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Abstract. Side-channel attacks rely on the fact that the physical behav-
ior of a device depends on the data it manipulates. We show in this paper
how to use this class of attacks to break the security of some crypto-
currencies hardware wallets when the attacker is given physical access to
them. We mounted two profiled side-channel attacks: the first one extracts
the user PIN used through the verification function, and the second one
extracts the private signing key from the ECDSA scalar multiplication
using a single signature. The results of our study were responsibly dis-
closed to the manufacturer who patched the PIN vulnerability through a
firmware upgrade.

1 Introduction

The paper is organized as follows: section 1 briefly presents the target
of our evaluation, a hardware wallet (section 1.1) and introduces side-
channels (section 1.2). At section 2, the setup used to mount our attacks
is described. Section 3 presents our side-channel attack on the PIN au-
thentication mechanism of the Trezor One device, and section 4 presents
the side-channel Analysis of the scalar multiplication implemented in
trezor-crypto library. We also present at section 5 our emulator tool,
Rainbow [1], which could have been used to identify from the code only
the presented side-channel vulnerabilities.

1.1 Blockchain and Hardware Wallets

Crypto-currencies use blockchain technology which is secure by design.
Blockchain technology pushes the security problem to the user who has the
sole responsibility of keeping his funds safe. Owning cryptocurrencies only
means knowing the private key to which the funds correspond. Spending
cryptocurrencies (making a transaction) means proving the knowledge of
the private key by computing a digital signature.

Wallets are means to store and use these private keys. There are
different kinds of wallets such as:
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— Software wallets: online, mobile, desktop,... They are cheap and
convenient while present significant risks in terms of security.

— Paper wallets: These wallets are very cheap, the security of these
rely on the physical management of the private keys, while they
are not very convenient when it comes to performing a transaction.

— Hardware wallets: They present the best trade-of between conve-
nience and security.

Hardware wallets have been designed to prevent the access to the
private keys they protect, because they never leave the device. This is
called the principle of isolation, also known as cold storage. The private
keys are stored and used inside the device, they are never hot (online),
avoiding their exposition to the internet or to the computer to which it is
connected.

1.2 Side-channel Analysis

Side-channel analysis relies on the fact that the physical behavior of a

device depends on the data it manipulates. An attacker able to measure
the physical behavior can characterize this dependency in order to retrieve
information on sensitive data.

Side-channel attacks can leverage several physical behaviors (the so-
called side-channels):

— Execution time (see [13]),
— Power consumption of the device: can be measured using a shunt

resistor and a current probe plugged to an oscilloscope (see [14]),
— Electromagnetic emanation of the device: can be measured using

an EM probe and an amplifier plugged to an oscilloscope (see [8]).

The physical leakages (called side-channel traces) are recorded using a
digital oscilloscope and a statistical post-processing is applied to extract
information about sensitive data.

Side-channel attacks can be divided in two categories: profiled and
non-profiled attacks .

Profiled attacks can be applied when an attacker has access to an
open device, on which she is able to characterize the physical behavior
(also called leakage) of a sensitive value she targets. This characterization
is called the learning phase, and results in a database describing the
physical behavior of the sensitive values on the target. Once the learning

or profiling is done, the attacker can then use this database on a whole
new device, with an unknown sensitive value, that will be retrieved in a
certain number of attempts (i.e. traces). Classical state-of-the art profiled
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attacks are Template Attacks (cf. [7]), Machine Learning-based attacks
(cf. [11]) and more recently Deep-Learning based Attacks (cf. [16]).

Non-profiled attacks use the same mechanism but without prior leakage
characterization. That means the attacker does not need an open device
on which she knows or controls the sensitive values. In this situation
the attacker needs to induce the leakage model herself. Classical leakage
models exist in order to accomplish this but non-profiled attacks are less
efficient.

The context of an open source code running on a general purpose
microcontroller unit such as the Trezor One lends itself perfectly to profiled
side-channel attacks.

One important point to mention is that side-channel attacks make
use of a Divide & Conquer strategy: the secret value is often recovered
chunk-wise, given the implementation does not (and a vast majority of
time, can not) use the whole cryptographic secret in a single cycle.

