
V2G Injector: Whispering to cars and charging

units through the Power-Line

Sébastien Dudek, Jean-Christophe Delaunay and Vincent Fargues
sebastien.dudek@synacktiv.com

jean-christophe.delaunay@synacktiv.com

vincent.fargues@synacktiv.com

Synacktiv

Abstract. Since vehicles became connected to a bus called CAN (Con-
troller Area Network), many “garage” hackers got interested in investi-
gating the different controllers, known as ECUs (Engine Control Units),
and accessible via the On-Board Diagnostics (OBD) port. Among those
different controllers, some of them are accessible via Wi-Fi, others via
GPRS, 3G and 4G mobile networks, that could be attacked during a
radio interception attack [19]. Moreover, another little-known vector of
attack will appear with the deployment of V2G (Vehicle-to-Grid) systems
that communicate via power lines support. Nevertheless, no public tool
exists to interface with these systems, but also to analyse and to inject
V2G traffic. That is why we have developed a tool called V2G Injector

to attack these systems.

In this article, we will briefly introduce the V2G concept and its similari-
ties with domestic Power-Line Communication systems. Then, we will
present the techniques we use in our tool that aim to interface with the
system, monitor and inject traffic. We will also present a new specification
vulnerability in the communication medium we have been able to exploit
to intrude the V2G network. To finish, we will talk about issues we
have found during our tests on real equipment, and mitigations we can
encounter, or apply, in some contexts as well as possible bypasses.

1 Introduction: rise of V2G

Due to its environmental friendliness, Electric Vehicle (EV) is gaining
popularity in U.S.A, Japan, China and some countries in Europe. For
example, by 2020, France aims to sell 2 million EVs, China 5 million, and
Germany 1 million. As a consequence, global EV battery capacity keeps
increasing.

Meanwhile, solar and wind energy output are variable and difficult to
predict accurately, so their production cannot follow consumer demand
patterns. Their price variability has therefore increased during the day,
which strengthened the business case for energy storage.

2 V2G Injector

Therefore, energy storage systems have been developed:
— Battery-to-Grid (B2G), which stores energy in dedicated batteries;
— Vehicle-to-Grid (V2G), which uses Electric Vehicles (EV) to store

energy. Car owners are also remunerated when plugging into a
bidirectional charging/discharging system, mostly to compensate
possible deterioration of the battery.

A simplified V2G architecture is shown in figure 1.

Fig. 1. V2G architecture (source: [1]).

But without interoperability between EV, charging station also known
as EV Supply Equipment (EVSE), and backends, these technologies could
not be practical and be difficult to sell. To address this issue, people in
the industry have designed standards such as:

— ISO/IEC 15118 [9, 15,16]: Vehicle-to-Grid (V2G) communication;
— IEC 61851 [13,14]: conductive charging systems;
— IEC 61850-90-8 [11]: communication networks for EVs;
— Technical specifications from CHAdeMO (CHArge de MOve) [8];
— Documents from DIN (Deutsches Institut für Normung; in english,

German Institute for Standardization) [10].
The physical connection and protocols between an EV and an EVSE

are described in the following sections.

2 V2G communication

2.1 V2G ECU

A typical V2G vehicle ECU, more precisely a Vehicle Charge Control
Unit (VCCU), is shown in figure 2. It is interfaced with a Combined Charg-
ing System (CCS), that has a connector format depending on the current
country standard. Moreover, this ECU can also be directly connected to
the CAN bus of the vehicle, or through a gateway.

S. Dudek, J-C. Delaunay, V. Fargues 3

The ECU is responsible for the following tasks:

— coordination of charging-related vehicle functions and HV-switches
between inlet and DC-link;

— vehicle state management;
— communication with the backend;
— etc.

Fig. 2. V2G ECU (source: [20]).

As shown in figure 3, the ECU is composed of two main chips:

— a host CPU chip (generally specific to the automobile area);
— a QCA modem used to communicate in PLC using HomePlug

AV/GP standard.

Fig. 3. ECU components (source: [20]).

4 V2G Injector

2.2 Architecture

When a vehicle is plugged to a charging station, a communication is
established between two controllers:

— the EV Communication Controller (EVCC) that acts as a client;
— and a Supply Equipment Communication Controller (SECC) that

is the server part.

As we can see in figure 4, the communication is performed using
two standards: IEC 61851 for low-level, and ISO/IEC 15118 for high-
level communications. These two layers are incompatible, but the IEC
61850-90-8 standard [12] indicates how to bridge them.

Fig. 4. V2G network architecture (source: [22]).

IEC 61851 is used for basic signalling, to exchange information about
the voltage level and Pulse Width Modulation (PWM) through the control
pilot line we will see in later sections. More complex information is left to
the higher level ISO/IEC 15118 (V2G layer).

