage . 35

7 Analyses with other tools . 35
7.1 Sound and fully automatic strategy to prove the absence

of RTE . 36
Frama-C EVA . 36

Code Prover . 40
7.2 Other tools . 42

8 The story of a logical bug . 44
9 Conclusion . 48

4 Journey to a RTE-free X.509 parser

1 Introduction

In a nutshell, the project was initiated with the intent to develop
a “guaranteed RTE-free X.509 parser”, so that it could be used safely
for syntactic and semantic verification of certificates before their usual
processing in an implementation (for instance in existing TLS, IKEv2,
S/MIME, etc. stacks).

Common ASN.1 and X.509 parsers have a very poor track record
when it comes to security (see [9] or [7] for instance), mainly due to their
complexity. Since such parsers are usually used in security primitives to
validate signatures, the consequences of a vulnerability can be disastrous
due to the critical privilege level of such primitives. Hence, these parsers
appear as a perfect target for an RTE-free development.

C was selected as the target language in order to allow integration in all
kinds of environments, from high-level userland applications to embedded
ones running on low power microcontrollers.

Our goal of a “guaranteed RTE-free” parser has been achieved using
Frama-C, an open-source C analysis framework. At the beginning of the
project, some specific rules were decided regarding the later use of this
static analysis tool:

• No formal expertise expected from the developer
• Initial writing of the code without specific Frama-C knowledge (but

taking into account the need to analyze the code at a later statge)
• Frama-C analysis of the code with:

• very limited rewriting of the code;
• limited (simple) annotation of the code.

The main idea behind these rules - they will be described in more
detail later in the document - was to test the ability for a standard and
average - but motivated - C developer to successfully achieve verification
with a limited additional investment.

From the observation of the limitations of most static analysis tools, it
was clear that being careless during the development phase would prevent
the verification using a static analysis tool. For this reason, as explained
in section 3.2, some care was taken to make the code amenable for a later
analysis.

At this point, one may wonder why the term “guaranteed absence of
RTE” is used instead of “proven” or “bug-free” to describe the result of
the analysis. Qualifying the code as “proven” does not mean anything

A. Ebalard, P. Mouy, R. Benadjila 5

per se. Qualifying it as “bug-free” would require to ensure the absence
of all kinds of bugs, including logical ones. Even if Frama-C can help
verifying functional aspects of the code, which may provide some help in
getting additional guarantees on what the code does, it has been used
here only to verify the absence of runtime errors 1 (e.g. invalid memory
accesses, division by zero, signed integer overflows, shifts errors, etc.) on all
possible executions of the parser. Even if care has been taken during the
implementation to deal with logical errors (e.g. proper implementation of
X.509 rules described in the standard), their absence has not been verified
by Frama-C and is considered out-of-scope for this article. We nonetheless
stress out that the absence of RTE is yet a first non trivial step paving
the way towards a “bug-free” X.509 parser.

The remaining of the article first gives a quick overview of the X.509
format and its complexity and prior vulnerabilities in various projects.
It then presents various aspects of parser development towards security
and finally describes the incremental work with Frama-C up to a complete
verification of the parser.

2 X.509

2.1 Introduction

X.509 certificates contain three main elements: a subject (user or web
site), a public key and a signature over these elements linking them in a
verifiable way using a cryptographic signature.

In more details, a lot of other elements are also present such as an
issuer, validity dates, key usages, subject alternative names, and various
other optional extensions which contribute to make certificates rather
complex objects.

To make things worse, certificate structures and fields content are
defined using ASN.1 [11] and each specific instance is DER-encoded [12].
As it will be discussed later, each high-level field (e.g. subject field) is
itself made of dozens of subfields which are themselves made of multiple
fields.

At the end of the day, what we expect to hold a subject, a key and
a signature linking those elements together ends up being a 1.5KB (or
more) binary blob containing hundreds of variable-length fields using a
complex encoding.

1. hereafter referred as RTE

6 Journey to a RTE-free X.509 parser

This Matryoshka-like recursive construction makes parsing X.509 cer-
tificates a security nightmare in practice and explains why most imple-
mentations - even carefully designed ones - usually end up with security
vulnerabilities.

If this was not already difficult enough, parsing and validating a X.509
certificate does not only require a DER parser and the understanding of
X.509 ASN.1 structures. Various additional semantic rules and constraints
must be taken into account, such as those scattered in the various SHALL,
SHOULD, MUST, etc in the IETF specification [5]. This includes for
instance the requirement for a certificate having its keyCertSign bit set
in its keyUsage extension to have the cA boolean in its Basic Constraints
to also be asserted (making it a Certification Authority (CA) certificate).
Additional rules have also been put in place by the CA/Browser Forum 2.

And then, because Internet is Internet, some may expect invalid cer-
tificates (regarding previous rules) to be considered valid because lax
implementations have generated and accepted them for a long time.

2.2 ASN.1, BER and DER encoding

The X.509 format is built upon ASN.1 (Abstract Syntax Notation
One), which basically defines a general purpose TLV (Tag Length Value)
syntax for encoding and decoding objects. This is particularly useful for
elements that must be marshalled over a transmission line (e.g. for network
protocols).

At its basic level, ASN.1 defines types with rules to encode them as
a binary blob. Among the defined types, we have simple types such as
INTEGER, OCTET STRING or UTCTime. These types are atomic and represent
the leaves when parsing ASN.1. Structured types such as SEQUENCE on
the other hand encapsulate simple types and introduce the recursive aspect
of ASN.1 objects.

ASN.1 introduces various ways of encoding the same type using BER
(Basic Encoding Rules) [12]. The same element can be represented in
a unique TLV object, or split across multiple TLV objects that when
decoded and concatenated will produce the same ASN.1 object. Because
of the ambiguity introduced by BER (many binary representations can be
produced for the same object), the DER (Distinguished Encoding Rules)
have been introduced. DER adds restrictions to the BER encoding rules
that will ensure a unique binary representation of all ASN.1 types. From

2. https://cabforum.org

https://cabforum.org

A. Ebalard, P. Mouy, R. Benadjila 7

now on, we will only focus on DER encoding as it is the one specified by
the X.509 standard.

Even though no ambiguity exists in DER, encoding and decoding
ASN.1 is still quite complex and error-prone. Fig. 1 provides a concrete
example on how a very simple type like the INTEGER 2 is DER encoded
(found in X.509 v3 certificates).

02 01 02 INTEGER encoding of value ’2’

0 1 2 3 4 5 6 7

Class=0 Type=0 Tag number=2
}

Tag

Length field=01
}

Length

Value field=02
}

Value

Fig. 1. ASN.1 simple INTEGER encoding

The first byte is the tag of the TLV. It is made of three different
subfields: the first two bits provide the Class, which is universal (0). The
third bit being 0 indicates that the type is primitive (otherwise, it would
have been constructed). Then, the last five bits of this first byte provide
the Tag number which has value 2, and indicates that the element type
is an INTEGER. Note that Tag values are not limited to the 32 values the
5 bits can encode; when the specific value 31 is used (all 5 bits set), the
class is encoded on multiple following bytes.

The second byte is the beginning of the length field of the TLV. Because
the type is primitive (first two bits of the first byte are 0), the specification
requires the length to be encoded using what is called the definite form 3,
which means that “the length octets shall consist of one or more octets,
and shall represent the number of octets in the contents octets using either
the short form or the long form as a sender’s option.” (section 8.1.3.3
of [12]). Because the version field contains only a small integer, its length
is encoded using the short form, which can be deduced from the fact that
the leading bit of the second byte is 0. This is a trivial case for which the
length of the content is directly the value of the second byte, i.e. 1.

3. In the indefinite form, no length is provided and the content octets are marked
using a specific value named End-of-contents octets.

8 Journey to a RTE-free X.509 parser

We now know that the content (i.e. value) of the INTEGER is encoded
on a single byte following the length field, in big endian two’s complement
binary notation. The integer value is 2 in our case.

In the end, extracting this simple INTEGER value from those 3 bytes
required parsing 3 fields, each of which contained multiple subfields capable
of modifying the parsing logic. This very simple example is expected to
show the reader the complexity of parsing DER-encoded structures.

2.3 X.509 format

At high level, an X.509 certificate is a signed ASN.1 structure holding
few elements represented on Fig. 2. The standard [13] 4 defines all the X.509
types recursively until simple or structured types are reached, yielding a
non ambiguous ASN.1 definition. The X.509 ASN.1 specification indicates
that a Certificate structure is the signed version of a TBSCertificate
structure, which is itself defined above as a SEQUENCE of various elements
(each one being possibly a SEQUENCE or a SET of other elements in a
recursive fashion).

The first element in the TBSCertificate sequence is a field named
version of type Version, which is defined as an INTEGER taking three
different values indicating the version of the certificate. If absent, the
certificate version is v1.

As another example of ASN.1 complexity, the fifth element in the
certificate is a validity field whose structure is defined below the
TBSCertificate structure as a SEQUENCE of two elements (notBefore
and notAfter). Both are defined using Time type which is itself defined as
a CHOICE between two possible types (UTCTime and GeneralizedTime).

The last element of a certificate showing the inherent structural com-
plexity of X.509. [11] is the extensions field as presented on Fig. 3.
The extensions field is a SEQUENCE of Extension, which are themselves
SEQUENCEs of 3 elements: an object identifier, a criticality bit and a value
encoded as an OCTET STRING, that can then be decoded specifically based
on the object identifier value. Additionally, the various extensions have
structures that are more complex than the main certificate fields.

2.4 Vulnerabilities

This section provides a few examples of X.509 or ASN.1 parser vulner-
abilities in order to illustrate the possible devastating impacts of errors in
such parsers.

4. [5] contains the same description.

A. Ebalard, P. Mouy, R. Benadjila 9

Certificate ::= SIGNED { TBSCertificate }

TBSCertificate ::= SEQUENCE {
version [0] Version DEFAULT v1 ,
serialNumber CertificateSerialNumber ,
signature AlgorithmIdentifier {{

SupportedAlgorithms }},
issuer Name ,
validity Validity ,
subject Name ,
subjectPublicKeyInfo SubjectPublicKeyInfo ,
issuerUniqueIdentifier [1] IMPLICIT UniqueIdentifier OPTIONAL ,
... ,
[[2: -- if present , version shall be v2 or v3
subjectUniqueIdentifier [2] IMPLICIT UniqueIdentifier OPTIONAL]],
[[3: -- if present , version shall be v2 or v3
extensions [3] Extensions OPTIONAL]]
-- If present , version shall be v3]]
}

Version ::= INTEGER {v1 (0) , v2 (1) , v3 (2)}
...
Validity ::= SEQUENCE {

notBefore Time ,
notAfter Time ,
... }

...
Time ::= CHOICE {

utcTime UTCTime ,
generalizedTime GeneralizedTime }

Fig. 2. X.509 certificate high level structure

CVE-2017-7932 Various NXP ARM Systems On Chip (SoC) share a
common mechanism called High Assurance Boot (HAB) to secure their
boot process by providing authenticity of firmware images. The mechanism
is implemented in the BootROM of the SoC, a ROMed piece of code, which
cannot be updated for existing chips. [7] describes a stack-based buffer
overflow in the use of asn1_extract_bit_string() function when parsing
the content of the keyUsage extension. This vulnerability is exploitable
using a certificate with a crafted keyUsage extension, allowing the attacker
to redirect the PC register and execute arbitrary code embedded in the
certificate. One of the demonstrated uses of such an exploit is the complete
bypass of the secure boot mechanism of i.MX28, i.MX 50, i.MX 53, i.MX
6, i.MX7, Vybrid VF3xx, VF5xx, and VF6xx processors. The only way
to get a fixed bootrom version for such processors was to switch to new

10 Journey to a RTE-free X.509 parser

Extensions ::= SEQUENCE OF Extension

Extension ::= SEQUENCE {
extnId EXTENSION .& id({ ExtensionSet }),
critical BOOLEAN DEFAULT FALSE ,
extnValue OCTET STRING

(CONTAINING EXTENSION .& ExtnType ({ ExtensionSet }{ @extnId })
ENCODED BY der),

... }

der OBJECT IDENTIFIER ::=
{joint -iso -itu -t asn1 (1) ber - derived (2) distinguished - encoding (1)}

ExtensionSet EXTENSION ::= {...}

Fig. 3. X.509 extensions ASN.1 structure

hardware revisions. No valid workaround or fix exists to alleviate the issue
for existing platforms that rely on this mechanism for their security.

