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Abstract. With the constant development of electronic devices, their
increasing complexity and need for security, cryptography in embed-
ded systems has become a strong requirement to protect data or secure
communications. Some devices run on basic microcontrollers, which are
vulnerable to low-budget physical attacks allowing the retrieval of se-
cret materials, as shown in previous publications. More sophisticated
devices use dedicated security circuits able to withstand higher levels of
physical attacks. This paper describes a hardware attack conducted on
the ATECC508A CryptoAuthentication secure memory, a circuit used
in many security applications and IoT devices for strong authentication.
In particular, it is used in the Coldcard Mk2 Bitcoin hardware wallet to
securely store the seed. We present an attack using Laser Fault Injection,
in a practical approach from an attacker perspective, where we retrieve
the content of secret data slots in the mentioned wallet specific config-
uration, allowing an attacker to steel the protected funds. Contrary to
security-certified chips, this circuit has a public datasheet. Nevertheless,
its implementation and its firmware are proprietary, allowing only a
black-box approach. Finally, we assess the difficulty of this attack in the
given real-case scenario and demonstrate it is a practical attack despite
the high setup cost.

1 Introduction

Most of modern systems rely on cryptography to secure communica-
tions, authenticate devices and users, or securely store information. Many
devices store critical information, such as cryptographic private keys, in
basic microcontrollers or memories. In a hardware context, where the
attacker has physical access to the device, implementing secure software
to protect sensitive data against logical attacks is necessary but not suffi-
cient. Powerful techniques have been developed to recover secrets using
non-invasive, semi-invasive or invasive attacks [13].

Side-channel analysis exploit physical leakages to recover keys during
the execution of a cryptographic algorithm. Operations leakage can be
observed in power measurement [5], electromagnetic radiation [10], com-
putation time [6], silicon photonic emission [11] or even acoustic noise
as shown in [3]. This field of expertise has grown in the past decades,
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and sophisticated software and hardware counter-measures have been
developed to prevent the exploitation of such leakages.

Invasive probing attacks can be conducted to spy circuit internal
signals, which may convey secrets. Focused Ion Beam stations can also
be used to directly edit a circuit by cutting metal tracks and/or creating
new ones. Initially developed for failure analysis, such equipment can be
diverted to disable hardware security circuitry, or routing-out internal
signals for further probing or manipulation of sensitive data. This latest
technique is among the most expensive. Secure-elements usually implement
a top-metal shield to detect such attacks and thus make those much more
difficult. But, for oldest node technologies, this can still be bypassed with
a lot of time and effort, usually many months [16]. This class of attacks
requires very expensive equipment (up to millions USD), a high level of
expertise, and is very time consuming.

Other attacks are based on fault injection to produce exploitable
computation errors in circuits. This class of attacks is usually referred
as semi-invasive. Faults can be injected by different means. An attacker
controlling the clock can introduce glitches on the clock signal. This usually
inserts setup/hold violations at the gates level, and thus produces logical
errors. Another easy way to introduce faults consists in generating glitches
on the power supply. Finally, Electromagnetic Fault Injection and Laser
Fault Injection are often more efficient while they require a higher level
of expertise and more expensive equipments. These methods have higher
temporal and spatial resolutions, enabling local and precisely targeted
effects. For instance, Laser Fault Injection is very efficient to bypass security
features, as many previous work described [9, 12, 14, 15, 17]. Equipment
can be expensive for precise laser stations, but efficient low-cost setup can
also be designed. The research time and effort for semi-invasive attacks is
much smaller than invasive attacks. Some vulnerabilities can be identified
within a week. The exploitation time is often reduced: from one day using
Laser Fault Injection, down to a few minutes with Electromagnatic Fault
Injection or power glitching.

We chose to evaluate the resistance of the ATECC508A circuit against
high potential attackers, as defined by [4]. Firstly, we developed tools and
dedicated electronics to communicate with the target device and be able
to send commands, with proper instrumentation for power trace analysis,
circuit power management and precise triggering. We prepared samples
for backside illumination, eventually thinning down the silicon. We then
conducted a fault injection campaign using a focused laser beam.
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In this paper, we present a security evaluation of secret data storage
of the ATECC508A, in the particular configuration of the Coldcard Mk2
hardware wallet. In Section 2, we introduce the target of evaluation and
its security mechanisms. In Sections 3 and 4, preparation and setup are
described. Eventually, the testing campaign is explained in Section 6,
leveraging the information gathered from the power traces as described in
Section 5. Finally, Section 7 details the results of the testing campaign.