2.3 V2G layer

Figure 5 illustrates the OSI layers defined by ISO/IEC 15118. When
EV and EVSE communicate through V2G, the controllers do it by bridging
ISO/IEC 15118 messages to IEC 61850. V2G messages are exchanged over

S. Dudek, J-C. Delaunay, V. Fargues 5

IPv6. After plugging the charging cable, the SECC Discovery Protocol
(SDP) on port UDP 15118 is used to forward the EV traffic to the right
IPv6 address and port of the appropriate V2G server to reach. This
protocol handles the security mode requested by the EVCC and the
answer normally acknowledges that. Then all data in V2G is transported
at V2GTP layer.

Fig. 5. V2G protocol stack (source: [22]).

Data exchanged in V2GTP layer are generally XML files and are
encoded/decoded with the EXI compression algorithms, depending on
their XSD format definition. The ISO/IEC 15118 also allows to specify a
set of symmetric and asymmetric cryptographic algorithms.

Noteworthy characteristics of layers SDP, V2GTP and EXI are de-
scribed in the following sections.

6 V2G Injector

2.4 Secure communications

When enabled, TLS session information and certificates are negotiated
after the TCP connection is established. Sensitive data are then encrypted,
and are contained in signed XML stream (see figure 6).

To use the secure communication, an EV must have two distinct private
keys and certificates (Contract and OEM Prov, see figure 7) to ensure
encryption and authenticity at the same time. The EVSE has one private
key and certificate to establish the TLS communication. This feature
generally prevents interception of V2GTP data, but to be able to check
the authenticity of the SECC public key, a Certificate Authority (CA) is
required.

Nevertheless, it should be reminded that V2G EVCC should work in
heterogeneous systems (domestic units, dedicated power stations, and so
on). So it is not surprising to see permissive V2G implementations and
configurations in the wild. This will lead us to questions when testing this
type of environment, for example:

— is there a control of the security mode requested by the SDP
protocol?

— how EV and EVSE certificate checks are really implemented?
— how the XML signature is really checked?
HomePlug GreenPHY (HPGP) Power-Line Communication (PLC)

has been adopted by the V2G standard for the physical communication
medium (see figure 5), and this medium also includes security mechanisms
to encrypt data exchanged in the Power-Line.

3 HomePlug GreenPHY

3.1 HomePlug AV and GreenPHY

Car connected to charging stations use the HomePlug GreenPHY [4]
(HPGP) specification, that is in fact a subset of the HomePlug AV [3]. The
HomePlug GreenPHY is intended to be used in the “smart” grid, to plug
Electric Vehicles on V2G units and are fully interroperable with the AV
specification. As shown in figure 8, the HPGP has decreased throughput
as it exclusively uses Quadrature Phase Shift Keying (QPSK) instead of
very high orders of Quadrature Amplitude Modulation (QAM). So the
peak PHY rate is the main difference we can observe when interconnecting
HomePlug AV and GP together.

As in the AV specification, HPGP has two kinds of keys to manage
and encrypt data on the Power-Line:

S. Dudek, J-C. Delaunay, V. Fargues 7

Fig. 6. Signed V2G message (source: [7]).

Fig. 7. PKIs as defined by ISO 15118 (source: [7]).

8 V2G Injector

— Network Membership Key (NMK): to encrypt the communication
using 128-bit AES CBC;

— Direct Access Key (DAK): to remotely configure the NMK of a
targeted PLC device over the Power-Line interface.

Fig. 8. Simple of HomePlug GP and AV comparison (source: HomePlug GreenPHY
1.1 white paper [4]).

Moreover, HomePlug AV defines a pairing button mechanism that
allows to easily setup the NMK of PLC devices and join an AV Logical
Network (AVLN) [23]. Alternatively, HomePlug GP has important mecha-
nism used for Plug-in Electrical Vehicle (PEV) association that do not
require any actions (button, or NMK configuration with the DAK) when
an EV is plugged on an EVSE.

3.2 Plug-in Electrical Vehicle (PEV) Association

As described in the HomePlug GreenPHY white paper, PEVs may
be charged at home, work and in public areas. But at the beginning, a
HomePlug GP EVCC is unconfigured and needs to join the AVLN of
the EVSE when charging cable is plugged in. Unfortunately, things are
complex in Power-Line, because all PLC packets are broadcasted through
in the Power-Line, so a PEV can be seen by multiple EVSEs and vice versa
as shown in figure 9. So consumer billing, utilities and auto manufacturers
could be concerned by a number of security-related matters if their PEV
connects itself to a wrong charging station.