3DS flawed ASN.1 parser In 2018, Scire and al. documented in [20]
attacks on the BootROMs of the Nintendo 3DS, allowing to exfiltrate
secret information from protected memory areas and gain persistent early
code execution. The attack exploits a flaw in the RSA PKCS#1v1.5
padding of the ASN.1 parsing implementation, where the bounds of the
signed hash field embedded in an OCTET STRING are not verified. This
allows an adversary to alter the parsing process and make the BootROM
code check a crafted signed hash elsewhere on the stack instead of the
one embedded in the signed firmware. An interesting element here is that
this little crack in the 3DS security scheme is one of the only – yet fatal –
flaws in a rather clean security architecture.

CVE-2016-5080 Objective Systems Inc. develops and sells an ASN.1
compiler for C/C++ called ASN1C, which generates ASN.1 parsing code.
Generated code produced by version 7.0 or below contained a heap overflow
vulnerability allowing a possible code execution on the targeted platforms.
One of the vulnerable example implementations was a 3GPP API add-on
in the ASN1C SDK.

CVE-2017-2781 InsideSecure MatrixSSL 3.8.7b contained an ex-
ploitable heap buffer overflow vulnerability when parsing IssuerPolicy

A. Ebalard, P. Mouy, R. Benadjila 11

PolicyMappings extension. This vulnerability allowed remote code exe-
cution.

CVE-2017-9023 ASN.1 CHOICE types were badly handled in StrongSwan
ASN.1 parser when parsing X.509 certificates and resulted in an infinite
loop. All versions before 5.5.2 were affected by this denial-of-service bug.

CVE-2017-2800 wolfSSL SSL/TLS library up to version 3.10.2 con-
tained an exploitable off-by-one write vulnerability in their X.509 cer-
tificate parsing implementation. The impact was a possible remote code
execution via a crafted X.509 certificate.

3 Parser development

3.1 Strategy for X.509 support

In an ideal world, verified RTE-free ASN.1 DER libraries would exist
to serve as a groundwork for building parsers to target versatile ASN.1
syntaxes, like X.509 certificates.

Unfortunately, a simple query for “ASN.1 parser+static analysis” on
any search engine provides very few results. One of the reasons behind is
probably the inherent complexity of ASN.1 (even when considering that
DER is the simplest encoding).

Additionally, because of the semantic complexity added by X.509, even
if we were able to use a clean DER ASN.1 parser, many requirements
would have to be checked regarding the X.509 implementation dealing
with the certificate structure.

For all these reasons, the development was performed by implementing
incrementally manner the minimal support functions to progress through
the DER encoding of X.509 structures while also taking into account the
semantic elements of [5].

The use of a vast representative test set, as discussed in subsection
3.3, helped a lot for implementation decisions to keep the parser capable
of handling real-world certificates.

This pragmatic approach resulted in a limitation of the amount of
code compared to a generic ASN.1 DER parser but also in a reduced
implementation complexity. This was a first step towards using Frama-C.

12 Journey to a RTE-free X.509 parser

3.2 Development constraints

Various development rules were followed in order to ease the use of
static analysis tools. They were not tailored specifically to Frama-C. These
design patterns are usually advised best practices when a static analysis
is planned.

• Basic C99 without VLA: in practice, the need for C99 is mainly
required by the use of designated initializers, missing in C89. All
other fancy evolutions of C99 compared to C89 were considered
useless and possibly dangerous like variable-length arrays (VLA).

• No dynamic allocation: care has been taken not to use dynamic
allocation. This has been possible using various design decisions,
based either on the analysis of the specification or on the analysis
of real world certificates. For instance:
— Most certificates are usually 1.5KB or so in length but there is

basically no theoretical limit for their size. We decided to set
an upper bound of 64 KB for certificates our parser will handle.
Setting this upper bound on the whole structure also provides
an upper bound on each field/structure/element that will be
parsed. This helped reducing the need for dynamic allocation.

— Another example is the handling of extensions in a certificate.
There is no upper limit on the number of extensions in a certifi-
cate, even though most certificates only have a few. The analysis
of our set of 200 million certificates shows that less than 200
different extensions exist in real life. Considering that [5] also
requires each extension to appear only once in the certificate,
enforcing this requirement with an upper bound of 200 exten-
sions is pretty easy without dynamic allocation. This would
not have been possible when considering a huge or unlimited
amount of extensions. In practice, an even lower bound is used
in the parser.

One should also notice that avoiding dynamic allocation makes the
parser more fitted to the tight constraints of embedded devices.

• Limited use of function pointers: function pointers are a
useful tool in C but must be used with care. For instance, the main
loop handling the sequence of extensions in a certificate could
incorporate a very large switch/case to call specific handlers but
this would create a very large function. In practice, this is better

A. Ebalard, P. Mouy, R. Benadjila 13

achieved using static const structures associating function
pointers with identifiers and additional useful data. Parser code
makes a limited use of this specific design pattern and prohibits
the use of dynamic arrays of function pointers. This was expected
to help static analysis tools follow pointers.

• No external dependencies: in order to avoid both the possible
security impact of external code and the ability to validate
this code in static analysis tools, the parser was built without
dependencies to external libraries.

• Use of static, const and alike qualifiers: the use of C
qualifiers like static and const is very useful both to help
compilers doing a better job but also to spot potential errors. They
are obviously of great help for static analysis tools and require in
the end only a minimal effort to use them.

• Use of unsigned integers of minimal length (uint8_t,
uint16_t, etc.): int are usually used without care in many C
programs, for instance in situations where unsigned integers and
even ones of a specific size (uint8_t, uint16_t, etc.) would be
more suitable. The parser tries to use such specific integers when
possible, in order for static analysis tools to benefit from the
information embedded in the type (signed arithmetic, range of
values, etc.). Exploring the effects of all the possible 256 values of
an uint8_t is obviously far less complex than doing so for the 232

values of an uint32_t.

• Limited cyclomatic complexity: both for human readability
and for simplifying later validation by static analysis tools, parser
code has been written in order to keep functions as small as
possible and keep the cyclomatic complexity of the project low.

• Strict compilation options: before starting static analysis work,
the feedback from compilers has been used as a useful tool during
development to spot possible errors. This has been done using
strict compilation options. As an example, here are the options
used with clang to build the project:

clang -Weverything -Werror -Wno-reserved-id-macro \
-Wno-unreachable-code-break \
-Wno-covered-switch-default \

14 Journey to a RTE-free X.509 parser

-Wno-padded -pedantic -fno-builtin \
-D_FORTIFY_SOURCE=2 -fstack-protector-strong \
-std=c99 -O3 -fPIC -ffreestanding \
-c x509_parser.c -o x509_parser.o

Because different tools provide different and complementary views
of the project, the ability to build the project with gcc has been
retained.

• No recursion: recursion is both a discouraged coding practice in
embedded environments as well as a disastrous construction for
static analysis tools.

3.3 Testing and validating the X.509 parser

In order to experiment with the capabilities of the parser against
real-world certificates, a test suite was gathered from various SSL/TLS
test campaigns spanning from diverse sources over a few years, and the
huge amount of certificates available from Certificate Transparency 5 logs.

This set of 200 million unique certificates was used for various
purposes in the project, including the computation of statistics on specific
aspects of certificate content: real world use of a given extension, possible
alternative encodings of a specific field, recursion limits, etc. This also
helped taking informed decisions on useless extensions, best ways to
implement SHOULD of [5], and so on. Additionally, this set was an useful
basis to measure the performances of the parser.

Implementation decisions The RFC [5] is 150 pages long. This could
seem rather small, but this represents nearly 400 SHOULD, SHALL, MAY
and other MUST in order to obtain a valid X.509 parser.

Version
As an example, let us analyze the content of section 4.1.2.1 of [5],

describing one of the most simple fields in a certificate, the version field,
is provided below. To be more specific, the following describes what the
field should contain, but not how it should be encoded, since this is
determined by ASN.1 notation and DER encoding. If one follows the
RFC, one will have to support all possible version values and then ask
yourself various questions like what to do from a version 1 certificate that

5. https://www.certificate-transparency.org/

https://www.certificate-transparency.org/

A. Ebalard, P. Mouy, R. Benadjila 15

includes extensions.

This field describes the version of the encoded certificate. When
extensions are used, as expected in this profile, version MUST be 3
(value is 2). If no extensions are present, but a UniqueIdentifier
is present, the version SHOULD be 2 (value is 1); however, the
version MAY be 3. If only basic fields are present, the version
SHOULD be 1 (the value is omitted from the certificate as the
default value); however, the version MAY be 2 or 3.

Implementations SHOULD be prepared to accept any version
certificate. At a minimum, conforming implementations MUST
recognize version 3 certificates.

Generation of version 2 certificates is not expected by implementa-
tions based on this profile.

Having a huge representative set really helps at this point, because
you can take educated decisions about the content of the RFC. As shown
on Figure 5, keeping backward compatibility with v1 certificates does not
make much sense because they are infrequent in the wild.

Number Percentage
v1 3890 0.002
v2 32 0.00002
v3 196467422 99.992
v4 11703 0.006

Fig. 4. Certificates version in our set

In our set, we have almost 3 times more v4 certificates (what’s that?)
than v1 ones. In the end, considering the RFC and the information
provided by our set, the decision was made to accept only v3 certificates.

Beyond the simple version field issues, we briefly provide a non ex-
haustive list of additional decisions that we made during the development
using the experimental feedback of our test set.

Serial number field
Certificate serial number is encoded as a positive integer. Both CAs

and users are expected to support serial number fields up to 20 octets.
The set tells us that we have no certificate with a negative serial number,

16 Journey to a RTE-free X.509 parser

so we strictly follow the RFC on that aspect. Regarding serial number size,
the set has certificates with serial number from 1 to 129 octets. Serials
with a length above 20 bytes represent 0.02% of the set, i.e. they are
marginal. For this reason, our implementation does enforce a maximum
length of 20 bytes for serial numbers.

Subject and Issuer fields
Subject and issuer fields must contain a Distinguished Name (DN)

which is itself made of Relative Distinguished Names (RDN). Each RDN
has an OID defining its type and a specific value, which depends of its
type. A parser has to understand and validate the value and its encoding.