The critical exact setup parameters of the attack are not given: the
settings have been communicated to the manufacturer, and we estimate
it is not useful to disclose them in this paper. It limits on the field
exploitation, and gives sufficient time to the vendor to mitigate the issues
and warn its customers.

2 Target of Evaluation: ATECC508

The ATECC508A is a secure memory with NIST-P256 Elliptic Curve
cryptography for IoT authentication applications. It provides key gener-
ation, secure storage for keys or small data blobs, and supports crypto-
graphic algorithms such as ECDSA, ECDH, HMAC, etc. This circuit is
presented as a Secure Element by the Microchip (Atmel) manufacturer,
but from our knowledge has no public security certification regarding its
resistance against (physical) attacks.

Before the publication of this article, the complete datasheet of this
circuit was publicly available [8]. For this reason, manufacturers might
have chosen this circuit for its accessibility rather than contracting Non-
Disclosure-Agreements required for other products. This even allows build-
ing Open-Source hardware designs using the ATECC508A circuit to
protect sensitive data. Training samples can be freely acquired from many
component resellers.

2.1 Coldcard Hardware Wallet

The Coldcard hardware wallet, in its Mk2 version,1 uses this circuit as a
secure storage for sensitive secrets: pairing key between the secure memory
and the MCU, user PIN code and master seed. The master seed is a very
critical asset: it grants the ownership of corresponding cryptoassets and
allows signing transactions on the blockchain to transfer funds protected
by the device. In this application the stored data is not related to P256
curve in any way, and the ATECC508A circuit is only used as a secure

1. Mk3 version has upgraded to ATECC608A
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storage with authenticated access through the knowledge of the PIN code
and pairing secret.

Fetching the secret seed from the secure memory is done by the
microcontroller in the following (simplified) steps:

1. The microcontroller proves knowledge of the pairing secret by
answering correctly to a challenge from the secure memory. Success
unlocks use of the PIN hash data slot, required to perform the next
two steps.

2. The PIN entered by the user is hashed together with the pairing
secret: if the PIN is correct, the result matches the content of the
PIN hash data slot:

SHA256( SHA256( pairing secret + 0h58184d33 + PIN ) )

3. The seed data slot is read and decrypted using the hash as key.

Knowledge of the pairing secret and PIN hash data slots is enough for
getting access to the hardware wallet seed. Optionally, the PIN code can
be recovered by brute-forcing the hash. Note that the pairing secret can
also be retrieved by attacking the STM32 microcontroller, which is known
to be vulnerable to low-cost glitch attacks [1, 7].

2.2 Software security mechanisms

The ATECC508A circuit has an internal ROM memory for storing the
proprietary firmware (unknown to us), and EEPROM memory for storing
data. The EEPROM memory is used to store both configuration data
(CONFIG zone) and user secret data (DATA zone). Direct access to the
EEPROM memory is not possible, and the circuit firmware implements
commands to configure the access rules, put and retrieve data inside
defined memory slots.

The DATA zone of the EEPROM memory is split into 16 data slots.
Data slots have different fixed sizes. The smallest slots store 36 bytes each,
and the largest one stores 416 bytes.

Each data slot has an access configuration which is defined in the
CONFIG EEPROM memory sector. A default factory configuration is
defined for a typical use case. It can be changed to modify the access
conditions of the data slots. Depending on the configuration, accessing to
a data slot may require being authenticated, and communication during
read or write commands can be encrypted. Once the configuration has
been set, it must be permanently locked by executing the Lock command.
When the configuration is locked, data slots must be provisioned and then
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locked permanently. The device is operational when the CONFIG and
DATA sectors are both locked.

The hardware wallet we studied stores the master seed in a 72 bytes
data slot. The ATECC508A device is not capable of running the crypto-
graphic algorithms necessary to sign transactions for the Bitcoin blockchain.
Therefore, this secret is fetched by the MCU which runs all the crypto-
graphic calculations. The ATECC508A will return the secret seed en-
crypted after verifying the user has knowledge of the hash of the PIN
code.

The hash of the PIN code is stored in another data slot of the secure
memory. This data slot can store up to 36 bytes, but only the first 32 bytes
are used by the wallet. The data slot configuration has the "is secret" bit
set, meaning the secure memory will return an error for any read memory
attempt on this data slot.