2 Target and setup

Several targets have been considered during this study. The Ledger
Nano S, Keepkey and Trezor are the main hardware wallets on the market.
During this paper, we will focus on two paramount security mechanisms
within a Hardware Wallet:

— the PIN authentication: breaking the PIN would allow an attacker
to empty all accounts.

— the scalar multiplication : used within elliptic curve signature, it is
used to sign every transaction on the blockchain.

2.1 Trezor One hardware wallet

Trezor is an Open Source Hardware Wallet created by a Czech company
called SatoshiLabs. Trezor has developed 2 different products: the Trezor

One and the Trezor model T. Trezor Ones is the star product of the
company. As described at figure 1, the Trezor Ones device is built around
a STM32F205RE MCU. The PCB also contains:

— Two buttons used to get user inputs.
— A small screen to display information to the user
— An 8-MHz external crystal

The STM32 is a very popular chip family, which includes several
variants, depending on the targeted application: Low Power, DSP, High
performances,... (see [2]). This chip however does not implement hardware
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Fig. 1. Trezor PCB description, from [15]

security countermeasures. The core of the STM32F205RE is an ARM
32-bits Cortex-M3 which runs up to 120MHz. As the chip doesn’t embed
any cryptographic accelerator, all long-integer arithmetic operations are
performed by the CPU.

Although the STM32 MCU is not designed for security, the Trezor
device is used for a security application: it is a Hardware Wallet. Its
purpose is to:

— generate a BIP32 seed, which will be used to derive public/private
keys

— store public and private keys for receiving or sending cryptocurren-
cies.

— perform cryptocurrency transactions

From the manufacturer website, we noticed the security of the device
relies on a few different items such as:

— Secure PIN authentication function
— Confidentiality of the data stored inside the device

These security claims can be challenged (and have been challenged)
using various attack vectors: software attacks, fault attacks, side channel
attacks. This article focuses only on side-channels.

2.2 Our setup

The figure 2 summarizes the setup used to mount our attack: a com-
puter requests specific operations to a Trezor Ones, while a digital oscillo-
scope measures its power consumption throught a resistor plugged onto
the device.
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Fig. 2. Schematic representation of our Side-channel setup

On the Trezor One side:

In order to measure real time power consumption, a 5Ω resistor is
inserted in the V CC line of the device to measure real time power con-
sumption (see figure 3)

A slightly modified version of the firmware available at [4] was loaded
onto our Trezor One device, which allows easy characterization for the
profiling phase of the attacks.

— NVM writes have been disabled: since the characterization needs
hundred of thousands executions of an operation

— A GPIO pin (see black wire on the left at figure 3) is used as a
trigger mechanism: the GPIO is pulled up at the beginning of the
operation, and pulled down at the end, hence framing the targeted
operation.

— Various Trezor security mechanisms were disabled: such as the Pin
Try Counter, the increasing timer between wrong PIN requests,
the pinMatrix randomization.

This modfified firmware was used only on the device used for the charac-
terization of our attacks. The firmware used to actually pass our attack
was not modified.

On the digital oscilloscope side:

We use a Tektronix MSO54 at Ledger’s Donjon. The sampling rate for
both our attacks is set to 3GSamples · s−1, with a 500MHz bandwith. The
sampling rate might appear high (the attacked MCU runs at 120MHz),
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Fig. 3. Trezor One device prepared for side-channel: the probe to the left measures
the power thanks to a resistor, and the probe to the right is plugged to a GPIO for
triggering the scope.

the attack works probably well using a cheaper scope with a much lower
sampling rate.

On the computer side:
We use python-trezor, the Python library and commandline client

trezorctl for communicating with Trezor Hardware Wallet. Beside that,
all our scripts use lascar to manage the setup: lascar is the open source
side-channel library developed at Ledger Donjon (see [18]). The script is
in charge of the following:

— request the Trezor device to perform an operation with specific
inputs

— acquire power traces from the oscilloscope
— store the side-channel data
— process the data/perform the attack

3 Breaking PIN authentication

This section describes the steps we took to mount a profiled side-
channel attack leading to a Trezor user PIN recovery.
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First at subsection 3.1 we will present the targeted function:
storage_containsPin. Then subsection 3.2 will describe what we call
a leakage characterization. The subsection 3.3 describes the matching
phase. At subsection 3.4, we summarize how we actually applied and
optimized the so-called profiled side-channel attack. We finally present an
optimization strategy at subsection 3.5.