Here is what section 4.1.2.4 of [5] expects for Issuer (and also for
Subject field):

Standard sets of attributes have been defined in the X.500 series of
specifications [X.520]. Implementations of this specification MUST
be prepared to receive the following standard attribute types in issuer
and subject (Section 4.1.2.6) names:
* country,
* organization,
* organizational unit,
* distinguished name qualifier,
* state or province name,
* common name (e.g., "Susan Housley"), and
* serial number.

In addition, implementations of this specification SHOULD be
prepared to receive the following standard attribute types in issuer
and subject names:
* locality,
* title,
* surname,
* given name,
* initials,
* pseudonym, and
* generation qualifier (e.g., "Jr.", "3rd", or "IV").

The parser currently supports all the 14 attributes above (MUST and
SHOULD) as a starting point. Because an unknown attribute cannot
have its content validated, a certificate with such an unknown attribute is
simply refused.

A. Ebalard, P. Mouy, R. Benadjila 17

The set provides interesting statistics about the attributes that are
commonly found in practice on the Internet, as presented below. The
attributes expected by [5] are colored in orange.

18 Journey to a RTE-free X.509 parser

of occurences OID value OID name
126647362 2.5.4.3 commonName
76190507 2.5.4.11 organizationalUnitName
73984568 2.5.4.6 countryName
71709230 2.5.4.10 organizationName
50480910 2.5.4.7 localityName
50150074 2.5.4.8 stateOrProvinceName
4595889 2.5.4.5 serialNumber
1227210 1.2.840.113549.1.9.1 emailAddress
1103699 1.3.6.1.4.1.311.60.2.1.3 MS EV JOICountryName 6

999503 2.5.4.17 postalCode
553996 0.9.2342.19200300.100.1.25 domainComponent
376837 2.5.4.13 description
259124 2.5.4.15 businessCategory
220997 2.5.4.4 surname
21506 1.2.840.113549.1.9.2 unstructuredName
20566 2.5.4.42 givenName
18509 2.5.4.9 streetAddress
10373 0.9.2342.19200300.100.1.1 userid
2391 2.5.4.97 organizationIdentifier
1500 2.5.4.46 dnQualifier
1092 1.2.840.113549.1.9.8 unstructuredAddress
569 2.5.4.12 title
437 0.0 zeroDotZero
399 2.5.4.41 name
217 2.5.4.18 postOfficeBox
81 2.5.29.17 subjectAltName
56 1.3.6.1.4.1.311.60.2.1.1 MS EV JOILocalityName 7

44 2.5.4.45 uniqueIdentifier
36 1.3.6.1.4.1.18838.1.1 Spanish national ID
36 0.9.2342.19200300.100.1.3 rfc822Mailbox
23 1.3.6.1.4.1.16533.30.1 ???
21 2.5.4.43 initials
19 1.3.6.1.7 mail
15 2.5.4.45.17 ???
12 2.5.4.20 telephoneNumber
11 1.3.6.1.4.1.311.60.2.1.2 MS EV JOISOPName 8

8 2.5.4.54 dmdName
7 2.5.4.65 pseudonym
5 1.3.6.1.4.1.23267.2.3 ???
5 2.5.4.16 postalAddress
3 0.9.2342.19200300.100.1.4 info
2 1.3.6.1.4.1.23727.1.1.1 id-nat-uri
2 2.5.29.19 basicConstraints
2 2.5.4.72 role
...

Fig. 5. Statistics of RDN types in Issuer and Subject fields

A. Ebalard, P. Mouy, R. Benadjila 19

The statistics above first tells us that the main extensions expected to
be supported by [5] are the most represented.

The emailAddress attribute is less represented in the set and described
in the following way in [5]:

Conforming implementations generating new certificates with elec-
tronic mail addresses MUST use the rfc822Name in the subject
alternative name extension (Section 4.2.1.6) to describe such iden-
tities. Simultaneous inclusion of the emailAddress attribute in the
subject distinguished name to support legacy implementations is
deprecated but permitted.

At the moment, we implement a strict strategy regarding the appear-
ance of an emailAddress in subject or issuer fields.

Another interesting aspect provided by the statistics is related to the
two attributes in red: some people generated funny certificates with subject
or issuer fields with attributes using the OID used for the subjectAltName
and basicConstraints extensions. Welcome to the Internet.

In the end, the statistics also tell us which additional attributes would
be needed to validate most certificates in our set.

Validity
Dates in notBefore and notAfter elements of validity field can either

be encoded using generalizedTime or utcTime encoding, based on their
value. Most certificates (more than 99%) currenlty have dates encoded
using utcTime. This was expected because most dates are currently
before 2050. 26 certificates of the set have notBefore values that are
after notAfter value.

Subject Public Key Info
The set provides interesting statistics about the algorithms and what

needs to be supported in the parser.

Extensions
The set tells us there are tens of different extensions in the certificates

we have. We have no real reason to try and support exotic extensions.
The parser implements most common extensions based on the statistics
provided by the set. Additionally, any given type of extension can appear
only once in a certificate. That rule is enforced in the parser. The set tells
us that there are 13 certificates that rejected because of this rule.

In the end, even if the parser tries to follow the rules given in [5] as
much as possible, unclear guidance and suggestions are handled using

20 Journey to a RTE-free X.509 parser

real-world information using the set. Regarding the MUST, SHALL and
so on requirements, a dedicated document describes the decisions taken
and the compliance status with respect to the standard.

As an example, our implementation currently does not support the
Subject Information Access extension: we only have 135 certificates with
it in our set. Requirements associated with this extension are marked as
unfulfilled in the compliance document. We also do not support the Name
constraints extension: it is complex and rare, considering all the statistics
we have using the CA certificates in our set.

Unit and regression tests Having a large set of different certificates
is very useful for testing. First, it allows to detect regressions in already
implemented code (the number of validated certificates suddenly drops
from 95% to 0 because a test was reversed). It is also used to validate new
features as they are developed, providing some unexpected aspects of a
feature (common or maximum number of element in a given SEQUENCE for
instance).

Another interesting use of the test set which is currently a work in
progress is its use as an initial set for running AFL. This may be covered
in a future version of the article [3].

4 Introduction to program analysis

4.1 Functional and security verifications, absence of RTE

When it comes to static analysis of programs, at least two kinds of
properties are desirable:

Functional verifications: this is the task of verifying that an implemen-
tation conforms to its specification (i.e. the program behaves as it should).
For formal functional verification, the specification has to be expressed
in a formal way and the verification has to be done for all possible runs.
In Frama-C, the functional specification can be expressed with function
contracts and assertions. The kernel computes the validity status of each
property with the information given by the called plugins to ensure the
consistency of the complete verification process. A validated property
means there is no concrete implementation that violates this property.
This functional verification can address functional behaviors (what the
function is supposed to do) but also, more precise security properties on
the implementation.

A. Ebalard, P. Mouy, R. Benadjila 21

Security verifications, absence of RTE RTEs are unfortunately com-
mon in programming with unsafe languages such as C and can be a fatal
problem during execution. Such errors cover divisions by zero, invalid
pointer accesses, integer overflows, etc. They can lead to a segmentation
fault or an unexpected/erroneous execution but they can also be exploited
for a malicious purpose (e.g. by tampering with the program execution
flow). Safety and security are closely related especially when dealing with
RTE detection, in order to avoid memory errors and undefined behaviors.
It has been a few years since the use of formal tools for safety concerns
has become common, especially for critical systems [4]. There is also a
growing interest in these tools to tackle security properties [25].

4.2 Static and dynamic analyses, soundness and completeness

In this paper, we mainly focus on static program analysis techniques
widely used to detect vulnerabilities, but dynamic analysis can also be
used for this purpose. Dynamic analysis aims at verifying properties at
runtime when executing paths of a given program [25] .

Most of the tools covered here are based on abstract interpreta-
tion [24]. Some of them use heuristics but only sound analyzers (e.g.
Frama-C/EVA [16]) prove the complete absence of RTE.

The term soundness comes from formal, mathematical logic. The proof
system is a set of rules with which one can prove properties (absence
of RTE) about the model. Soundness refers to the fact that statements
proven to be true using the tool’s axiomatic logics and a proof system in a
given model are indeed true. In that setting, there is a proof system and a
model. The program (all of its executions) plays the role of the model and
the static analysis plays the role of the proof system. The proof system
behind the sound tools discussed in this article are proven to be sound:
this does not mean that their implementation is indeed sound. Any bug
in the proof system implementation may produce invalid results. This
is also true when the model used for the proofs is not realistic (e.g. an
oversimplified memory model) or when some ground axioms are trivially
false. This induces real-world limitations for all the static analysis tools.
However, one should be aware that although such limitations exist, the
results of such tools are the best guarantees one can get regarding the
absence of bugs (such as RTEs) in a program. These limitations also
explain why beyond Frama-C, we have put the X.509 parser code under
the scrutiny of other tools. A static analysis tool is unsound if the tool
claims a property holds when it does not in the program i.e. if there is
at least one erroneous execution. False alarms are a practical reality for

22 Journey to a RTE-free X.509 parser

sound tools but these tools can guarantee that there are no missed errors
(except because of a bug in the tool as explained before). On the other
side, we have completeness. A proof system is complete if it can prove
any true statement about the model. It means that complete tools never
emit false alarms. For a valid program, a complete tool must not issue any
alarm. In practice, there is no complete and sound tool.

To build a guaranteed RTE-free X.509 parser, a sound analyzer appears
to be the appropriate approach.

Abstract interpretation is a static technique to compute over-
approximations of all possible values during program execution for each
memory location. In sound analyses, if a property is verified for all val-
ues in the over-approximation, and only in that case, then the property
is validated for any concrete execution of the program. If there is any
remaining doubt, the tool will emit a warning on the involved property
and the remaining warnings have to be verified one by one, either with
another analysis tool or directly by hand. If a property is required for an
analysis, its validity is assumed but needs to be verified afterwards.

Sound analyzers are generally not used so much for code verification.
Actually, these tools are not much liked among developers because of the
various caveats: they are resource-hungry (time and space), they require
some expertise to be handled, they generally do not offer user-friendly
interfaces, and suffer from many limitations.

Although some of these statements are purely subjective, such tools
were not easily mastered by users unfamiliar with formal methods. How-
ever, the situation improved in the recent years. In any case, these tools
undoubtedly allow one to get very strong guarantees on the analyzed code.

One of the purposes of this article is precisely to provide a feedback
on how to make Frama-C provide a proof of RTE absence on a real world
example. Beyond the mere result, the path to get such working proofs
is also discussed. The results provided by other static analyzers on the
produced code are also discussed.

5 Working with Frama-C on the parser

5.1 Frama-C presentation

Frama-C (Framework for modular analysis of C programs) [17] is a
modular and collaborative platform dedicated to source-code analysis
and more specifically for C99 source code 9. It is mainly co-developed at

9. Frama-C handles also other front-ends beyond the scope of this article, but such
analysis are not as mature as for the C code.

A. Ebalard, P. Mouy, R. Benadjila 23

the Software Security and Reliability Laboratory of CEA-LIST and the
Toccata team of INRIA Saclay. The Frama-C platform is open-source and
allows to bring together several analysis techniques designed as plugins.
Fig. 6 gives an overview of the open-source plugins done by CEA-LIST
and this gallery is a good illustration of the power (and the complexity)
of this platform. It is also designed to be expandable and allows the user
to design custom plugins in a easy way depending on the type of analysis
and on the platform.