2.3 Hardware security counter-measures

As stated in the datasheet [8], the circuit has a top-metal mesh pre-
venting front-side probing attacks. Without such a mesh, an attacker
might be able to connect to circuit internal wires using very thin needles
and a probing station, and readout sensitive data during the execution of
the circuit (such as the data bus). We wanted to verify that this counter-
measure is present. We had little equipment for front-side preparation but
we managed to observe this shield anyway (Figure 1). For this, we milled
the package in front-side using a diamond milling tool. The main difficulty
is to stop the milling process at the right time before touching the silicon.
When the remaining plastic package was thin enough to see the circuit by
transparency, we stopped the milling process and finished gently with a
scalpel.

Figure 1 is a picture of the observed top-metal shield. We can see a
curious labyrinth-like pattern covering the surface of the chip, which is
probably made of one or multiple wires filling all the space to hide the
underneath logic. The chip has been damaged by the process and is not
functional anymore: scratches of the milling tool are visible on the top-left
corner of the picture, and the bonding-wires have been removed.

The circuit generates its own clock source internally to avoid basic
clock glitching attacks. The CPU core voltage is also regulated internally
to prevent voltage glitch attacks. We verified the effectiveness of this
counter-measure against direct voltage glitches applied to the external
pins, or using electromagnetic pulses with a short-distance antenna.
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Fig. 1. Active shield visible in front-side

There is no mention to resistance against laser fault injection (such as
light detectors for instance), which is why we decided to test the device
against this class of attacks.

The memory of the device is internally encrypted. This is a good
counter-measure against electrical memory probing attacks, however, as
we show in this paper, with the correct attack path we can rely on the
circuit to decrypt the content for us during an attack.

Measuring the power traces during our experiments revealed temporal
jitter during commands execution (i.e. noise on the execution time). Calling
a same command twice produces slightly different power traces. This can
be either natural CPU clock noise or a voluntary counter-measure. There
is no mention to this mechanism in the datasheet. Like shooting an arrow
on a randomly moving target, this counter-measure makes harder fault
injection and the reproducibility of attacks is therefore severely degraded,
especially without dedicated real-time synchronization equipment.

3 Sample preparation

To prepare the circuit for laser fault injection, the package must be
opened in backside. We used an ASAP1 machine (micro-milling tool
dedicated for chip decapping) (Figure 2) with a 1 mm diamond tool for
milling the package. Once the copper lead frame was visible, it has been
removed using a 1 mm metal milling tool. This step must be performed
with extra care as milling down too deep may scratch or destroy the
silicon under the lead frame. Once the lead frame has been removed, the
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conductive glue paste between the silicon and the lead frame is gently
removed with a scalpel and wood toothpick. The Figure 3 shows the
internals of a circuit package, and how we prepared the backside access.
Figure 4 shows a photo of a prepared sample.

Fig. 2. ASAP1 micro-milling machine for chip decapping

We estimated the die thickness to be around 250 µm. It has been
measured optically with our microscope by focusing firstly on the sur-
face of the silicon and secondly on the visible circuit gates. To obtain
the die thickness t, the displacement difference during focusing must be
multiplied by the refractive index of the silicon in infrared light, which is
approximately nsi = 3.5.

t =
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The measurement is not very accurate, therefore we rounded it to
the nearest known standard die thickness. Knowing the die thickness is
required when thinning down the silicon.

We also used the microscope stage and camera to measure the chip
dimensions.

During our experiments, we used a laser source for fault injection.
We found out the laser can be powerful enough to inject faults without
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thinning down the silicon, making sample preparation easier and with
very limited risk of destruction. We also performed some tests on thinned
samples, which allows an attacker using a cheaper laser source.

The chip is rotated inside its package (Figure 4), which is a bit unusual
and requires particular caution for silicon substrate thinning and daughter
board wiring.

Chip width 1585 µm

Chip height 1410 µm

Chip surface 2.235 mm2

Substrate thickness 250 µm

Table 1. Physical measurements of the chip

Silicon front-side, with top-metal shield

Silicon backside

Package pins

Plastic package Bonding wires

Lead frame

Fig. 3. SOIC package milling for backside access

Using the infrared camera mounted on the XYZ stage of our laser
test-bench, we took several pictures of the silicon from backside. The
images have then been stitched to produce a complete picture of the
circuit, as shown in Figure 5.