To avoid security issues like bad associations and billing errors, HPGP
defines a “security mechanism” called SLAC (Signal Level Attenuation

S. Dudek, J-C. Delaunay, V. Fargues 9

Fig. 9. SLAC Procedure Facilitates PEV/EVSE Association (source: HomePlug
GP white paper).

Fig. 10. SLAC Sequence (source: [21]).

10 V2G Injector

Characterization). The principle of this mechanism is to have the PEV
broadcast a series of short unacknowledged SOUNDING packets, so that
stations in the range can measure a received power and send it to the
client that will select the MAC address which has the highest received
signal. The sequence is illustrated in figure 10.

From an attacker’s point of view who emulates a fake charging station,
this mechanism is not blocking and can be bypassed by transmitting
tampered attenuation values, to force targeted PEVs to connect to the
AVLN of our fake EVSE. However, we will see in the next sections that
the SLAC mechanism has also weaker points that allow an attacker to
steal the NMK key distributed by a legit EVSE.

4 State of the Art

4.1 Publications

Many articles have been published about the use and impacts of these
technologies, but only few of them tackle the security of such systems, by
discussing some security aspects, privacy issues and possible improvements
to make on V2G [26,27]. However, most of the stated attacks are possible
but have not yet been demonstrated in practice.

Moreover, V2G systems communicate through the Power-Line as a
physical support. Indeed, as we will see in further sections, the HPGP
standard is used to transport data. Some publications regarding HomePlug
AV and its weaknesses have already been published [18] and some of the
enumerated attacks could be used against V2G units and PEVs PLCs in
certain cases, as HGPG is fully interroperable with the AV standard.

4.2 Existing tools

We observed that the V2G is rather a closed world:
— official specifications are not free;
— the rare available tools for analysis are expensive and hard to get;
— the device to interface with is not easily accessible;
— and no arbitrary frame injector equipment actually exists.
But thankfully we can find documentation, and the very useful open

source implementations RISE-V2G [25] and OpenV2G [24], that allow
us to simulate V2G communications between an Electric Vehicle and a
charging station.

Analysis software exist such as the V2G Viewer pro of HSE Electronic
which is not free. However, this software has a demo version that limits

S. Dudek, J-C. Delaunay, V. Fargues 11

analysis to 100 network packets. So we used this software to help us
understand all layers from our captures at the beginning.

We also observed that HomePlug GreenPHY dissectors for Wireshark
were missing. But V2G Viewer pro demo in combination with HomePlug
GreenPHY specifications helped us understand and implement HomePlug
GreenPHY packets at MAC layer, and layers relative to SECC and V2GTP
a bit faster.

4.3 Our contribution

To connect to a V2G network, we use a development kit for HomePlug
GreenPHY we will introduce later in this article. We have implemented
missing Scapy layers to decode/encode HPGP, SECC and V2GTP packet.
Moreover, we have updated the HomePlugPWN [17] tool to support
attacking V2G implementations based on HomePlug GreenPHY and have
written an EXI data encoder/decoder based on the RISE-V2G shared
Java library to analyse and inject V2G frames.

During our tests, we also found a flaw in the SLAC procedure of the
HPGP standard. To reduce the costs of buying a development kit, we are
currently working on an adaptation to use a domestic adapter instead.

5 Intruding a V2G network

5.1 Data propagation over Combined Charging System
connectors

To intrude the network, we need to interface somehow. Indeed, to
plug-in with a car, or a charging station, we can find many different
types of Combined Charging System connectors. Within Europe, the IEC
62196 [5] Type 2 connector is largely used, and its pinout (see figure 11)
is as follows:

— PP: Proximity pilot for pre-insertion signalling;
— CP: Control Pilot for post-insertion signalling;
— PE: Protective earth;
— N: Neutral (single/3 phase AC/DC-mid);
— L1, L2 and L3 three phase AC/DC-mid.

To interact with V2G systems, it should be noted that HomePlug
GreenPHY data are multiplexed onto the Control Pilot and ground lines.
But, interfacing with a male or female connector is not the only way to
start intruding the network.

12 V2G Injector

5.2 Data Propagation over Power-Line

It is important to note that data over Power-Line is superposed on
the power supply [18], so that information can propagate through many
installations depending on signal strength. So if a charging station shares,
at least, the same column heading as another building, or any other
domestic installation, then the PLC of a resident may be able to see and
communicate with the charging stations’ PLC modem.

Previous work has also shown that theoretically choke-coils can be
used in new installations to attenuate high frequency signal propagating
through the Power-Line. Unfortunately, these choke-coils are not installed
everywhere, and if there are used on new installations, in practice these
components do not ensure a long-term effect and could be less precise due
to wear [2, 17].