The kernel provides a core set of features (basically the normalized
AST 10 of the program) and allows plugins to work together either in a
parallel or serial way. Each plugin performs a precise analysis and/or an
annotation of the source code available for the next analyses. Analyses
done by Frama-C can be static or dynamic (resp. with or without the
program execution), or both. For the vast majority of static analyses,
Frama-C aims to be sound in the sense that it never misses a potential
error in the class of bugs targeted.

5.2 ACSL code annotations in Frama-C

In Frama-C, the annotations of C programs are expressed in ACSL 11

[15], a formal specification language based on a first-order language and
designed to express properties of a C program. ACSL is an easy-to-adopt
specification language with a syntax close to C with some additional
but explicit predicates. It clearly alleviates the writing of annotations for
C programmers. Examples of the ACSL language can be found in [14].
Assertions are another feature allowing to express code properties that
must be true at precise program points.

These ACSL annotations can be performed either automatically by
Frama-C (e.g. by the Rte plugin that generates ACSL annotations to
warn about RTEs) or by hand, directly by the user, to express properties
based on function contracts. Function contracts allow the user to provide
preconditions and postconditions for given functions. Preconditions (resp.
postconditions) are the set of properties supposed to be true before the
function is called (resp. at the end of the function execution).

Using ACSL and Frama-C allows to target a large range of functional
and security verifications. Among them, proving safety properties and the
absence of RTEs are historical ones and still remain the main objectives

10. Abstract Syntactic Tree i.e a tree representation of the abstract syntactic structure
of the source code.
11. ANSI/ISO-C Specification Language

24 Journey to a RTE-free X.509 parser

Plug-ins

verification

Wp1
Value/Eva1

E-ACSL2

expressiveness

Clang3 Aoraï4

Rpp4

Rte1

Variadic3

simplification
Constfold2

SecuritySlicing4

Slicing2

Sparecode2

understanding

Metrics2

Nonterm3

Callgraph & Users1

Occurrence1

Obfuscator1

From & InOut1

Impact3

Scope1

support

Pre

Postdominators2

Pdg2

Loop3

Post

Report2

maturity levels:


1 industrial usage
2 industrial case study
3 CEA-internal case study
4 research prototype

Fig. 6. Open-source CEA-List’s Frama-C Plug-in Gallery.

A. Ebalard, P. Mouy, R. Benadjila 25

with Frama-C. Other security properties as well as formal behavioral
modeling and specifications can also be expressed with this versatile
framework.

5.3 ACSL by example

In order to illustrate this, let us take the very simple example of the
div function that computes the euclidean division of x by y and stores
the quotient in *q and the remainder in *r (see Listing 1).

1 /*@ requires \ valid (q) && \ valid (r);
2 @ requires 0 <= x && 0 < y;
3 @ assigns *q, *r;
4 @ ensures x == *q * y + *r && 0 <= *r < y;*/
5 void div(int x, int y, int * q, int * r)
6 {
7 /* ... */
8 }

Listing 1. ACSL annotations of div function

The preconditions are introduced by the predicate requires, the
postconditions by ensures: as we can see, the postcondition is expressed
as the natural desired result of the euclidean division. The set of memory
locations modified by the function is given with the assigns clause. If no
assigns clause is defined for a function, the caller will have no information
at all on this function’s side effects and will over-approximate them. The
keyword valid implies the verification of memory access for read and
write here (for a read only access, the keyword valid_read is used). ACSL
annotations can be directly written in C source files in comments starting
with /*@ or //@. They are used by Frama-C analyzers but do not interfere
with the original code as they are classical C comments 12.

5.4 Rte, EVA and WP plugins

In this article, we specifically focus on three plugins: Rte [19], EVA [16]
and WP [18], since only these three are used for the verification of our
parser.

The Rte plugin systematically adds ACSL annotations to check po-
tential Run Time Errors. It is an annotations generator and it does not
perform the discharging of such annotations. This plugin can be used

12. We do not consider here the runtime verification and the executable ACSL
annotations (E-ACSL).

26 Journey to a RTE-free X.509 parser

to feed more advanced plugins such as WP. EVA 13 uses sound abstract
interpretation. EVA proceeds to a complete value analysis of the analyzed
program to warn about possible RTEs. In practice, the EVA plugin in-
ternally verifies RTEs and adds annotations only when it cannot prove
them. The Rte plugin covers only a subset of RTE checks done by EVA.
Rte plugin is thus useless with EVA. EVA can also be used to prove simple
explicit ACSL annotations or assertions in C code.

For more complex ACSL properties or assertions, another plugin, WP
(Weakest Precondition), is used. It implements deductive verification [6]
calculus, a modular sound technique to prove that a property holds
after the execution of a function if some other properties hold before it
(pre/post condition as seen before). WP is able to verify more complex
logical annotations and assertions using external automated or interactive
provers (mainly AltErgo, Why3 and Coq) but requires extra efforts with
the code annotations including loop annotations. Indeed, to analyze a
source code with loops, WP needs a specification for each of them or it
uses an implicit specification which is equivalent to “anything can happen”.

A loop annotation is composed of a loop invariant (i.e. a general
condition which is true, before, during and also after the loop), a loop
variant (an integer expression that strictly decreases at each iteration and
ensures the loop terminates) and possibly the list of assigned variables
(as for function annotations, without an assigns clause, it means that
potentially the loop modifies “everything”).

The idea of weakest-precondition calculus is to build valid deductions
based on Hoare logic [10].

5.5 Frama-C interactive and iterative workflow

We provide hereafter an overview of the workflow involving Frama-C
and its plugins based on the expected results. Frama-C accepts C code,
either with or without ACSL annotations: developers may be interested
in annotating their code with expected functional or security properties.

Annotations may either help the work of the tool or make it more
complex. For instance, manually adding loop annotations usually helps
the tool to maintain precise information on manipulated elements. As
a consequence, nearby functions and annotations may benefit or suffer
from this additional information; annotations that cannot be validated
may impact the duration of the analysis, create additional timeouts and
prevent completion of the analysis.

13. Evolved Value Analysis

A. Ebalard, P. Mouy, R. Benadjila 27

The initial goal of the project is to prove the absence of RTE of the
X.509 parser without logical guarantees. This is why our main guideline
was to focus on full verification of the code using EVA and WP.

Frama-C can either be launched directly or using the GUI interface. In
both cases, initial options for the analysis are provided on the command
line as shown below:

frama-c-gui x509_parser.c -machdep x86_64 \
-eva -wp-dynamic \
-then \
-wp -wp-dynamic

This instructs the tool to work on the x509_parser.c file, targeting
the x86_64 architecture, and using first EVA plugin and then WP plu-
gin. Because our code uses function pointers and associated annotations
(@calls) which are discussed later, the -wp-dynamic option is required.

Running Frama-C on the current parser code without annotations
generates 908 proof obligations: this means that an RTE check is added
every 3.5 line of code on average (the parser is made of around 3000 lines
of real code). After less than a minute the result is 134 proof obligations
having an unknown status. This means, that, without any specific effort,
85% of the proof obligations are validated.

Let’s now try to improve the result of the analysis, still without
performing any manual annotation yet. For that purpose, the invocation
of Frama-C is progressively improved using options:

frama-c-gui x509_parser.c -machdep x86_64 \
-eva -eva-slevel 1 \
-eva-slevel-function="find_dn_by_oid:100, \

find_curve_by_oid:100, \
find_alg_by_oid:200, \
find_ext_by_oid:200, \
parse_AccessDescription:400, \
parse_x509_Extension:400, \
parse_x509_Extensions:400, \
bufs_differ:200, \
parse_x509_tbsCertificate:400" \

-eva-warn-undefined-pointer-comparison none \
-wp-dynamic \
-then \
-wp -wp-dynamic -wp-unfold-assigns \
-wp-par $(JOBS) \
-wp-steps 100000 -wp-depth 100000 \
-wp-split -wp-literals -wp-model typed_cast_ref \
-wp-timeout $(TIMEOUT) -save $(SESSION)

28 Journey to a RTE-free X.509 parser

Regarding EVA plugin, the additional following main options have
been added:

— ‘-eva-slevel 1’ and ‘-eva-slevel-function’: slevel’ is prob-
ably the main parameter for EVA operations. Increasing its value
either globally or for a given function improves the precision of
the analysis by making the analyzer unroll loops and propagate
separately the states that come from the then and else branches
of a conditional statement. This also has the side effect of making
the analysis slower. Hence, a good strategy is to use a low global
slevel value and specify higher values for functions that require
it using ‘-eva-slevel-function’ option, as depicted above.

— ‘-eva-warn-undefined-pointer-comparison none’ is used
with care in order to silence undefined pointers comparisons. This
is needed to prevent Frama-C from emitting warnings for all tests
of function input parameters against NULL. 14

Regarding WP plugin, the following options have been added:
— ‘-wp-par’: this options limits the number of parallel processes

runs for decision procedures.
— ‘-wp-split’: this option splits conjunctions in generated proof

obligations recursively into subgoals. This has the effect of generat-
ing more but simpler goals.

— ‘-wp-literals’: this option exports string literals to provers.
— -wp-model typed_cast_ref: "Typed+var+int+float" default

sound model is overriden. This specific option is discussed later.
Using these options, we reduce the proof obligations with an unknown

status from 134 to 63, yielding in 7% unknown rate. An interesting
observation is that skipping the WP pass with only EVA leaves 72 unknown
obligations, meaning that WP does not help that much on reducing the
number of RTE-added annotations after the EVA pass. When skipping the
EVA pass and leaving only Rte and WP, 150 unknown obligations are left.

Sadly, Frama-C will not go any further by tweaking plugins options. In
order to move forward we have to help the tool by annotating the portions
of the code that challenge it such as the loop patterns (while, for, etc).
This specific manual interactive annotation phase aimed at converging
towards a fully proven code is described in the next sections.

14. The strongest hypothesis that EVA relies on is that it is possible to pass from one
address to another if and only if the two addresses share the same base address.

A. Ebalard, P. Mouy, R. Benadjila 29

5.6 Manual code annotations

An overview of the remaining proof obligations shows that they are
almost all related to buffer accesses and initializations. Furthermore, a
large amount of them are located inside loops. Listing 2 exhibits such a
loop working on a buffer inside the _extract_complex_tag() function.

1 for (rbytes = 0; rbytes < len; rbytes ++) {
2 t = (t << 7) + (buf[rbytes] & 0x7f);
3 if ((buf[rbytes] & 0x80) == 0) {
4 break ;
5 }
6 }

Listing 2. Initial version of _extract_complex_tag() main loop

Listing 3 shows how Rte/EVA rewrites the loop and their automatic
annotation: they remain in an unknown state after EVA and WP passes.

1 rbytes = (unsigned short)0;
2 while ((int) rbytes < (int)len) {
3 {
4 /*@ assert rte: mem_access : \ valid_read (buf + rbytes); */
5 t = (t << 7) + (u32)((int)*(buf + rbytes) & 0x7f);
6 /*@ assert rte: mem_access : \ valid_read (buf + rbytes); */
7 if (((int)*(buf + rbytes) & 0x80) == 0) {
8 break ;
9 }

10 }
11 rbytes = (u16)((int) rbytes + 1);
12 }

Listing 3. Annotation by Rte of _extract_complex_tag() main loop

As we can see, Frama-C plugins need help to understand that each read
access to buf[rbytes] is valid during each iteration of the loop, whose
number of iterations depends on rbytes and len. This is achieved by
using dedicated ACSL annotations as shown on Listing 4:

— loop invariant, the construct provides a condition that remains
true during each iteration of the loop 15. In practice, multiple loop
invariants can be specified.