The images stitching positions are the locations returned by the XYZ
stage, which is accurate enough to avoid using any advanced stitching
algorithm. The camera images are averaged to reduce noise and get better
contrast, and a post-processing filter is applied to remove dust particles on
the lens and reduce thumbnail/shadowing effect due to non-homogeneous
lighting of the sample through the microscope.

In a black-box approach, we need to identify the different parts of the
circuit before trying to inject faults. When available, open documentation
from the manufacturer can help matching circuit blocks such as memories
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Fig. 4. ATECC508A chip in SOIC-8 package, backside

or peripherals to indicated specifications. Comparison to other circuits
from the same manufacturer can also help identification.

According to the datasheet [8], the EEPROM memory stores 11200
bits. This could be verified on the EEPROM layout using our microscope
camera, as shown in Figure 6. 16 banks of 700 bits are visible. Each bank
is probably mapped to a word bit (horizontal bit lines). 50 columns are
visible (vertical word lines), and we supposed that each column stores 14
bits.

The ROM memory of the chip has a much smaller cell size than the
EEPROM memory. We were not able to count the memory cells due
to our microscope limitations. Furthermore, we don’t know what ROM
technology is implemented, but an attacker with more equipment may try
to find out if this is a contact ROM which could be extracted and reversed,
provided the ROM addresses and bits are not scrambled. Knowledge of
the firmware binary of this circuit would be a significant advantage in
setting-up attacks and understanding the chip errors after fault injections.
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EEPROM

ROM

RAM

Fig. 5. Infrared backside image of the circuit and memory floorplan

4 Setup

4.1 I2C communication and triggering

The ATECC508A circuit exists in two interface versions: I2C or Single-
Wire. The communication interface mode is programmed in the internal
EEPROM memory during manufacturing and cannot be changed. We
used the I2C version for our setup. Only four pins have to be connected:
VCC, GND, SDA and SCL.

Communication with the device is performed using Ledger Donjon
Scaffold board and its Python API [2]. Commands are sent to the device
following the protocol defined in the datasheet [8]. An I2C write transaction
is performed to execute a command, and the response is fetched with an I2C
read transaction after command completion. Each response may include a
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700 bits (×16 = 11200)

14 bits

2 bits

Fig. 6. EEPROM memory cells. Captured with 50X magnification objective lens

vendor-specific error code, giving useful information for diagnostic after
fault injection.

The I2C peripheral of Scaffold was used to generate accurate trigger
during read and write transactions. We used this trigger source to start the
Scaffold’s configurable delay and pulse generator connected to the infrared
laser source. With this setup we are able to inject faults synchronized with
the I2C transactions, with very low jitter.

The 3.3 V power supply of the device under test is controlled by the
Scaffold board. It is switched OFF and ON before each new test to recover
from possible circuit crashes.

4.2 Power measurement

The device power consumption reflects its activity. Each instruction
executed by the CPU has a signature on the power trace. In a black-box
approach, it is quite hard to interpret a power trace. However, comparing
different power traces given different execution paths can provide an
attacker good hints on the best timing for fault injection. Also, patterns
and their repetitions can give interesting information.

In our setup, we measured the power consumption of the device under
test using a 20 Ω shunt resistor (R1) connected between the circuit ground
pin and the board ground, as shown in Figure 8. We didn’t use any
decoupling capacitor to prevent low-pass filtering. The signal is amplified
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Fig. 7. Our Laser Fault Injection test bench

using an operational amplifier close to the resistor (gain G = 1 + R2

R3
= 11).

The output of the amplifier is then fed to an oscilloscope which records
the power traces.

4.3 Targeted asset and attack path

Prior to the fault injection campaign, we programmed the devices in
the same exact configuration as the Coldcard wallet. This configuration
is detailed in Table 2. We loaded the PIN hash data slot with easily
recognizable data: 0123456789abcdef. . . It is important to note that the
data slots cannot be written if the configuration is not locked, and the
circuit will then operate normally only when both configuration and data
zones are locked. There is no possibility to rollback to factory settings,
therefore any will to change the configuration or data for testing purpose
will require using another sample.

The "is secret" flag of the data slot is set: read is strictly prohibited.
This data slot can only be used to prove to the secure memory the
knowledge of the PIN code and unlock other data slots.