3.1 Targeted function

As most hardware wallets, Trezor One offers a PIN authentification
mechanism prior to almost all operations, including transactions (i.e.

accessing private keys).
Searching in their firmware code (up to version 1.8) leads us to the

storage_containsPin function, which implements the user-PIN verifica-
tion and whose source code is shown in listing 1.

Every time a user inputs a PIN, it passes through this function, and
is compared to storageRom->pin, a N -digit char array. This is the value
that we are targeting.

/* Check whether pin matches storage . The pin must be

* a null - terminated string with at most 9 characters .

*/

bool storage_containsPin ( const char *pin)

{

/* The execution time of the following code only depends on the

* ( public ) input . This avoids timing attacks .

*/

char diff = 0;

uint32_t i = 0;

while (pin[i]) {

diff |= storageRom ->pin[i] - pin[i];

i++;

}

diff |= storageRom ->pin[i];

return diff == 0;

}

Listing 1. The source code of the user-PIN verification function, from [4].

From the code presented in listing 1, we can see that the function has
been designed to resist timing side-channel attacks, but time is not the
problem.

We also noticed that storageRom->pin digits are processed one after
other and the comparison with pin is done in a deterministic way.

Observing the power consumption of the storageRom->pin function
allows to implement a Divide & Conquer strategy: instead of brute-forcing
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a N -digit PIN (9N possible values), we will attack each PIN digit inde-
pendently, leading to N side-channel attacks, each one of them on a single
digit (N × 9 possible values).

From a side-channel perspective, there are several sensitive values in
this function which depend on the secret storageRom->pin: the value at
each step (digit) of the while loop of:

fi(storageRom->pin, pin) = storageRom->pin[i]−pin[i], for 0 ≤ i < N

Looking at the code shown in listing 1, we can deduce from
the typing used that fi can output only 18 differents values:
0, 1, 2, 3, 4, 5, 6, 7, 8, 248, 249, 250, 251, 252, 253, 254, 255. The fi functions
handle both the secret and the input value, allowing a side-channel attacker
to induce differentiability. These N sensitive values will be characterized
and used for the profiled attack in the next subsection.

3.2 Leakage characterization

From the setup presented in section 2.2, we acquire side-channel traces
resulting from executions of the storage_containsPin function. Figure 4
displays several power traces. From now, for the sake of clarity, we will only
work with 4-digit PIN (N = 4): since all digits are processed independently
from one another, the attack can be extended to any number of digits.

Fig. 4. 10 power traces of the PIN verification function.

In order to perform our profiled attack, we acquired 150000 such traces,
where we set random values both for storageRom->pin and pin. This set
of power traces (with the corresponding storageRom->pin/pin values)
will be our profiling set.

From this profiling set, and the 4 sensitive values fi defined at
section 3.1, we’ll use a statistical tool dedicated to leakage detection
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(a distinguisher) to measure the dependency between our side chan-
nel traces (the power traces) and the processed data (the values of
storageRom->pin/pin). We chose the Normalized Inter-Class Variance
(NICV, see [6]) in order to do so.

For each sensitive value fi, NICV consists in our case in partitioning
the traces into 18 classes (1 class for each possible output for fi). The
mean of each batch is computed and the variance of those 9 means is
compared to the variance of all traces.

NICV (traces, fi) =
V ar[E[traces|fi]]

V ar(traces)

A NICV close to 0 means that our partitioning (i.e. sensitive value fi)
failed to explain the variance. A NICV of 1 means that our partitioning
perfectly explained the variance.

The four NICV (one per fi) are computed on the profiling set, and the
results are displayed on figure 5.

Fig. 5. NICV curves for our 4 sensitive values fi.