— loop assigns, the construct specifies the elements allocated out-
side the loop but modified inside the loop.

— optional loop variant, the construct provides a strictly decreasing
non-negative integer value at each loop iteration.

15. The semantic of the loop invariant is a bit trickier than that, see [15].

30 Journey to a RTE-free X.509 parser

1 /*@
2 @ loop invariant 0 <= rbytes <= len;
3 @ loop invariant \ forall integer x ; 0 <= x < rbytes ==>
4 ((buf[x] & 0x80) != 0);
5 @ loop assigns rbytes , t;
6 @ loop variant (len - rbytes);
7 @ */
8 for (rbytes = 0; rbytes < len; rbytes ++) {
9 t = (t << 7) + (buf[rbytes] & 0x7f);

10 if ((buf[rbytes] & 0x80) == 0) {
11 break ;
12 }
13 }

Listing 4. Annotated version of _extract_complex_tag() main loop

Even if such manual annotation will indeed help the plugins, out-
of-bound accesses validation requires additional knowledge about the
buffer validity and state when entering the loop. Since the buffer
and its length are parameters of the function, a function contract for
_extract_complex_tag() is needed and shown in Listing 5. As discussed
in section 5.2, this contract helps the tool to grasp preconditions, post-
conditions and side effects of the function. Frama-C plugins will use these
elements when trying to validate the behavior of the function (manual
annotations, RTE-added annotations, etc.). The requires clauses will be
considered as work hypothesis, and in this context ensures and assigns
clauses will be validated. When a callee function f1() is encountered
during the validation of a caller function f2(), the plugins will validate
the requirements of f1() and benefit from the ensures properties in
f2().

1 /*@
2 @ requires len >= 0;
3 @ requires ((len > 0) && (buf != \null)) ==>
4 \ valid_read (buf + (0 .. (len - 1)));
5 @ requires \ separated (tag_num , eaten , buf +(..));
6 @ requires \ valid (tag_num);
7 @ requires \ valid (eaten);
8 @ ensures \ result < 0 || \ result == 0;
9 @ ensures (len == 0) ==> \ result < 0;

10 @ ensures (buf == \null) ==> \ result < 0;
11 @ ensures (\ result == 0) ==> 1 <= * eaten <= len;
12 @ assigns *tag_num , * eaten ;
13 @*/
14 static int _extract_complex_tag (u8 *buf , u16 len , u32 * tag_num , u16

* eaten)
15 {

A. Ebalard, P. Mouy, R. Benadjila 31

16 u16 rbytes ; u32 t = 0; int ret;
17 if ((len == 0) || (buf == NULL)) {
18 ret = -__LINE__ ;
19 ERROR_TRACE_APPEND (__LINE__);
20 goto out;
21 }
22 if (len > 4) { len = 4; }
23 /*@
24 @ loop invariant 0 <= rbytes <= len;
25 @ loop invariant \ forall integer x ; 0 <= x < rbytes ==>
26 ((buf[x] & 0x80) != 0);
27 @ loop assigns rbytes , t;
28 @ loop variant (len - rbytes);
29 @ */
30 for (rbytes = 0; rbytes < len; rbytes ++) {
31 t = (t << 7) + (buf[rbytes] & 0x7f);
32 if ((buf[rbytes] & 0x80) == 0) {
33 break ;
34 }
35 }
36 /* Check if we left the loop w/o finding tag ’s end */
37 if (rbytes == len) {
38 /*@ assert ((buf[len - 1] & 0x80) != 0); */
39 ret = -__LINE__ ;
40 ERROR_TRACE_APPEND (__LINE__);
41 goto out;
42 }
43 if (t < 0x1f) {
44 ret = -__LINE__ ;
45 ERROR_TRACE_APPEND (__LINE__);
46 goto out;
47 }
48 * tag_num = t; * eaten = rbytes + 1; ret = 0;
49 out:
50 return ret;
51 }

Listing 5. Annotated version of _extract_complex_tag() function

The second requires regarding ((len > 0) && (buf != \null)) in-
forms the plugins that when a non-NULL buffer is passed to the function
with a positive length, all its len elements can be safely read. Informally,
the first if at the beginning of the function will ensure the conditions of
the implication. It guarantees that just after this if, len is positive and
buf is not NULL, ensuring that all len elements of buf can be read. The
second if will limit the value of len to 4 if a buffer larger than that is
provided. With this extra information on the validity of the buffer and
the upper bound on its length, the plugins will be able to validate the
loop annotations and use them to also validate the assert added by Rte
inside the loop on buffer accesses. The plugins also maintain the assigns
clause in the function contract to validate it upon return. An equivalent
work is performed for ensures clauses. For the _extract_complex_tag()

32 Journey to a RTE-free X.509 parser

function, one important aspect given in the function contract is related to
the value of eaten output parameter. When the function succeeds (return
value is 0), eaten provides the number of elements in buf that were read
and guarantees that the value is in the range [1, len]. Because the value
of eaten is used by the caller upon success to progress in the buffer (i.e.
skip *eaten first bytes), it is very useful for the plugins validating caller
code to know how eaten and len are linked.

With this example, one can see that annotating the code usually means:
— writing basic function contracts: in our parser code, the focus is put

on buffer-related information (validity, length, etc.). No functional
property about what a function does from a semantic standpoint
is expressed nor validated in these contracts.

— writing loop annotations so that the plugins can maintain a precise
state when handling loops and validate RTE-added annotations.

5.7 Dealing with function pointers

At various locations in the code, we use function pointers to access
the right function. Using function pointers helps code factorization and
structures versatility. However, Frama-C can have issues to handle them.
We briefly describe hereafter how directed annotations can be used to
validate function pointers.

In theory, Frama-C should be able to annotate functions pointers
dereference and get the associated function depending on the context.
Unfortunately, based on our experience, the tool is not able to validate
some preconditions of the called functions. This is where the calls ACSL
statement comes into play: it is currently an undocumented feature as
it is not part of [15], and is used to list possible values of a function
pointer. Even if this manual annotation has the side effect of helping in
the validation of the calls performed using a function pointer, it can also
be used to provide guarantees regarding which functions can be called
using a function pointer (see Listing 6).

1 static int parse_AttributeTypeAndValue (const u8 *buf , u16 len , u16 *
eaten)

2 {
3 ...
4 /*
5 * Let ’s now check the value associated w/ and
6 * following the OID has a valid format .
7 */
8 /*@ calls parse_rdn_val_cn , parse_rdn_val_x520name ,
9 parse_rdn_val_serial , parse_rdn_val_country ,

A. Ebalard, P. Mouy, R. Benadjila 33

10 parse_rdn_val_locality , parse_rdn_val_state ,
11 parse_rdn_val_org , parse_rdn_val_org_unit ,
12 parse_rdn_val_title , parse_rdn_val_dn_qual ,
13 parse_rdn_val_pseudo , parse_rdn_val_dc ;
14 @*/
15 ret = cur -> parse_rdn_val (buf , data_len);
16 if (ret) {
17 ERROR_TRACE_APPEND (__LINE__);
18 goto out;
19 }
20 ...
21 ret = 0;
22 out:
23 return ret;
24 }

Listing 6. Use of calls statement in parse_AttributeTypeAndValue()

6 Results and feedback

6.1 Results overview

Our main result is that we have a working X.509 parser with RTE-free
C code that is verified by Frama-C using and “EVA then WP” strategy.

Over the 9000 lines of the whole X.509 parser, about 5000 lines are
real code (without comment and blank lines) and 1200 lines of annotations
have been added (24% of the source code). Considering this additional
percentage is sufficient to guarantee a complete absence of RTE in the
code, this seems like a reasonable investment.

Beyond the number of lines of annotations we had to introduce, an
interesting indicator is the amount of work and time that was necessary to
obtain the expected results, as well as the learning curve for handling the
Frama-C framework. Going from no knowledge about Frama-C to the fully
annotated and proven code took less than 5 calendar months (more on
this in the feedback section) when most of the development of the parser
spanned (with the same effort level) 12 calendar months.

Finally, another interesting indicator is the time Frama-C takes to
execute its proofs. As we know, soundness comes at a cost, and some
tools might take a tremendous amount of CPU time to converge towards
a result. In our case, EVA and WP finish their processing in 15 minutes
for the whole project on a common laptop with 8GB of RAM, which is
very reasonable considering the amount of proof objectives of the project
(≈ 18000 16) and means that anyone can reproduce validation) on their
machine.
16. when using ‘-wp-split’

34 Journey to a RTE-free X.509 parser

6.2 Annotation work complexity

The parser implementation contains a total of 99 defined functions and
193 functions calls (either directly or via function pointers). The number
of decision points in the code is 674, among which 631 are if statements.

The whole implementation contains 35 loops, which are almost all
used to progress in the ASN.1 main buffer during parsing. A few of these
loops are used to iterate on global structures to find an entry (e.g. locate
an entry with a given OID to call a function pointer provided by the
associated entry)

Regarding annotations, the unique C file contains a total of 953
manually-added clauses, among which 112 are loop annotations. With a
total of 35 loops in the code, this gives an average of 3 clauses for each
loop. Function contracts represent most annotations with 768 clauses (336
ensures, 336 requires and 96 assigns). This gives an average of 8 clauses
per function. The remaining annotations are 62 assert manually put in
the code to help the tool insist on a specific aspect and 5 uses of calls
clause where function pointer are dereferenced.

The project has been developed in order to split all functions in smaller
functions, thus reducing the complexity of the code. As can be seen from
the above statistics, the cost of annotating the code has been limited to 3
annotations per loop and 8 on average per function contract.

6.3 Frama-C learning curve

Although this can be a subjective matter, we have found that the
learning curve is pretty steep because a good understanding of some very
classical quirks is required (e.g. loop variants and invariants) [15].

Self-discipline is also required for loops implementation in order to
simplify annotations and efficiently get validation results. Complex loops
with multiple elements evolving together are hard (if not impossible) to
annotate, will possibly fail to be validated, and will increase or break
the whole analysis time. This work shows that even a complex X.509
parser can be implemented using a limited amount of loop constructs (35).
Additionally, all these loops can be written simply enough to be annotated
and validated.

One interesting element regarding the complexity of the annotation
work is the elements of ACSL language used for this purpose. When tar-
geting the goal of the absence of RTE, the amount of elements required for
annotations is a very limited subset of the specification [15]. Interestingly,

A. Ebalard, P. Mouy, R. Benadjila 35

this limited subset is sufficient to achieve RTE-free validation without
requiring a thorough understanding of formal methods.

6.4 Conclusions about Frama-C usage

Many static analysis tools do not require (or support) manual anno-
tations. This is both an advantage and a disadvantage. On one hand,
this reduces the time the developer has to spend but on the other hand,
this makes it difficult to handle cases where the tool does not complete
its analysis. ACSL annotations are very similar to C, which makes them
straightforward to work with from a C developer perspective.