5.3 Required hardware

To interface with the V2G network, we acquired a Devolo development
kit for approximately 200e, as pictured in figure 12, that exposes three
interesting PLC interfaces:

— on top-middle a Power-Line Communication module based on the
QCA7000 (QCA7k) by Qualcomm Atheros;

— on top-right a twisted pair line interface, as well as a coax SMA
female interface.

— and at the bottom an AC coupler interface to plug-in with a
domestic plug.

For our case, twisted pair interfaces can directly be used to connect
them to an IEC 62196 connector (we some adaptation). But as mentioned
earlier, the AC coupler maybe interesting to use to test if the system
shares the same electrical network as the plug we are connected to.

The kit also has a privileged Ethernet interface (local interface) that
could be used to set-up the PLC modem without needing to use the Direct
Access Interface (DAK).

5.4 HomePlug keys

As it is a subset of the AV specification, HPGP uses the same 2 types
of keys as Homeplug AV:

— NMK: Network Membership Key used to create or/and join a
HomePlug network;

— DAK: Direct Access Key.

S. Dudek, J-C. Delaunay, V. Fargues 13

Fig. 11. IEC 62196 Type 2 pinout.

Fig. 12. Devolo HomePlug GP devkit.

14 V2G Injector

The NMK can be set directly using a local interface by sending a Set
Encryption Key Request HomePlug AV packet. On the other side, if users
are not connected to the local interface of the PLC device, they can set the
NMK remotely via Power-Line by using the correct DAK key associated
to the remote device.

Previous works on HomePlug AV devices [18], have shown that the
DAK key was generated by deriving the MAC address of the PLC device
with a known algorithm, so it was possible to quickly find the DAK of
all Central Coordinators PLC devices. Those weaknesses could also be
observed if vendors of V2G PLCs use a similar previsible technique to
generate the DAK.

5.5 Detection of HomePlug AV/GP devices

The HomePlugPWN tool suite provides a script called plcmon.py
that enables the “sniff mode“ feature on the PLC (see figure 13) and
detects the presence of PLCs that behave as Central Coordinators (CCo)
in the Power-Line support. In domestic networks, a CCo the PLC that
is generally connected to the internet router. In our context, the CCo is
always the EVSE.

Fig. 13. Wireshark capture with Sniff indicates packets received when enabling
sniff mode on the local PLC.

By using this feature, an attacker can detect charging stations if they
are on the same electrical network and if the signal is strong enough.

5.6 HomePlug GreenPHY modes

Before going further, it should be noted that HPGP modems can be
configured in three specific modes: unconfigured (to act like a domestic
plug), PEV, or EVSE.

S. Dudek, J-C. Delaunay, V. Fargues 15

It is important to be aware of these different modes, because abstracted
packets to the local interface may differ from one mode to another, espe-
cially when packets are specific to HPGP.

5.7 A design flaw in the SLAC procedure

By analysing the SLAC sequence, as observed in figure 10 from the
specifications, the first attack that comes to mind is to craft a precise
CM_ATTEN_CHAR.IND response to force the PEV to connect to our
fake charging station. On the other side, a fake PEV can always try to
start a SLAC sequence by connecting some charging stations.

But after implementing Scapy layers for HPGP, and switching the PLC
modem to PEV mode, it was found that any PEV is able to sniff the NMK
sent by all EVSE during SLAC processes in clear. Indeed, Management
Message Entry (MME) packets, like those used for the SLAC procedure,
are broadcasted over the Power-Line and are generally not encrypted,
so anyone connected in the same electrical network can capture SLAC
procedure related messages. To observe these packets, we have to change
the mode of our PLC to PEV.

To act as a PEV, the modem’s PIB has been dumped with pibdump,
then the byte 0x1653 associated SLAC mode as to be modified with setpib
tool, from open-plc-utils [6], as follows:

$ pibdump PIBdump .pib

[...]

$ setpib PIBdump .pib 1653 byte 1

Listing 1. Changing SLAC mode.

Then during a SLAC procedure, we can sniff incoming packets from
the LAN interface of our PLC kit and observe the following HPGP packets
corresponding to packets sent by the EVSE:

##[Ethernet]###

dst = bc:f2:af:f1 :00:03

src = 00:01:85:13:43:11

type = 0 x88e1

##[HomePlugAV]###

version = 1.1

HPtype = 24677

Reserved = 0x0

##[CM_SLAC_PARM_CNF]###

MSoundTargetMAC = ff:ff:ff:ff:ff:ff

NumberMSounds = 10

TimeOut = 6

ResponseType = 1

ForwardingSTA = bc:f2:af:f1 :00:03

16 V2G Injector

ApplicationType = 0

SecurityType = 0

RunID = ’+\ x43\xee\xda\xff\x05\xa7\x34 ’

[...]