As we can see, each NICV appears to peak one after the other, following
the comparison order as expected. One can also notice that the larger i,
the higher the NICV of fi (this particular effect will not be explained nor
used).

These NICV curves attest the strong dependencies between our traces
and our sensitive values and conclude our leakage characterization.

3.3 Profiled attack

As explained in section 2.2, profiled side-channel attacks are in two
phases:

— the learning phase: where we use an open device A to learn how it
behaves
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— the matching phase: where we use what we have learned on a new
device B whose secret PIN is unknown.

Learning phase: on an open device
From the profiling set used in the previous paragraph, the next step is

to profile each of the sensitive values. Our side-channel data is basically
an instance of Machine Learning classification (see [9], [12]):

Based on a training set of data containing observation whose categories

are known, a classification problem consists in identifying to which category

a new observation belongs.

In our case:
— an observation is a power traces from a PIN login attempt on the

open device A
— the training set of data are the power traces from the profiling set

— the categories are the values returned by fi at each trace
— the new observation is a power trace from a PIN attempt on the

device B for which we don’t know the secret PIN.
For each digit i (0 ≤ i < 4), we build Classifieri, by feeding it with

the power traces from the profiling set L, labeled with the value of
fi(storageRom->pin_j, pinj). At the end of this learning phase, we get
a statistical classifier: a decision function that is designed to predict the
value of storageRom->pin[i]. From a new power trace l, for which we only
know the value of pin (but not storageRom->pin), we get:

Classifieri(l) = Proba[storageRom->pin[i] = k] for 0 < k ≤ 9

Moreover, the information brought by these probabilities can be accu-
mulated by using multiple power traces captured during PIN attempts on
the same target device B.

Let L = (lj)0≤j<m be a set of m such power traces. Then we use all
the power traces to retrieve storageRom->pin:

Classifieri(L) = Proba[storageRom->pin[i] = k] for 0 < k ≤ 9

There exists a lot of different statistical classifiers (LDA, QDA, SVM,
AdaBoost, neural networks), which led to the same results for our at-
tack. The classifiers we build for each digit in our attack are all Linear
Discriminant Analysis classifiers.

Linear Discriminant Analysis is a method used in statistics, pattern
recognition and machine learning to find a linear combination of features
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that characterizes or separates different classes of objects or events. The
resulting combination may be used as a linear classifier. In our case, the
so-called classes are the values of our fi.

Now that the learning phase is done, we have 4 classifier functions,
each of them in charge of retrieving a PIN digit from a power trace. Their
efficiency will be tested in the next subsection, the matching phase.

Matching phase: retrieving the first PIN digit on a device B
This subsection presents the results of the attack on a new device

B. The matching phase consists in applying the previously built statis-
tical classifiers on new power traces, acquired from a new Trezor One

device, with unknown storageRom->pin, and random known values for
the presented pin.

We will first describe how a single attack is mounted. Then we will
present the results we got from multiple attacks launched on this new
device.

From a new Trezor One device on which the PIN is unknown, we
acquire 15 power traces resulting from a PIN authentication, with a fixed
4-digit storageRom->pin and a random 4-digit presented pin. The Max
PIN Tries on a Trezor device is 15. Beyond this value the device wipes its
data, which means the attack has to succeed within 15 traces.

In this example, we only show the attack on storageRom->pin[0]: the
resulting traces are passed one-by-one through Classifier0. With each new
trace, Classifier0 returns a log-probability (i.e. a score) for each possible
value of storageRom->pin[0]. The digit with the highest score is returned
by the classifier as the most likely value for storageRom->pin[0].

Figure 6 shows the progression of the 9 scores for each possible value
of the digit 0. As we can see, from the 6th trace, the value reaching the
best score is also the value of the solution (digit0 == 1, plotted with red
×). This means that Classifier0 needed only 6 power traces to return the
correct solution for digit0.

Matching phase: generalization on all digits and average results
To demonstrate the effectiveness of our attack, we acquired 300 sets

of 15 power traces, each set sharing the same 4-digit storageRom->pin.
Then we applied on each of these sets, on each of the PIN digits, the
attack illustrated at figure 6.