In black-box approach, it is hard to identify quickly possible attack
paths, as the implementation details and protections of the functionalities
are totally unknown. We had to make an attack path hypothesis and then
try out. Furthermore, it is highly recommended to choose a path where
only one fault is enough to bypass the security. Performing multi-fault



O. Hériveaux 13

Fig. 8. Setup schematics for power trace measurement

Name Value Comments

Raw 0x8f43 Slot configuration value

Write config encrypt Writes are always encrypted

Write key 0x3 Write encryption key index

Read key 0xf Read encryption key index

Is secret True This data slot can never be read

Encrypt read False
Read are forbidden by "is secret" flag, but allowing plain
text can help us if we manage to bypass "is secret" flag.

No MAC False MAC and HMAC commands with this data slot are allowed.

Table 2. Targeted data slot configuration details

attacks is extremely difficult: there is usually no way to know whenever a
first-fault was successful or not until you manage to pass both of them!
In this context, it’s necessary to perform temporal and spatial scanning,
injecting faults randomly and observing the different behaviors of the
circuit.

In our case, we chose to attack the Read Memory command of the
device. Our objective was to retrieve the first 32 bytes of the secret slot
storing the wallet PIN hash, with the configuration described previously.
We supposed the firmware would check for the "is secret" flag with a simple
conditional branch to determine whether or not the user has rights to
access this data slot. If this scenario is valid, only a single fault during
the branch instruction should be enough to bypass the security.

Although the "encrypt read" flag shall not be relevant (all reads are
forbidden!), it is a chance for us that it is set to False: if we manage to
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bypass the first security check ("is secret" flag), we want the data to be
output in plain and not encrypted with an unknown key.

Once the scenario is established, there are critical attack parameters
that need to be found to perform successful security bypass of the Read

Memory command: we need to know WHERE and WHEN to shoot with
our laser. The next sections will explain how we searched for those settings.

5 Learning from the power trace

As we mentioned, the power trace of a circuit can reveal a lot of useful
information. The Figure 9 shows a measured power trace of the circuit
during the execution of the Read Memory command on an authorized data
slot. The top blue waveform is the I2C SDA signal, which transports the
read command sent to the ATECC508A device. The bottom red waveform
is the power trace. As soon as all the bytes of the command are received
by the ATECC508A circuit, a rise in power consumption is visible: the
CPU of the circuit starts processing the input command and thus requires
more energy than when it was waiting. Once the command is processed,
the power consumption goes back to an idle level.

When doing the same experiment but trying to access a forbidden
data slot, the waveform in Figure 10 can be observed. We can see that
the processing of the command takes less time: this is to be expected as
the program returns an early error message when it checks for the access
rights.

The observations can be improved by averaging the power traces to
eliminate the noise from the clock jitter, and then superimposing both
waveforms. The Figure 11 shows this measurement. The red waveform
corresponds to the forbidden access, and the dark-gray waveform to the
granted access. The beginnings of the power traces perfectly match until
a precise time. This gives us a very precious information: it is the time
when the circuit takes a different decision from the given inputs, when
the program control flow differs. This time probably corresponds to a
conditional branch testing the "is secret" flag of the data slot configuration.

The granted access power trace (dark-gray) also shows a repetitive
pattern, shortly after the branch divergence. We supposed this part of
the power trace corresponds to the data transfer from the EEPROM
memory to a buffer in the RAM memory. We could validate this hypothesis
experimentally by faulting the data transfer, injecting fault at this time
when reading an authorized data slot. We observed that the faulted byte
index was depending on which pattern we targeted, and we found out the
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device copies the 32 bytes data slot by 8 transfers of 4 bytes. As expected
this data transfer does not occur when the slot is secret (red power trace).

This power trace analysis gives us a precious hint on the fault injection
time. It does not give an exact timing, but considerably reduces the search
space, and therefore increases the probability of success.

6 Testing campaign

To search for vulnerabilities, we ran an automated one day long
fault injection campaign on the Read Memory command. Each test was
composed of the following steps:

1. Laser beam displacement: the laser is moved at a random location
above the ROM memory region (see Figure 5). We didn’t explore
the whole chip with the laser and we chose to focus on the ROM
memory as it usually gives good chances of faulting the program
instructions during execution.

2. Laser pulse delay configuration: the fault injection time is random-
ized in a small time window around the branch identified in the
power-trace (Figure 11).