Frama-C is an actively developed framework with a responsive commu-
nity and releases every 6 months. Indeed, we indeed witnessed improve-
ments on the analysis capabilities of the tool between consecutive versions
(we essentially used Chlorine and Argon versions). There is an effort to
keep up-to-date the various documentations for the tool and each plugin
with each release even if, in certain cases, we failed to find all the useful
information in these documentations. Fortunately, several public support
options are available and provided by the Frama-C community. Another
minor drawback is that external tutorial and examples, even if they help
to learn how to use the tool, can quickly get outdated.

When validating a complex piece of code, one of the downsides of the
tool is that there is not always a clear strategy towards success. Even if
the tool provides some interesting information (possible values for a given
variable at a given point in the code, etc.), some experience and several
attempts are sometimes required to get the right annotation and/or code
modification. Having managed to validate a complete X.509 parser shows
that this work remains feasible but it is not free and has probably been
the most time-consuming task of this validation work. Things can also
get frustrating when plugins options can either help verifying the code or
completely destabilize the analysis (large increase of unproven goals or of
the processing time).

7 Analyses with other tools

To complete the results obtained with the “EVA then WP” strategy,
we have also tried another strategy to find RTEs but also other tools to
find defects in our parser.

36 Journey to a RTE-free X.509 parser

7.1 Sound and fully automatic strategy to prove the absence
of RTE

The previous strategy is based on a combination of Frama-C plugins
to obtain a fully automated verification of our parser. As explained before,
we have chosen to spend time annotating our code at the beginning of
the verification to obtain a fully proven RTE-free code. It is not the
usual workflow. Generally, an automatic tool is directly used on code
without user interaction (as code annotations) and at the end of the
analysis, the chosen tool (based or not on sound analysis) emits a list of
warnings including false positives. In the ideal case, the tool is based on
sound analysis and no warning is emitted but in practice, on real code,
this scenario does not happen. The second part of the classical workflow
consists in a manual investigation of all these warnings. The real RTE
are, of course, fixed and the analysis is done again. The difficulty is about
the false positives: for each of them, a human investigation has to be
performed to confirm it is not an actual RTE. This manual and tedious
work has to be done and redone at each code modification.

In the interest of a fair comparison, we have first decided to provide
the results of Frama-C with this strategy: no manual annotation in a fully
automated way only by using EVA.

Frama-C EVA As explained before, EVA is often used to automatically
prove the absence of RTE with minimal user interaction (ideally in a fully
automatic way): contrary to WP, EVA does not require code annotations.
Each annotation has to be verified by EVA and too many annotations can
even complicate the analysis. So, for this new strategy, we activated the
-no-annot option in order to ignore ACSL annotations. This approach
to analyze our code in a "EVA only” strategy is similar to those of other
sound tools.

The invocation and the results of this fully automated way to use
EVA are given in Fig. 7 where -machdep x86_64 defines the machine
dependent configuration and -eva-ilevel 64 indicates the number of
elements below which sets of integers should be precisely represented.

An important point to note about EVA is that code annotations are
added in the source only where a potential RTE remains; it means only if
EVA failed to prove the RTE cannot occur at that specific location. This
implies we can not reason in terms of valid checks but only in terms of
remaining warnings or errors.

A. Ebalard, P. Mouy, R. Benadjila 37

Tool Version Errors Warnings Time Stats
18.0 Argon 0 227 4.5 s

EVA invocation: frama-c x509-parser.c -no-annot -machdep x86_64 -eva-ilevel
64 -eva

Fig. 7. EVA: results and invocation of the first run

By adding the -eva-warn-undefined-pointer-comparison none
option to suppress the warnings emitted by EVA about the comparison of
pointers with NULL 17, 178 warnings remain.

Because some headers in the standard C library provided with Frama-
C use ACSL annotations and because the previous -no-annot option
also make the tool ignore the use of these dedicated annotations, we
then changed our way to use EVA. We simply removed all the manual
annotations from the source code and also removed the -no-annot option.
ACSL annotations from the standard C library are then considered and we
run a new analysis. This way, the number of remaining warnings decreases
to 69 in 4.3 seconds as shown in Fig. 8.

Tool Version Errors Warnings Time Stats
18.0 Argon 0 69 4.3 s

EVA invocation: frama-c x509-parser.c -machdep x86_64 -eva-ilevel 64
-eva-warn-undefined-pointer-comparison none -eva

Fig. 8. EVA: results and invocation before tweaking of options and domains

To go further and improve the results, we have then used the slevel
option and added the recommended domains as explained in the EVA
manual and tutorial (cf [16], [1] or [2]).

To explain a little more the path taken to select EVA options, Fig. 9
gives detailed results, options and domains for various runs. The interesting
option values or domains which improved EVA results on our parser
verification are emphasized with blue color in Fig. 9.

Some options, not mentioned in this figure (for readability) are
used, such as options about the architecture, the size of integers, the
-eva-warn-undefined-pointer-comparison none option,

17. One of the main hypothesis done by EVA is to only allow manipulations between
pointers with a same base address.

38 Journey to a RTE-free X.509 parser

We then run EVA iteratively with the options and domains appearing
to be good candidates to improve the analysis according to the available
documentation of the tool.

In Fig. 9, additional options are present compared to our "EVA then
WP” strategy as -eva-symbolic-locations-domain. Indeed, these op-
tions were not necessary to achieve the complete verification of our
code but were useful to improve the results in the "EVA only” strat-
egy. The -eva-symbolic-locations-domain option - highly recom-
mended in EVA documentation - performs a special analysis for reused
left-values from a conditional and then allows to refined results. The
-eva-split-return auto option tells Frama-C to automatically split the
states according to the function return. For this “EVA only” strategy,
we have also changed some values of the default options: in practice
-eva-slevel 12 and -slevel-function fixed to 400 only for the func-
tion parse_x509_Extensions.

In the successive EVA experiments exposed in Fig. 9, we can also note
various combinations of options and domain do achieve, more or less, the
same result. This is, in a way, a revealing element of the large amount
of options of EVA and the difficulty to find the correct way to proceed;
indeed, no real procedure or even hints are available. We do not detail
all these options in this paper; the interested reader will find them in the
tool documentation.

Because of the myth of -eva-slevel 1000000 26, we also increased
significantly the value of this parameter, but in a reasonable way i.e. up to
1000. Because of this global slevel set to a high value, we have suppressed
the slevel-function in these invocations. We did not try a higher value
because we were not inclined to accept a longer analysis time especially
without a gain in the analysis result.

Our best result with EVA was 58 warnings in less than 2 minutes
(112s). The associated invocation is given in Fig. 10

All these warnings are about memory access and more precisely the
verification that a memory location is valid for reading.

To go further, we increased the amount of checks using
the -warn-right-shift-negative, -warn-signed-downcast,
-warn-unsigned-downcast, -warn-unsigned-overflow options. In-
deed, by default, Frama-C only checks RTE which correspond to undefined
behaviors according to the C99 standard and these options correspond to
defined behaviors and are then not set by default. By taking the previous

26. Private joke in the Frama-C community

A. Ebalard, P. Mouy, R. Benadjila 39

First tweaking of slevel value:
1 69 4.5s
10 66 34.0s
50 62 229.3s
100 62 689.3s
30 62 120,3s
20 64 71,7s

Tweaking of domains
slevel 18 esld 19 ebd 20 esr 21 sf 22 eed 23 eqtc 24 egd 25 #W Time
1 X 67 7.1s
30 X 62 164.3s
1 X 69 5.9s
30 X 62 146.9s
1 X(full) 69 5.1s
30 X(full) 62 7936.8s
1 X(auto) 69 5.2s
30 X(auto) 58 151.2s
1 X 69 6.3s
30 X 62 186.8s
1 X(all) 69 5.0s
30 X(all) 62 119.4s
1 X(formals) 69 5.0s
30 X(formals) 62 117.9s
1 X 69 6.3s
30 X 62 154.8s

Combination of - visibly helpful - domains and options:
30 X X(auto) 58 221.4s

Addition of slevel-function:
1 X X(auto) ♣ 60 95.0s
30 X X(auto) ♣ 58 203.7s
20 X X(auto) ♣ 58 183.5s
10 X X(auto) ♣ 58 122.7s
1 X X(auto) ♠ 65 221.3s
3 X X(auto) ♠ 64 45s
10 X X(auto) ♠ 61 87.8s
20 X X(auto) ♠ 58 186.9s
12 X X(auto) ♠ 58 111.9s

With significant increase of slevel option:
300 X X(auto) 58 2867.2s (>47mn)
500 X X(auto) 58 4332.7s (>2h)
1000 X X(auto) 58 59936.6s (>16h)

— esld ≡ -eva-symbolic-locations-domain
— ebd ≡ -eva-bitwise-domain
— esr ≡ -eva-split-return auto/full
— sf ≡ -slevel-function
— eed ≡ -eva-equality-domain
— eetc ≡ -eva-equality-through-calls full/formal
— egd ≡ -eva-gauges-domain
— ♣ ≡ same functions and values than in “WP then EVA” strategy
— ♠ ≡ slevel-function value fixed at 400 only for parse_x509_Extensions (N.B. we tryed each function

one by one to select the best value for the option - only this one seems to be necessary to get best
results on our analysis)

Fig. 9. “EVA only” strategy experiments

40 Journey to a RTE-free X.509 parser

frama -c x509_parser .c \
-machdep x86_64 \

-eva - ilevel 64 \
-eva -warn - undefined - pointer - comparison none \
-eva - symbolic - locations - domain \
-eva -split - return auto \
-slevel - function =" parse_x509_Extensions :400" \
-slevel 12 \
-eva

Fig. 10. EVA: the optimal invocation

invocation (in Fig. 10) and adding these additional options, new warnings
are emitted by EVA as shown in Fig. 11.

Tool Version Errors Warnings Time Stats
18.0 Argon 0 158 2392.3s (>39mn)

Fig. 11. EVA: results for the last run (with tweaking of options and
domains and with additional checks)

As depicted above, the total number of warnings and the duration
both significantly increased. The new warnings emitted by the tool are
false positives and our previous strategy (“EVA then WP”) effectively
proved their absence.

Code Prover Polyspace Code Prover [22] is similar to EVA: a sound static
analysis tool based on abstract interpretation to prove the absence of RTE.
The analysis is fully automated and does not require code annotation. The
workflow used by Code Prover is very close to the “EVA only” strategy.

A first run of Code Prover was performed, with no additional infor-
mation on the code and with the default values for the analysis. The
summary of this run is given in Fig. 12.

The results obtained with Code Prover in this first run are quite similar
with those obtained with EVA: no error found, the same parts of code
are indicated unreachable and remaining warnings correspond (before
tweaking EVA options).

However, if some hypotheses are given to Code Prover, for example
that the buffer is a well-defined and initialized array, then the analysis

A. Ebalard, P. Mouy, R. Benadjila 41

Tool configuration:
Tool version Precision level Verification level

9.10 2 Safety analysis level 2
Results:

Total checks Red checks Grey checks Orange checks Green checks Time Stats
3057 0 51 (1.5%) 153 (5.2%) 2853 (93.3%) 65 s

— Red check ≡ error
— Grey check ≡ unreachable code
— Orange check ≡ warning
— Green check ≡ proven

Fig. 12. Code Prover: results of the first run (without tweaking of options)

can be much more precise and raises only 52 warnings. We also increased
the precision and verification levels in the tool. The summary of this new
run is done in Fig 13.