##[CM_ATTEN_CHAR_IND]###

ApplicationType = 0

SecurityType = 0

SourceAdress = bc:f2:af:f1 :00:03

RunID = ’+\ x43\xee\xda\xff\x05\xa7\x34 ’

SourceID = ’’

ResponseID = ’’

NumberOfSounds = 10

NumberOfGroups = 58

\ Groups \

[...]

Listing 2. Changing SLAC mode.

The last packet sent from an EVSE during a SLAC procedure is the
CM_SLAC_MATCH.CNF, as shown in figure 14. We were able to decode
the variable field, as shown in figure 15, that contains the NMK to join
the new private network negotiated between the PEV and EVSE.

Fig. 14. CM_SLAC_MATCH.CNF message from EVSE.

Fig. 15. CM_SLAC_MATCH.CNF message decoded.

S. Dudek, J-C. Delaunay, V. Fargues 17

We are then able to setup our PLC kit to join a targeted network by
sending a CM_SET_KEY.REQ or by simply configuring open-plc-utils-
master/slac/pev.ini with captured NMK and Network ID and running pev
tool.

5.8 Into the AVLN

Once a device is part of an AVLN (AV Logical Network), it is able to
talk to every possible service on the network, depending on access controls.
The device is also able to perform a network discovery to see PLCs on
the same AVLN.

At this stage, an attacker in the same AVLN can try to discover
available services on the EVCC and SECC parts. Generally, there is
nothing interesting in the EVCC part, as it acts as a client that only sends
data to the EVSE. On the other side, the SECC part is very interesting
as it can expose many services such as SSH, maybe web managing servers,
and many others depending on the constructor. But in this article, we
will only focus on way we can talk over V2G.

By default, attacker’s PLC kit can be set in promiscuous mode to
intercept all packets, but two kinds of Man-In-The-Middle attacks can be
performed:

— the classical way with an ICMPv6 Neighbour spoofing attack;
— or by racing the SECC procedure.

5.9 Racing the SECC procedure

This attack is optional in case we want to inject traffic, and could
help to be more stable than an ICMPv6 Neighbour spoofing attack. But
during this procedure, the attacker has to be fast by retrieving the NMK,
configuring his PLC kit and then sending fake SECC answers for a while.

Indeed, since we are able to decode SECC layers with Scapy, we are
able to capture a first message that is multicasted by the EVCC as follows:

##[Ethernet]###

dst = 33:33:00:00:00:01

src = bc:f2:af:f1 :00:03

type = 0 x86dd

##[IPv6]###

version = 6

tc = 0

fl = 0

plen = 18

nh = UDP

hlim = 64

18 V2G Injector

src = fe80 :: bef2 : afff : fef1 :3

dst = ff02 ::1

##[UDP]###

sport = 60806

dport = 15118

len = 18

chksum = 0 xc9c7

##[SECC]###

Version = 1

Inversion = 254

SECCType = SECC_RequestMessage

PayloadLen = 2

##[SECC_RequestMessage]###

SecurityProtocol = 16

TransportProtocol = 0

Listing 3. SECC Request.

Then the SECC server listening on UDP port 15118 should send the
following answer:

##[Ethernet]###

dst = bc:f2:af:f1 :00:03

src = 00:01:85:13:43:11

type = 0 x86dd

##[IPv6]###

version = 6

tc = 0

fl = 278181

plen = 36

nh = UDP

hlim = 64

src = fe80 ::201:85 ff: fe13 :4311

dst = fe80 :: bef2 : afff : fef1 :3

##[UDP]###

sport = 15118

dport = 60806

len = 36

chksum = 0 x3756

##[SECC]###

Version = 1

Inversion = 254

SECCType = SECC_ResponseMessage

PayloadLen = 20

##[SECC_ResponseMessage]###

TargetAddress = fe80 ::201:85 ff: fe13 :4311

TargetPort = 56330

SecurityProtocol = 16

TransportProtocol = 0

Listing 4. SECC Response.

As we can see in listing 4, to perform a Man-In-The-Middle attack,
an attacker can try to send a crafted SECC answer with an arbitrary
IPv6 address and port to join a fake SECC server. Moreover, another

S. Dudek, J-C. Delaunay, V. Fargues 19

interesting field to craft is the SecurityProtocol one that confirms the
demanded security level (clear-text, or TLS), which could potentially
downgrade V2G communication security by forcing the PEV to talk in
clear-text.

During our research project, we did not find any system using the TLS
feature yet. But to study the protocol more thoroughly, we have also tested
the opensource solution RISE-V2G against SecurityProtocol tampering,
but the EVCC part of this solution seems to check this field and stopped
the communication if required security level is different from server’s
response. But implementation could vary between different manufacturers,
so it could be interesting to look at this procedure in real life when a
vendor uses it.