3. ATECC circuit power-on

4. ATECC prelude commands for wake-up and initialization

5. Laser trigger activation: the next I2C command sent to the circuit
will send an electrical pulse to the pulse generator, which will
activate the laser for a short duration and after a configured delay
(set in step 2).

6. Execution of the Read Memory command. The laser illumination
will occur during the processing of this command.

7. Log the response from the circuit (error code, returned data or
communication errors)

8. Laser trigger deactivation

9. ATECC circuit power-off

Thanks to our custom I2C communication management with our
dedicated hardware, our script is able to raise an exception for every
possible communication error. No fault can lead to attack script crashes:
we are able to log any kind of chip misbehavior and let the test campaign
run for a very long time.
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Fig. 9. Power trace during granted memory read

Fig. 10. Power trace during denied memory read
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Conditionnal branch

EEPROM copy to RAM loop (8 × 4 bytes)

Fig. 11. Averaged power traces comparison between granted and denied read
requests

7 Results

343617 fault injection tests have been performed during the campaign.
1546 tests resulted in data transmission from the ATECC508A device
and the execution status "OK". Lots of different output data have been
collected. The Table 3 is an extract of the most frequently received data.
Most of the received data have the correct expected length (32 bytes),
but unfortunately, none of them matched the initially programmed value
0123456789abcdef....

From the result log we observed some data was received multiple times.
Although those records are random look-alike, since the device is restarted
before every test, we deduced it was stored in the non-volatile memory of
the device.

In Figure 12, we plotted the occurrences of the received data. The
X-axis corresponds to the test number, growing over time. Some particular
data are interesting and can be read as following:

— the data starting with a712c613... (line 1 in Table 3; line 1 in
Figure 12) has been received 336 times between experiments no 33
and no 114317.

— the data starting with a1ff80fa... (line 4 in Table 3; line 5
in Figure 12) has been received 76 times between experiments
no 114613 and no 147932.

— the data starting with 929b86e3... (line 6 in Table 3; line 7
in Figure 12) has been received 58 times between experiments
no 148053 and no 169969.
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Count Length Output data from ATECC508A device

336 32 a712c6137b0b50b401d8deff8b0b3b8e5f2b01e0707d4eaeaeb6bbe589220274

152 32 a092cc6943e6c408bdd924e4ce90b8c895ddac03d2ada707088cace9d9cb803a

151 4 00000000

76 32 a1ff80fa7028066d4dcc023f23e2ec6b79864aa8b6e979e1d63cbf05277ebeb7

72 32 41e0f633a019cd625920691b11400c9387009e68d0b13e53d73257216a4c0ce8

58 32 929b86e3dff0ecb1d2318cf0c4bf5872b32d9db260cf012ae7c00d40cac19cc1

53 32 4e92d8096bfa78254581b9f5b987e60337e4f9860f92a2615581676e896854dd

51 32 011ffd4b459e81f8ab7f42cd2662fc6117cad15cb99155e72ed6b76211067e22

50 64 09c8420000000000000000000000000000000000000000000000000000000000...