Tool configuration:
Tool version Precision level Verification level

9.10 3 Safety analysis level 4
Results:

Total checks Red checks Grey checks Orange checks Green checks Time Stats
3002 0 48 (1.6%) 52 (1.7%) 2902 (96.7%) 245s

Fig. 13. Code Prover: results of the second run (with tweaking of options)

In Fig. 14, the results of a last run is done with additional detection
of unsigned integer overflows.

Tool configuration:
Tool version Precision level Verification level

9.10 3 Safety analysis level 4
Results:

Total checks Red checks Grey checks Orange checks Green checks Time Stats
4295 0 49 (1.1%) 202 (4.7%) 4044 (94.2%) 248 s

Fig. 14. Code Prover: results of the last run (with tweaking of options)
and with the detection of unsigned integer overflows

The report and interface of Code Prover are more user-friendly than
in Frama-C but the tweaking is more limited. This is quite logical: on

42 Journey to a RTE-free X.509 parser

the one hand, Code Prover is a commercial tool to automatically verify
code without user interaction and on the second hand, Frama-C is an
academic platform which offers to the user multiple ways of interactions
and multiple kind of analyses. Code Prover is clearly really easy to use.
The GUI is useful to explore the warnings emitted by the tool and one
has the necessary information needed to understand them (execution
path, computed values, ...). The tool provides a good way to visualize
the analysis results and explore them, by presenting those results in a
clear way and with contextual information to investigate them. This effort
towards end-user deserves to be emphasized. Results obtained are quite
interesting: in an easy and fast way (less than 4 mn), Code Prover verifies
our parser code and only 52 potential RTE remain. These ones are actually
false positives and the user has to investigate each warning and give a
manual justification about the absence of RTE. Code Prover is clearly a
good and efficient tool to find RTE and with a high level of guarantee.

7.2 Other tools

To go further, we also analyzed our parser with various tools, not
dedicated to RTE-detection, but detection of vulnerabilities or defects in
C code.

We started with three commercial tools: Bug Finder (Polyspace) [21],
Codesonar (Grammatech) [8] and Coverity (Synopsys) [26] which are static
analysis tools based on unsound approaches in order to scale analysis to
larger code bases. These tools are used to detect software defects including,
among others, the compliance to coding standards as MISRAC:2012 [23].

The facility to use Bug Finder and the GUI are the same as Code
Prover. A detailed report is generated at the end of the analysis which is
really useful to investigate the reported defects.

Codesonar is a whole program static analysis tool focused on safety
and security critical software. It has a wide array of checkers, including
checkers for 3rd party API misuse as well as concurrency. It can quickly
analyze and validate the source code as wall as binary code. It has a
mathematical background based on dataflow analysis, symbolic execution
and advanced theorem provers. We were surprised - in the good way - by
some warnings of the tool alerting on unusual code constructions. The
GUI is really helpful and guides the result analysis.

The use of Coverity is also easy and fast. The results found by this tool
are mostly accurate and comprehensive and the GUI enables developers
to quickly detect and fix defects in the code.

A. Ebalard, P. Mouy, R. Benadjila 43

These three tools took a similar time to analyze our code (about
60 s). Results are given in Fig. 15. For all the tools, we have set the
maximum level of detection (all the defects for Bug Finder, aggressive way
for Codesonar and so on).

Type Bug Finder (R2019a) Codesonar (5.0) Coverity (2019.03)
Hard-coded loop bound 5
Redundant conditions 9
Empty if statements 2
Mixed enum type 2

Useless if (condition always verified) 4
Identification of useless parts:

Useless assignments 36
Unused values 22 23

Write without further read 28
Identification of unreachable parts:

Dead code 2 4
Code deactivated by false condition 2

Unreachable computation 3
Total 41 72 29

Fig. 15. Results of Bug Finder, Codesonar and Coverity

Defects returned by these three tools are indeed present in our code but
do not pose security risk. Of course, we have investigated these warnings
and one of them, not related to a RTE, allowed us to find a real defect in
our parser. Because of the limited number of defects emitted by Coverity,
we started by investigating them in this tool and we easily found this logical
bug as explained in Section 8. This defect, identified as "Unused value",
shows the overloading of the return variable of parse_DisplayText()
function resulting in the acceptation of invalid strings. The two other tools
have also identified this defect during the analysis, pointed as “Useless
assignments” or “Write without further read” depending on the associated
tool.

To continue our code exploration, we have also tested some additional
open-source tools.

Flawfinder [27] is an open-source tool for scanning source code (C
or C++) to find potential flaws sorted by risk level. It works with a
flaw pattern database of known problems (buffer overflow, string format,
race conditions...). It can be compared to an extended "grep" which can
also take into account user comments to ignore some false positives (/*

44 Journey to a RTE-free X.509 parser

Flawfinder: ignore */). This tool is fairly simple to use: it works
through a command line interface receiving the directory with the files
to analyze as parameter. The complete list of rules used by the tool
can be found directly on Flawfinder homepage [27]. For version 2.0.8,
223 rules were present in the ruleset with five different risk levels. For
our parser, the analysis returned 1 hit in 0.12s: “x509-parser.c:26:
[4] (format) printf: If format strings can be influenced by
an attacker, they can be exploited (CWE-134). Use a constant
for the format specification.” due to the use of printf in a
deactivated macro to trace errors in our parser.

The scan is easy and fast but without surprise, inconclusive. The
approach of those purely lexical or pattern matching tools can detect the
use of potentially insecure C functions, like strcpy(), strcat() etc. But,
this method may produce a massive amount of false positives and false
negatives. Indeed, this method ignores the data and control flow data and
is purely syntactic. For example, using variable names similar to dangerous
functions names increases significantly the number of false positives. In the
same way, the tool does not discriminate a patched version of a dangerous
function with a vulnerable one. As clearly explained by D. Wheeler on the
Flawfinder HomePage, the use of Flawfinder can be useful to find easily
security vulnerabilities but it is not sufficient and the use of others static
analysis tools is strongly encouraged.

A valuable result of these tools is the confirmation of the absence of
RTE (although false alarms have to be manually checked for some of them).
We can also observe the importance of not relying on an unique analysis
or tool to gain an high degree of assurance.

8 The story of a logical bug

Inside qualifiers of Certificate Policies structures that can be found in
a certificate, the organization field of the NoticeReference sequence
and the explicitText field of the UserNotice sequence both use the
DisplayText type defined in the following way:

DisplayText ::= CHOICE {
ia5String IA5String (SIZE (1..200)),
visibleString VisibleString (SIZE (1..200)),
bmpString BMPString (SIZE (1..200)),
utf8String UTF8String (SIZE (1..200))

}

A. Ebalard, P. Mouy, R. Benadjila 45

A DisplayText is a string with four possible types. Each specific string
type has a limited charset which the parser needs to verify.

In the parser, this task is done by a function called
parse_DisplayText(). At one point during the implementation,
the function parse_DisplayText() was implemented as depicted in
Fig. 7.

The function is pretty simple in its design. It parses the beginning of
the buffer to get the string length it contains and then calls a function
dedicated to the parsing of the specific encountered string type.

Before going any further, we must stress that this annotated function
was fully validated by Frama-C, guaranteeing the absence of RTE.

1 /*@
2 @ requires len >= 0;
3 @ requires ((len > 0) && (buf != \null)) ==> \ valid_read (buf + (0

.. (len - 1)));
4 @ requires \ valid (eaten);
5 @ requires \ separated (eaten , buf +(..));
6 @ ensures \ result <= 0;
7 @ ensures (\ result == 0) ==> (* eaten <= len);
8 @ ensures (len == 0) ==> \ result < 0;
9 @ ensures (buf == \null) ==> \ result < 0;

10 @ assigns * eaten ;
11 @*/
12 static int parse_DisplayText (const u8 *buf , u16 len , u16 * eaten)
13 {
14 u16 hdr_len = 0, data_len = 0;
15 u8 str_type ;
16 int ret;
17
18 if ((buf == NULL) || (len == 0)) {
19 ret = -__LINE__ ;
20 ERROR_TRACE_APPEND (__LINE__);
21 goto out;
22 }
23
24 str_type = buf [0];
25
26 switch (str_type) {
27 case STR_TYPE_UTF8_STRING : /* UTF8String */
28 case STR_TYPE_IA5_STRING : /* IA5String */
29 case STR_TYPE_VISIBLE_STRING : /* VisibileString */
30 case STR_TYPE_BMP_STRING : /* BMPString */
31 ret = parse_id_len (buf , len , CLASS_UNIVERSAL , str_type ,
32 & hdr_len , & data_len);
33 if (ret) {
34 ERROR_TRACE_APPEND (__LINE__);
35 goto out;
36 }
37
38 buf += hdr_len ;

46 Journey to a RTE-free X.509 parser

39
40 switch (str_type) {
41 case STR_TYPE_UTF8_STRING :
42 ret = check_utf8_string (buf , data_len);
43 if (ret) {
44 ERROR_TRACE_APPEND (__LINE__);
45 }
46 break ;
47 case STR_TYPE_IA5_STRING :
48 ret = check_ia5_string (buf , data_len);
49 if (ret) {
50 ERROR_TRACE_APPEND (__LINE__);
51 }
52 break ;
53 case STR_TYPE_VISIBLE_STRING :
54 ret = check_visible_string (buf , data_len);
55 if (ret) {
56 ERROR_TRACE_APPEND (__LINE__);
57 }
58 break ;
59 case STR_TYPE_BMP_STRING :
60 ret = check_bmp_string (buf , data_len);
61 if (ret) {
62 ERROR_TRACE_APPEND (__LINE__);
63 }
64 break ;
65 default :
66 ret = -__LINE__ ;
67 ERROR_TRACE_APPEND (__LINE__);
68 break ;
69 }
70
71 * eaten = hdr_len + data_len ;
72
73 break ;
74 default :
75 ret = -__LINE__ ;
76 ERROR_TRACE_APPEND (__LINE__);
77 goto out;
78 break ;
79 }
80
81 ret = 0;
82
83 out:
84 return ret;
85 }

Listing 7. parse_DisplayText() function

Sadly, the attentive reader will notice that the switch/case is missing
a bunch of goto out; at lines 43, 49, 55, 61 in the tests after each call to
check_*_string() functions, and also at line 67. These missing clauses
result in ret being overloaded at line 81. The net result is that the verdict

A. Ebalard, P. Mouy, R. Benadjila 47

of string parsing is never used and invalid strings are just accepted. This
is a good example of a logical bug.

A possible fix for the bug is presented below in a diff format.