As a metric for our study, we monitored the progression of the rank
of the correct solution along the 15 traces. Figure 7 displays the mean
ranks given by the 300 attacks on each one of the 4 digits. What these 4
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Fig. 6. Matching phase of a single classifier on a set of 15 traces: here we use Classifier0.
The 9 curves represent the progression of the score for each possible digit of the PIN.
The score for the solution (correct PIN digit) is plotted in red with ×.

curves show is that the attack is a success: after 10 traces (PIN attempts),
we always get storageRom->pin[i] at rank 1 for all digits i (0 < i <=
N = 4).

3.4 Summing up

In order to actually mount the attack, the attacker has to guess the
correct value of the PIN and to input it on the device B. To do so,
he first performs the learning phase using his own device A. Then, he
can for instance try 10 random PINs on the device B, gather the power
consumption measurements of this device during the PIN verification and
apply the matching phase on these 10 tries. The matching phase will
provide him the most likely value for each digit which trivially gives the
most likely value for the whole PIN. The success rate of our matching
with 10 traces is 100%, which means the attacker will input the correct
value of the PIN for the 11th try and unlock the device.

The device also implements an exponential waiting time. An incorrect
PIN will trigger a waiting time that is twice that of the previous attempt,
starting from 1 sec. In this setup, the attacker would need 511 seconds to
guess the correct value of the PIN, and then wait 512 additional seconds
to input it (around 17 min).

3.5 Improving the attack
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Fig. 7. Mean Rank progression of the attacks on the 4 PIN digit.

A possible improvement of the attack consists in choosing the PIN
presented to maximize the information gathered with each trace during the
matching phase. Indeed, the performance of the matching phase depends
on the value of the correct PIN but also on the value of the input PIN.

The figure 8 shows a strong bias in the matching performance. Several
remarks can be made:

— The matching performance depends on the value of the correct
PIN and also on the value of the presented PIN.

— When the presented digit is correct the matching works very well
(≈ 100%).

— The matching performance also depends on the position of the
digit PIN. This can mainly be explained by the measurement itself.

If the target is not directly the result of the subtraction but instead
its generated carry, the performance of the matching is close to 100%
with only one trace, cf Figure 9. On the other hand, it only indicates
if the value correct PIN is greater than the presented one. Indeed the
code implements storageRom->pin - pin[i] subtraction. Looking at
the generated binary, we noticed this subtraction is integer promoted
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Fig. 8. Matching performance as a function of presented digit and correct digit

(see listing 2, that means this subtraction produces values of the form
0xFFFF FFxx when the input PIN digit is larger than the store PIN digit,
and 0x0000 00xx values when it is not, which induces a large difference
in power consumption. These integers are finally cast to unsigned bytes
at the end of the comparison loop iteration. This explains the difference
in matching performance. It’s possible to use this fact to implement a
dichotomy in the chosen PIN strategy, however it yields slightly poorer
results compared to the strategy presented hereafter.

; r1 = stored_pin

; r3 = input_pin

; r6 = input_pin

subs r1 , r1 , r6 ; 32 bits subtraction



M. San Pedro, V. Servant, C. Guillemet 15

Fig. 9. Matching performance targeting the carry of the subtraction

orrs r3 , r1 ; 32 bits OR

uxtb r3 , r3 ; cast to byte

Listing 2. PIN digit subtraction-comparison

Taking these observation into account, it is then possible to improve
the attack performance using two distinct techniques:

— Perform the learning step according to the presented PIN digit
— Implement a chosen PIN strategy

Learn the correct PIN value knowing the presented PIN
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As the performance of the matching depends both on the correct PIN
value and on the presented PIN value, one can take advantage of this. The
principle of this optimization is the following: instead of profiling the result
of the subtraction storageRom− > pin[i] − pin[i], we’ll profile the value
of the correct PIN value knowing the value of the presented PIN value.
Considering the first digit, 9 profiling phases are performed. For each i, k,
we build Classifieri,k, by feeding it with the power traces from the profiling

set lj , labeled with the value of fi,k((storageRom->pin_j, kj). At the end
of this learning phase, we get k statistical classifiers for each digit i: decision
functions that are designed to predict the value of storageRom->pin[i]
depending on the value of pin[i]=k. From a new power trace l, for which
we only know the value of pin but not storageRom->pin, we get:

Classifieri,k(l) = Proba[storageRom->pin[i] = k] for 0 < k ≤ 9

These classifiers are more accurate since they take into
account more precisely the value of the input PIN. Fur-
thermore, the classification is mapped to 9 distinct values:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9 instead of the possible 18 subtraction values:
0, 1, 2, 3, 4, 5, 6, 7, 8, 248, 249, 250, 251, 252, 253, 254, 255.

Match with a chosen PIN strategy
Using these efficient classifiers, we can now implement a chosen PIN

strategy to attack the PIN verify function.

1. Input 5555 as PIN (on average, this is the value which gives the
most information). If this is the correct value of PIN, the attack is
successful. Otherwise the corresponding trace l0 is retrieved and
matched with Classifieri,5(l0) which will give probabilities for each
possible digit value.

2. Input the most likely and not yet presented PIN value. If this is the
correct value of the PIN digit, the attack is successful. Otherwise the
corresponding trace lj is retrieved and matched with Classifieri,k(lj)
which will give probabilities for each possible digit value and go to
2.

This pseudo algorithm gives an efficient way to retrieve the correct
value of PIN and log in the device.

On a set of 300 traces, 4.8 tries are necessary to log into the device.
This corresponds to ≈ 10 sec to break the security of the device due to
the implemented waiting time.
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4 Breaking Scalar Multiplication

In this section, we will describe how to mount a side-channel attack
on the scalar multiplication from trezor-crypto, the open-source crypto-
graphic library developed by Trezor (see [3]), used on its device, but also
used by other hardware-wallets such as Keepkey and Archos Safe-T. The
attacks presented below, as for the PIN comparison, are performed on a
Trezor One.

The scalar multiplication is used on elliptic curve operations. Let C

be an elliptic curve, P ∈ C a point on this curve, and k ∈ N a positive
integer. The scalar multiplication computes the point G = [k]P , which
also lies on the curve.

The reason we are evaluating the scalar multiplication implementation
is that it is used with sensitive parameters:

— During an elliptic curve public key derivation: the scalar used is
the value of the private key

— During an ECDSA signature: the scalar used is a nonce whose value
can lead to the disclosure of the private key from the signature

The scalar multiplication implemented within trezor-crypto as the
point_multiply function has already been the target of a side-channel
attack (see [10]). Following this attack the code has been patched, and the
comments in the code now mention a side-channel protected implemen-
tation. We will however show that this countermeasure does not protect
from our attack, since we show how to retrieve a scalar using a single
point_multiply execution and an oscilloscope.

During all this study, we will only work on the secp256k1 elliptic
curve: meaning our scalar will be at most 256 bits long.

In a very similar order as section 3, section 4.1 will present the targeted
function, and the sensitive values we picked to reconstruct a scalar. Section
4.2 will describe the leakage characterization, and section 4.3 and 4.4 will
describe the two kinds of side-channel attacks we used to recover a scalar:
a timing attack and a profiled side-channel attack.

4.1 Targeted function

The targeted function, point_multiply is part of trezor-crypto

library. As it is mentioned in the comments, it implements an optimized
4-NAF (Non-Adjacent Form) algorithm for scalar multiplication described
in [17].

// simplified pseudo - code of point_multiply ():
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// gives an idea of what the code is actually doing .

point_multiply ( bignum256 k, curve_point p)

{

a = k + 2 ^ 256 (mod curve -> order ) //a is odd

pmult = [P, 3 P, 5P, ... , 15P]; // precomputation :

Q = P;

a = [a[0] , ... a [63]] // a is split into 64 nibbles

for(i = 62 ; i >= 0 ; i--) {

nsign ,sign , bits = f(a[i], a[i +1])

"""

based on a[i] and a[i+1] ,

three values are computed at each step:

- sign: 1 bit

- nsign : 1 bit

- bits: 4 bits

"""

Q = 16 P;

conditional_negate ( sign ^ nsign , Q.z, prime );

point_jacobian_add ( pmult [ bits >> 1 ], Q);

}

return Q

}

Listing 3. The pseudo code of the targeted function: Elliptic Curve scalar
multiplication

Listing 3 is the pseudo-code we wrote describing what is done by
the point_multiply function. For the whole source code, see the github
repository (cf. [3]).