5.10 Analysing V2G packets

Once we are connected to a targeted AVLN and are able to intercept
packets between a charging station and a car, we may see many mysterious
IPv6 packets as shown in figure 16.

Fig. 16. Captured data exchange between a PEV and a EVSE.

According to IEC/ISO 15118, data are exchanged in an XML encoded
format called EXI (Efficient XML Interchange). The encoding is docu-
mented and implemented 1 in C/C++, Java, and JavaScript. Moreover,
this encoding supports many Web formats:

— XML (and formats using XML syntax, e.g., SVG, RSS, MathML,
GraphML...);

— HTML;
— JSON (Java, JavaScript, C);
— CSS (EXI overview presentation for CSS);

1. https://exificient.github.io/

20 V2G Injector

— JavaScript.

To compress data as much as possible, a specific grammar must be
provided to the EXI encoder. V2G uses its own grammar that can be found
in RISE-V2G project 2 in following XML Schema Definition schemas:

— V2G_CI_AppProtocol.xsd;
— V2G_CI_MsgDef.xsd;
— V2G_CI_MsgHeader.xsd;
— V2G_CI_MsgBody.xsd;
— V2G_CI_MsgDataTypes.xsd;
— xldsig-core-schema.xsd.

Precisely, each V2G type of message uses its own grammar as follows:

— AppProtocol → V2G_CI_AppProtocol.xsd;
— XMLSIG → xldsig-core-schema.xsd;
— and MSG most of the time → V2G_CI_MsgDef.xsd.

To encode/decode packets, we use the RISE-V2G shared library em-
bedding the EXIficient framework in Java. But as EXI data do not store
the current context, we have created a naive data type iterator that tries
possible solutions to decode current packet without its context information.
An example of the iterator is shown in listing 5.

public static String fuzzyExiDecoder (String strinput , decodeMode

dmode)

{

String grammar = null ;

String result = null ;

grammar = GlobalValues . SCHEMA_PATH_MSG_BODY . toString ();

try {

result = Exi2Xml (strinput , dmode , grammar);

} catch (EXIException e1) {

try {

grammar = GlobalValues . SCHEMA_PATH_APP_PROTOCOL . toString

();

result = Exi2Xml (strinput , dmode , grammar);

} catch (EXIException e2) {

grammar = GlobalValues . SCHEMA_PATH_XMLDSIG . toString ();

try {

result = Exi2Xml (strinput , dmode , grammar);

} catch (EXIException e3) {

// do nothing

} catch (Exception b3) {

b3. printStackTrace ();

}

} catch (Exception b2) {

b2. printStackTrace ();

}

2. https://github.com/V2GClarity/RISE-V2G/tree/master/RISE-V2G-

Shared/src/main/resources/schemas

S. Dudek, J-C. Delaunay, V. Fargues 21

} catch (Exception b1) {

b1. printStackTrace ();

}

return result ;

}

Listing 5. Fuzzy EXI data decoder.

This results in a tool we called V2Gdecoder, inherited by the shared
library of RISEV2G, that exposes the following methods in a dataprocess
class:

public class dataprocess {

[...]

public static String Xml2Exi (String xmlstr , decodeMode mode)

[...]

public static String Exi2Xml (String existr , decodeMode mode ,

String grammar)

[...]

public static String fuzzyExiDecoder (String strinput , decodeMode

dmode)

[...]

}

Listing 6. Exposed methods of V2Gdecoder.

This tool can be used in standalone, as well as a webservice to decode
EXI or encode XML data:

$ java -jar V2Gdecoder .jar -h

usage : V2Gdecoder Helper

-e,--exi EXI format

-f,-- file <arg > input file path

-o,-- output output file path

-s,-- string <arg > string to decode

-w,--web Webserver

-x,--xml XML format

Listing 7. V2Gdecoder helper.

So to perform data analysis while capturing packets, we need to extract
V2GTP header from TCP packets, as shown in figure 17 and then use
V2Gdecoder to be able to decode the V2GTP EXI payload as shown in
listing 8.

<?xml version ="1.0" encoding ="UTF -8"?>

<ns7:V2G_Message [...] xmlns:ns8 =" urn:iso:15118:2:2013:MsgHeader ">

<ns7:Header >

<ns8:SessionID >41 FE1835EEB99776 </ ns8:SessionID >

<ns4:Signature >

<ns4:SignedInfo >

22 V2G Injector

[...]