1 diff --git a/src/ x509_parser .c b/src/ x509_parser .c
2 index 69450 c0ee2f3 ..22 c9f0848230 100644
3 --- a/src/ x509_parser .c
4 +++ b/src/ x509_parser .c
5 @@ -5549 ,7 +5549 ,7 @@ static int parse_DisplayText (const u8 *buf ,

u16 len , u16 * eaten)
6 {
7 u16 hdr_len = 0, data_len = 0;
8 u8 str_type ;
9 - int ret;

10 + int ret = -1;
11
12 if ((buf == NULL) || (len == 0)) {
13 ret = -__LINE__ ;
14 @@ -5578 ,29 +5578 ,34 @@ static int parse_DisplayText (const u8 *buf ,

u16 len , u16 * eaten)
15 ret = check_utf8_string (buf , data_len);
16 if (ret) {
17 ERROR_TRACE_APPEND (__LINE__);
18 + goto out;
19 }
20 break ;
21 case STR_TYPE_IA5_STRING :
22 ret = check_ia5_string (buf , data_len);
23 if (ret) {
24 ERROR_TRACE_APPEND (__LINE__);
25 + goto out;
26 }
27 break ;
28 case STR_TYPE_VISIBLE_STRING :
29 ret = check_visible_string (buf , data_len);
30 if (ret) {
31 ERROR_TRACE_APPEND (__LINE__);
32 + goto out;
33 }
34 break ;
35 case STR_TYPE_BMP_STRING :
36 ret = check_bmp_string (buf , data_len);
37 if (ret) {
38 ERROR_TRACE_APPEND (__LINE__);
39 + goto out;
40 }
41 break ;
42 default :
43 ret = -__LINE__ ;
44 ERROR_TRACE_APPEND (__LINE__);
45 + goto out;
46 break ;
47 }
48

48 Journey to a RTE-free X.509 parser

49 @@ -5614 ,8 +5619 ,6 @@ static int parse_DisplayText (const u8 *buf ,
u16 len , u16 * eaten)

50 break ;
51 }
52
53 - ret = 0;
54 -
55 out:
56 return ret;
57 }

Listing 8. fix for parse_DisplayText() function

9 Conclusion

In this work, we provide a RTE-free X.509 parser validated using the
Frama-C framework using an “EVA then WP” strategy.

We have shown that although such a formal tool can appear at a first
glance complex to handle, it proves relatively intuitive and simple to use
when compared to other sound solutions, even when using it on an existing
code base. Specifically, the annotation system takes a reasonable amount
of efforts to integrate in the code, provided that basic and obvious guiding
coding rules are respected (simple functions, simple loops, etc.). From
our standpoint, this meet in the middle strategy works well with Frama-C
annotations capabilities and ultimately only few minor rewriting of the
code are needed, which makes it a suitable approach for C developers
with little background in formal-oriented tools. When compared to pure
static analysis tools (without annotation), the annotations seem a better
alternative that avoids spending many hours handling false positive results
or non-convergence of the tool in a reasonable time, assuming an initial
learning and coding effort.

Of course, the absence of RTE does not mean absence of bugs, but
it is surely a big step forward when compared to the current situation
of C-based parsers. The absence of RTE would nonetheless constitutes a
very desirable and possibly achievable goal using Frama-C via additional
annotations, but this is left for future work.

An interesting parallel work would be to explore other languages than
C with inherent type-safeness and RTE-freeness properties such as ADA
and Rust. Comparing the time and coding efficiency to get an RTE-free
working parser in such languages when compared to C plus Frama-C would
provide valuable data for the developers and the security community.

A. Ebalard, P. Mouy, R. Benadjila 49

As a side note, a work in progress is the extension of the parser to
support certificate signature validation and path validation to create a
usable standalone X.509 stack.

References

1. Frama-C/Eva applied to the Chrony source code: a first analysis. https:
//blog.frama-c.com/public/chrony/report-eva-chrony.pdf, 2018.

2. Running the first EVA analysis . http://blog.frama-c.com/index.php?tag/
tutorial, 2018.

3. Journey to a RTE-free X.509 parser (extended). https://www.sstic.org/
2019/presentation/journey-to-a-rte-free-x509-parser/, 2019.

4. J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Ri-
val. Static Analysis by Abstract Interpretation of Embedded Critical
Software. SIGSOFT Softw. Eng. Notes, 2011.

5. S. Farrell S. Boeyen R. Housley W. Polk D. Cooper, S. Santesson. “Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile”. https://www.ietf.org/rfc/rfc5280.txt, May 2008.

6. E.W. Dijkstra. “Guarded Commands, Nondeterminacy and Formal
Derivation of Programs”. ACM, 1975.

7. K. Szkudłapski G. Delugré. “Vulnerabilities in High Assurance
Boot of NXP i.MX microprocessors”. https://blog.quarkslab.com/
vulnerabilities-in-high-assurance-boot-of-nxp-imx-microprocessors.
html, 2017.

8. Grammatech. CodeSonar Static Analysis. https://www.grammatech.com/
products/codesonar.

9. D. Benjamin H. Sidhpurwala, H. Böck. “OpenSSL „Negative Zero“ issue”.
https://www.openssl.org/news/secadv/20160503.txt, 2016.

10. C.A.R. Hoare. “An axiomatic basis for computer programming”. ACM,
1969.

11. ITU-T. “X.680: Information technology – Abstract Syntax Notation One
(ASN.1): Specification of basic notation”. https://www.itu.int/ITU-T/
studygroups/com17/languages/X.680-0207.pdf, 2002.

12. ITU-T. “X.690: Information technology – ASN.1 encoding rules: Spec-
ification of Basic Encoding Rules (BER), Canonical Encoding Rules
(CER) and Distinguished Encoding Rules (DER)”. https://www.itu.int/
ITU-T/studygroups/com17/languages/X.690-0207.pdf, 2002.

13. ITU-T. “X.509: Information technology – Open Systems In-
terconnection – The Directory: Public-key and attribute certifi-
cate frameworks”. https://www.itu.int/rec/dologin_pub.asp?lang=e&id=
T-REC-X.509-201610-I!!PDF-E&type=items, 2016.

14. K. Hartig H. Pohl J. Burghardt, J. Gerlach. ACSL By Example To-
wards a Verified C Standard Library Version 5.1.0 for Frama-
C Boron. https://www.cs.umd.edu/class/spring2016/cmsc838G/frama-c/
ACSL-by-Example-12.1.0.pdf.

https://blog.frama-c.com/public/chrony/report-eva-chrony.pdf
https://blog.frama-c.com/public/chrony/report-eva-chrony.pdf
http://blog.frama-c.com/index.php?tag/tutorial
http://blog.frama-c.com/index.php?tag/tutorial
https://www.sstic.org/2019/presentation/journey-to-a-rte-free-x509-parser/
https://www.sstic.org/2019/presentation/journey-to-a-rte-free-x509-parser/
https://www.ietf.org/rfc/rfc5280.txt
https://blog.quarkslab.com/vulnerabilities-in-high-assurance-boot-of-nxp-imx-microprocessors.html
https://blog.quarkslab.com/vulnerabilities-in-high-assurance-boot-of-nxp-imx-microprocessors.html
https://blog.quarkslab.com/vulnerabilities-in-high-assurance-boot-of-nxp-imx-microprocessors.html
https://www.grammatech.com/products/codesonar
https://www.grammatech.com/products/codesonar
https://www.openssl.org/news/secadv/20160503.txt
https://www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.pdf
https://www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.pdf
https://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf
https://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.509-201610-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.509-201610-I!!PDF-E&type=items
https://www.cs.umd.edu/class/spring2016/cmsc838G/frama-c/ACSL-by-Example-12.1.0.pdf
https://www.cs.umd.edu/class/spring2016/cmsc838G/frama-c/ACSL-by-Example-12.1.0.pdf

50 Journey to a RTE-free X.509 parser

15. CEA LIST. ACSL: ANSI/ISO C Specification Language Version 1.13.
https://frama-c.com/download/acsl.pdf.

16. CEA LIST. “Eva - The Evolved Value Analysis plug-in”. https://frama-c.
com/download/frama-c-eva-manual.pdf.

17. CEA LIST. “Frama-C User Manual”. http://frama-c.com/download/
frama-c-user-manual.pdf.

18. CEA LIST. “Frama-C/WP”. https://frama-c.com/download/
frama-c-wp-manual.pdf.

19. CEA LIST. “RTE - Runtime Error Annotation Generation”. https://
frama-c.com/download/frama-c-rte-manual.pdf.

20. D. Maloney M. Norman S. Tux M. Scire, M. Mears and P. Monroe. “Attacking
the Nintendo 3DS Boot ROMs”. https://arxiv.org/pdf/1802.00359.pdf,
2018.

21. MathWorks. Polyspace Bug Finder. https://fr.mathworks.com/products/
polyspace-bug-finder.html.

22. MathWorks. Polyspace Code Prover. https://fr.mathworks.com/products/
polyspace-code-prover.html.

23. MISRA. MISRA C:2012. https://www.misra.org.uk/MISRAHome/MISRAC2012/
tabid/196/Default.aspx.

24. P. and R. Cousot. “Abstract interpretation: "A" unified lattice model
for static analysis of programs by construction or approximation of fix-
points”. Annual ACM Symposium on Principles of Programming Languages,
1977.

25. D. Pariente and J. Signoles. Static Analysis and Runtime Assertion Check-
ing: Contribution to Security Counter-Measures. SSTIC, 2017.

26. Synopsys. Coverity Static Analysis. https://www.synopsys.com/content/
dam/synopsys/sig-assets/datasheets/SAST-Coverity-datasheet.pdf.

27. D. Wheeler. Flawfinder Homepage. https://dwheeler.com/flawfinder/.

https://frama-c.com/download/acsl.pdf
https://frama-c.com/download/frama-c-eva-manual.pdf
https://frama-c.com/download/frama-c-eva-manual.pdf
http://frama-c.com/download/frama-c-user-manual.pdf
http://frama-c.com/download/frama-c-user-manual.pdf
https://frama-c.com/download/frama-c-wp-manual.pdf
https://frama-c.com/download/frama-c-wp-manual.pdf
https://frama-c.com/download/frama-c-rte-manual.pdf
https://frama-c.com/download/frama-c-rte-manual.pdf
https://arxiv.org/pdf/1802.00359.pdf
https://fr.mathworks.com/products/polyspace-bug-finder.html
https://fr.mathworks.com/products/polyspace-bug-finder.html
https://fr.mathworks.com/products/polyspace-code-prover.html
https://fr.mathworks.com/products/polyspace-code-prover.html
https://www.misra.org.uk/MISRAHome/MISRAC2012/tabid/196/Default.aspx
https://www.misra.org.uk/MISRAHome/MISRAC2012/tabid/196/Default.aspx
https://www.synopsys.com/content/dam/synopsys/sig-assets/datasheets/SAST-Coverity-datasheet.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/datasheets/SAST-Coverity-datasheet.pdf
https://dwheeler.com/flawfinder/

	Journey to a RTE-free X.509 parser
	A. Ebalard, P. Mouy, R. Benadjila
	Introduction
	X.509
	Introduction
	ASN.1, BER and DER encoding
	X.509 format
	Vulnerabilities
	CVE-2017-7932
	3DS flawed ASN.1 parser
	CVE-2016-5080
	CVE-2017-2781
	CVE-2017-9023
	CVE-2017-2800

	Parser development
	Strategy for X.509 support
	Development constraints
	Testing and validating the X.509 parser
	Implementation decisions
	Unit and regression tests

	Introduction to program analysis
	Functional and security verifications, absence of RTE
	Functional verifications:
	Security verifications, absence of RTE

	Static and dynamic analyses, soundness and completeness

	Working with Frama-C on the parser
	Frama-C presentation
	ACSL code annotations in Frama-C
	ACSL by example
	Rte, EVA and WP plugins
	Frama-C interactive and iterative workflow
	Manual code annotations
	Dealing with function pointers

	Results and feedback
	Results overview
	Annotation work complexity
	Frama-C learning curve
	Conclusions about Frama-C usage

	Analyses with other tools
	Sound and fully automatic strategy to prove the absence of RTE
	 Frama-C EVA
	Code Prover

	Other tools

	The story of a logical bug
	Conclusion