During a scalar multiplication [k]P :

— k is transformed into a: a = k + 2256mod order,
— [3]P, [5P ], . . . , [15]P are precomputed and stored into pmult,
— The main loop is executed, on each nibble of a

In this main loop we see that:

— sign, nsign and bits are derived from a,
— conditional_negate is called with sign ^ nsign (1 bit per loop

step),
— one of the precomputed pmult points is manipulated depending on

bits >> 1 (3 bits per loop step).

Knowing the 64 values of (sign, nsign, bits>>1) allows to recon-
struct a and therefore, k.
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We define the sensitive values this way:

fi(k) = signi ⊕ nsigni, 0 ≤ i < 64

gi(k) = bitsi >> 1, 0 ≤ i < 64

Still following a Divide & Conquer strategy, these are the 2 × 64 values
that we will retrieve through independent side-channel attacks, in order
to reconstruct the scalar k.

4.2 Leakage characterization

The same setup as the PIN attack is used for power acquisition.
We acquire side-channel power traces during several executions of the
point_multiply function. Figure 10 shows a single power trace acquired
from the beginning of the point_multiply function. The red rectangles
frame the successive steps of the algorithm described in listing 3:

— The construction of a from k at the first red rectangle
— The 7 steps of the pmult computation at the second red rectangle
— The 14 first steps out of the 64 in the main loop at the last red

rectangle

Fig. 10. The power trace from the beginning of a scalar multiplication. The red
rectangles show the 14 first steps of the algorithm.

An additional steps has to be performed on the power traces in order
to pass the attack: leakage synchronization. It consists in modifying each
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power traces in order to make them look alike. Figure 11 shows several raw
power traces plotted together on the top part. The traces may look alike,
but a jitter is present and has to be corrected. Several distinct patterns
are used to modify each power trace to correct this jitter. The ouput of
this leakage synchronization is shown on the bottom plot in figure 11.

Fig. 11. 10 power traces zoomed in on a loop step: before (up) and after (down) leakage

synchronization: the jitter has disappeared.

We build our profiling set by acquiring 150000 power traces captured
during the point_multiply exectution on a Trezor One device, with
known random scalars k. The leakage synchronization processing is then
applied on thoses power traces.

Just as in section 3.2, we compute NICV on the profiling set with
our sensitive values identified at section 4.1. Figure 12 displays the NICV
curves for our sensitive values. We observe a strong dependency between
our power leakage and our sensitive values.

Regarding the fi, we get scores close to 1, which will be investigated
and explained in the next section. Regarding the gi, a profiled side-channel
attack will be mounted in section 4.4 (in a similar fashion to the PIN
attack in section 3.3 ).

4.3 Retrieving signi ⊕ nsigni with a timing attack

From the middle plot of figure 12, the values of the NICV on the fi

sensitive values are suspiciously high. They are indeed induced by a timing
leakage we found on the power traces. Figure 13 shows 10 power traces
zoomed in on a portion of a single step of the loop. The traces can clearly
be split into two classes. A closer look shows that the separation into those
two classes is exactly explained by the value of fi(k) = signi ⊕ nsigni:
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Fig. 12. The top figure represents the mean power trace zoomed in on the 10 first
steps on the main loop. The middle figure shows the NICV curves corresponding to the
sensitive values f3, . . . , f9 (dealing with sign

i
⊕ nsign

i
). The bottom figure shows the

NICV curves corresponding to the sensitive values g3, . . . , g9 (dealing with bitsi >> 1).

the first class occurs when fi(k) = 0, and the second class occurs when
fi(k) = 1.

Hence we have a visual distinguisher which allows us, with a 100%
success rate, to extract the value of the signi ⊕ nsigni in a single trace.