</ ns4:SignedInfo >

<ns4:SignatureValue />

</ ns4:Signature >

</ ns7:Header >

<ns7:Body >

<ns5:ChargeParameterDiscoveryRes >

<ns5:ResponseCode >OK </ ns5:ResponseCode >

<ns5:EVSEProcessing > Finished </ ns5:EVSEProcessing >

<ns6:SAScheduleList >

<ns6:SAScheduleTuple >

<ns6:SAScheduleTupleID >1</ ns6:SAScheduleTupleID >

<ns6:PMaxSchedule >

<ns6:PMaxScheduleEntry >

<ns6:RelativeTimeInterval >

<ns6:start >0</ ns6:start >

<ns6:duration >7200 </ ns6:duration >

</ ns6:RelativeTimeInterval >

<ns6:PMax >

<ns6:Multiplier >3</ ns6:Multiplier >

<ns6:Unit >W</ ns6:Unit >

<ns6:Value >11 </ ns6:Value >

</ ns6:PMax >

</ ns6:PMaxScheduleEntry >

</ ns6:PMaxSchedule >

[...]

Listing 8. Decoding V2GTP payload.

Fig. 17. V2GTP unkown data to decode.

S. Dudek, J-C. Delaunay, V. Fargues 23

The inverse operation can be performed by encoding a V2G XML file
in EXI and encapsulating data into V2GTP → TCP → IPv6 → Ethernet
before sending it to the target.

6 V2G Injector: Rise of the HPGPhoenix

All techniques, layers and tools have been assembled into one tool
called V2G Injector. The resulting architecture of V2G Injector is shown
in figure 18. Here are the available features:

— analyze V2GTP layer;
— extract EXI data;
— encode/decode data for V2G purpose;
— inject EXI data.

Fig. 18. Captured data exchange between a PEV and a EVSE.

6.1 Issues with missing grammar

During our tests, we also had issues when decoding V2G messages on
few installations. Indeed, as mentioned earlier, it is important to have the
right grammar, and it is common to see the use of old standards in the
automotive industry such as “DIN 70121”, as shown in a supportedApp-
ProtocolReq message:

24 V2G Injector

<?xml version ="1.0" encoding ="UTF -8"?>

<ns4:supportedAppProtocolReq xmlns:ns4 ="

urn:iso:15118:2:2010:AppProtocol " xmlns:xsi =" http: // www.w3.org

/2001/ XMLSchema - instance " xmlns:ns3 =" http: // www.w3.org /2001/

XMLSchema ">

<AppProtocol >

<ProtocolNamespace > urn:din:70121:2012:MsgDef </

ProtocolNamespace >

<VersionNumberMajor >2</ VersionNumberMajor >

<VersionNumberMinor >0</ VersionNumberMinor >

<SchemaID >0</ SchemaID >

<Priority >1</ Priority >

</ AppProtocol >

<AppProtocol >

<ProtocolNamespace > urn:iso:15118:2:2013:MsgDef </

ProtocolNamespace >

<VersionNumberMajor >2</ VersionNumberMajor ><

VersionNumberMinor >0</ VersionNumberMinor >

<SchemaID >1</ SchemaID >

<Priority >2</ Priority >

</ AppProtocol >

</ ns4:supportedAppProtocolReq >

Listing 9. Decoded EXI data.

As RISE-V2G does not provide an associated XSD for this namespace,
we have to find them somewhere else. Thankfully, the OpenV2G project
provides a C++ implementation that can be used to adapt XSD schemas
of RISE-V2G to support DIN 70121, and we included it in V2G Injector.

Also, in case the namespace is not public and if the EVCC supports
another protocol, it is possible to change protocol priorities during a
Man-In-The-Middle attack to work with a grammar supported on our
side. Otherwise, some work will be required to port the target grammar
to V2G Injector.

7 Conclusion

This tool is the result of a long effort of understanding HomePlug
GreenPHY and V2G communications as well as the behaviour of V2G
modules. We hope this tool will help vendors and auditors to work in this
specific area without spending weeks reading commercial specifications.
The V2G injector provides a set of techniques and implements necessary
features to be able to understand and inject data through the Control
Pilot line, or through classic power plug if an installation shares the same
network as the V2G units.

Intruding a network through the Power-Line has been shown as dan-
gerous in domestic installation as an attacker could intrude the local

S. Dudek, J-C. Delaunay, V. Fargues 25

network of an individual or a company, but also extend the range of an
attack. We have shown that, with the right tools, it is easy to intrude
a V2G AVLN and interact with EVCC and SECC, analyse packets and
craft them to attack different controllers and units, especially when data
are exchanged in clear-text. But there is still an unexplored area with
V2G units. Indeed, V2G units generally run complex systems, and can
expose many interesting services like SSH/Telnet, FTP/SFTP, and/or
(management) web services. Intruding such systems could potentially lead
an attacker to use V2G units as a pivot to intrude other internal networks.
So by opening this subject, we hope vendors and constructors will be
more aware of potential risks and perform serious security assessments on
SECC part as well as EVCC.