This timing leakage occurs during the conditional_negate function
call, whose execution flow is conditioned by the value of signi ⊕ nsigni (see
listing 3).

4.4 Retrieving (bitsi >> 1) with a profiled attack

Now we have to retrieve the 64 successive values of (bitsi >> 1). In
order to do so, we will mount a profiled side-channel attack, very closely
resembling the one described at section 3.3.

The learning phase consists in using the profiling set with the sensitive

values gi. The end result is a set of Classifieri such that:

Classifieri(l) = Proba[(bitsi >> 1) = x] , for 0 ≤ x < 8

Once again, on a new device, running the point_multiply function
with unknown scalar k, we acquired a few power traces and input them
to the Classifieri. Figure 14 shows the progression of the 8 possible values
that (bitsi >> 1) could take. This attack works with only a single trace.

This attack has been repeated on different steps of the loop, on 300 set
of traces. In more than 99% of the cases, the attack works with a single
power trace. In the remaining cases, 2 power traces are needed.
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Fig. 13. 10 power traces zoomed on a portion of a single loop step exhibiting two
different behaviors.

4.5 Summing up

We just demonstrated how to reconstruct a scalar k used on a Trezor

One device in a single execution of the point_multiply function from its
corresponding power trace, despite the constant-time execution. Recovering
the whole k means that we have been able to mount 128 independent
side-channel attacks:

— 64 timing attacks to recover the 64 values of the signi ⊕ nsigni, by
using a single trace

— 64 profiled attacks to recover the 64 values of the (bitsi >> 1), by
using a single trace

From all those recovered intermediate values, the scalar k can be
reconstructed.

5 Replaying attacks without the hardware

We have developed a tool on top of Unicorn [5], a generic CPU emulator,
in order to easily trace execution of code snippets and, among other uses,
simulate side-channel traces in a purely software way. This tool is called
Rainbow [1] and is open sourced on GitHub. In its examples, one can find
a function that emulates the Trezor PIN comparison directly from the
ELF binary file that can be compiled from trezor-mcu sources [4].
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Fig. 14. Matching phase of a single classifier on a set of 5 traces: here we use Classifier4.
The 8 curves represent the progression of the score for each possible value of (bitsi >> 1).
The score for the solution is plotted in red with ×.

Along with a dedicated viewer, we can display the sequence of instruc-
tions on the left-hand side and the corresponding traces on the right-hand
side.

For the two attacks in this article, we are most interested in re-
generating the NICVs, which help identify the presence of a vulnerability.
We can directly compute those from the simulated traces, without the
need for an oscilloscope or even the target device.

For the PIN attack from section 3, this view of the NICV alongside
the instructions does not reveal any surprising leakage compared to our
initial source code analysis. Nonetheless it would be helpful in identifying a
conceptual flaw in terms of side-channel leakage in such an implementation,
and for automated leakage assessment purposes.

A longer and heavier operation such as the full scalar multiplication
can also be emulated without too much trouble, as shown by a portion of
the execution trace in 16.

6 Conclusion

In this paper, we presented two side-channel attacks targeting the
open source hardware wallet Trezor One. The first attack is target-
ing the trezor-mcu firmware code allowing to retrieve the user PIN,
and the second attack targets the scalar multiplication implemented by
trezor-crypto library, allowing to retrieve information on the scalar
used.
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Fig. 15. NICV from simulated curves for the PIN attack, to be compared with figure 5.

The open access to the code and the devices facilitates the use of
the more powerful class of side-channel attacks that are profiled attacks.
Using machine learning techniques on modified version of the targeted
firmware on an open device allowed us to extract the user PIN from a
Trezor One device in 5 attempts (below the limit of 15 attempts normally
enforced by the device) and extract the nonce of an ECDSA signature in
a single execution, which leads to complete recovery of the user’s private
key. Several other wallets were affected, being based on the same code as
the Trezor One. The PIN vulnerability was patched by Trezor following
our responsible disclosure. The nonce extraction was not, however it has
no immediate impact on the user (since knowledge of the PIN is required
to mount that attack).
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