7.1 Future work

We are currently working on a domestic PLC, based on the QCA7k
baseband, to interface to a V2C through a Power-Line but also with simple
twisted pair lines to adapt it on IEC 62196 male/female connectors. This
adaptation would reduce the cost from 150-200e to approximately 30-50e.

Moreover, other features would be interesting to deploy:
— PEV + EVSE complete emulation and simulation;
— more EXI grammars;
— and automated fuzzing tests on EXI supported format.

References

1. Automobile propre. https://www.automobile-propre.com.

2. FAIFA: A first open source PLC tool. https://media.ccc.de/v/25c3-2901-en-

faifa_a_first_open_source_plc_tool.

3. HomePlug AV Specification. https://www.homeplug.org/media/filer_

public/61/c2/61c25a8b-0ef5-46ee-8fed-407dd6a650da/homeplug_av11_

specification_final_public.pdf.

4. HomePlug GP Specification. https://www.homeplug.org/media/filer_public/

74/40/7440ccd5-8c66-49ed-a2ce-5ef661932c27/homeplug_gp_specification_

v111_final_public.pdf.

5. IEC 62196, Wikipedia. https://en.wikipedia.org/wiki/IEC_62196.

6. open-plc-utils. https://github.com/qca/open-plc-utils.

7. V2G Clarity, ISO 15118 manual. https://v2g-clarity.com/iso15118-manual/.

8. CHAdeMO Association. Technical Specifications of Quick Charger for the Electric
Vehicle: CHAdeMO 1.0.1. CHAdeMO Association: Tokyo, 2013.

9. ISO technical committee. Road Vehicles–Vehicle to grid communication inter-
face–Part 1: General information and use-case definition. ISO Technical Committee:

Geneva, 2013.

26 V2G Injector

10. German Institute for Standardization. Electomobility-Digital Communication Be-
tween a d.c. EV Charging Station and an Electric Vehicle for Control of d.c.
Charging in the Combined Charging System. German Institute for Standardization:

Berlin, 2014.

11. International Electrotechnical Commission. Communication networks and systems
for power utility automationPart 90-8: IEC 61850 object models for electric mobility.
International Electrotechnical Commission: Geneva, 2014.

12. International Electrotechnical Commission. Communication networks and systems
for power utility automationPart 90-8: IEC 61850 object models for electric mobility.
International Electrotechnical Commission: Geneva, 2014.

13. International Electrotechnical Commission. Electric vehicle conductive charging
system-Part 23: DC electric vehicle charging station. International Electrotechnical

Commission: Geneva, 2014.

14. International Electrotechnical Commission. Electric vehicle conductive charging
system-Part 24: Digital communication between a d.c. EV charging station and
an electric vehicle for control of d.c. charging. International Electrotechnical

Commission: Geneva, 2014.

15. ISO technical committee. Road Vehicles–Vehicle to grid communication inter-
face–Part 2: Network and application protocol requirements. ISO Technical Com-

mittee: Geneva, 2014.

16. ISO technical committees. Road Vehicles–Vehicle to grid communication inter-
face–Part 3: Physical and data link layer requirements. ISO Technical Committee:

Geneva, 2015.

17. Sébastien Dudek. HomePlugPWN. https://github.com/FlUxIuS/HomePlugPWN.

18. Sébastien Dudek. HomePlugAV PLC: practical attacks and backdooring. NoSuch-

Con, 2014.

19. Sébastien Dudek. PentHertz: The use of radio attacks during Red Team and
pentests. SecurityPWN, 2018.

20. Michael Epping. Vehicle Charging Control Unit. EMOB, 2017.

21. Matthias Küdel. Design Guide for Combined Charging System. 2015.

22. Hyoseop Kim Minho Shin, Hwimin Kim and Hyuksoo Jang. Building an In-
teroperability Test System for Electric Vehicle Chargers Based on ISO/IEC
15118 and IEC 61850 Standards. https://res.mdpi.com/applsci/applsci-06-

00165/article_deploy/applsci-06-00165.pdf.

23. Sherman Gavette Ross Anderson Richard Newman, Larry Yonge. HomePlug AV
Security Mechanisms. https://www.cise.ufl.edu/~nemo/papers/ISPLC2007_AV_

Security.pdf.

24. Siemens. OpenV2G. https://github.com/Martin-P/OpenV2G.

25. V2GClarity. RISE-V2G. https://github.com/V2GClarity/RISE-V2G.

26. Peng Wang Zhigang Ji Wenpeng Luan, Gen Li. Security of V2G Networks: A
Review. Boletín Técnico, Vol.55, Issue 17, 2017.

27. Yan Zhang and Stein Gjessing. Securing Vehicle-to-Grid Communications in the
Smart Grid. IEEE Wireless Communications, 2013.