43 32 9dbf7427f5098feb2c708174875896f7294629a30049f5aa825dffa05b7c3c29

37 32 f6fecd81f528d1ebfcf005b0d59ebfd84839dbcc0c1a9614be3a13351009b107

31 32 8f8a22572231abafd8035be7d84eece928e7754d966b054fa4f02e5d02599bc6

29 32 069ff7317d731544177eb8d663f97f27dd3c7cbf1b41bc4e88eca06e41effc6c

21 32 c776a730a55dd031685d2afc76672ba5d23187ca07ce42b66286888be89cac2d

20 4 01000000

15 32 89f3c21a72ebb69fb1f6010fe3c0a3ab6ebb81356337b3e2a7024024d40ba371

14 32 2132c13ce836eda1ab62fc3c9b07345da28616d792e0ebc3e7bae5864c0d9e80

12 32 07f2bba24ebdd721e76b9e0d8e8b2b8431679a147f0562a8565cb382bf5ac2e1

12 32 e7edcd6b9e8c1c2ef387f529bc29cb7ccfe14ed4195d251a57525ba6f26870be

11 32 1c60381c2111566e7b200149b12bc72ee416bd90d1db927d4fe0abc008d0349a

11 32 487ce193a06c6fd01d38221f0fb1b5efaf3af73a8c3b1078732b34a03e10c806

9 32 3496bdbbe1653dfd789610c269d69f9dfbcc4d0ea9231a6367a001c752e5e097

9 32 e89fe351556fa969ef2625c714ee21ec7f05293ac67eb928d5e16be9114c288b

6 32 fea48df33529bd4490c47a7511d58cd367762ea3b99155e7d129489d11067e22

6 32 50f3f6d9cbbd00a75657998278f7783700d80b70c5f68d5d3e5a1fb2882dcd51

5 32 2987190f1ca47ae372a4c7d575272b066006a5f15f871e06249022da9a7de790

5 32 1856bdd3ee3b2092c83ccd918b9ebbcebf5db12b195d251aa8ada459f26870be

4 32 f849cb1a3e0aeb9ddcd0a6b5b93c5b3641db65eb7f0562a8a9a34c7dbf5ac2e1

4 32 2ffef9424c7e67d31b519d3d4ea96444265a5189aadba8ab27624ca34c2fdf27

4 32 ee71dacb9ef9be9cb79fbe2da2d87200e7db278645d70b31f34b3827a634b450

4 32 617b9c689bc8017dc2fab6cedb0eec4a9ad05776ce2259ffe2e6840c70b8d07b

4 32 9ec0ecd0eb7f3dc1f9418e76ecb99cf8ea6ca889ce2259ff1d197bf370b8d07b

3 32 ba6d03441f848722d1879d7b1c4200c1acf76d2c18378934cf80a74790f448cc

2 32 39f89fdcf322080d983818ce187b8080a8368ce9c3358cba4dc2fbe281ecd863

2 32 873ffa64d6a33ced01c5600e366ef3b2ea67c66b5b0cf08a67dae901d429e2d6

2 32 172493e925d895d5d49d1d7f2359515e0fb9d6c5c67eb9282a1e9416114c288b

2 32 f92487890dc429f82cc5806e544e0f95ad8083401b41bc4e77135f9141effc6c

1 32 03ef60a44cc20e776047a0fa7824021d32a8c80804cd330b1a5177d9b58f3264

1 32 e94af4f13db169fd5ff6f20fb347eccb424ed1421dd2bdb1ecf63bae66f67d5c

1 25 09c84200000000000000000000000000000000000000000000

Table 3. Collected output data from ATECC508A device resulting from Read

Memory command fault injection
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— etc.

For the mentioned data, the occurrence ranges intersection is ∅. From
this, we understood the laser faults injected during the tests were changing
the data stored in the non-volatile EEPROM memory. It is probable
that a laser fault injected between experiments no 114317 and no 147932
overwritten a712c613 with a1ff80fa. This pattern can be observed 12
times across all the testing campaign.

Furthermore, some data seem to come in pairs:

— a1ff80fa... with 07f2bba2... (Pair A in Figure 12)
— 929b86e3... with 3496bdbb... (Pair B in Figure 12)
— f6fecd81... with 50f3f6d9... (Pair C in Figure 12)
— 41e0f633... with e7edcd6b... (Pair D in Figure 12)
— etc.

We supposed pairs were corresponding to the same data, which were
returned encrypted in some cases, and in plain text in the other cases. We
could not verify this hypothesis since the encryption key was unknown to
us.

0 50000 100000 150000 200000 250000 300000 350000
Test number

a712c613…
9dbf7427…
fea48df3…
011ffd4b…
a1ff80fa…
07f2bba2…
929b86e3…
3496bdbb…
1c60381c…
8f8a2257…
89f3c21a…
487ce193…
f6fecd81…
50f3f6d9…
c776a730…
41e0f633…
e7edcd6b…
2132c13c…
4e92d809…
e89fe351…
a092cc69…
069ff731…

Pair A

Pair B

Pair C

Pair D

Fig. 12. Output data occurrences over the experiments

At the end of the campaign and after the results analysis, we believed
the data we were trying to read in the secret slot had been overwritten. The
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ATECC508A circuit provides the "GenKey" command which generates a
new P256 elliptic curve key (32 bytes) and stores it in the data slot given in
the command parameters. A laser fault injection had probably disturbed
the program control flow and executed this command by accident.

The ATECC508A device also provides a "MAC" command which
computes and returns the SHA-256 digest of random nonces, the device
serial number, and the first 32 bytes of a chosen data slot. We used
this command to demonstrate that the last received data in the test log
(069ff731...) was the content of the targeted data slot, proving we had
several successful faults during the whole campaign.

To summarize, the possible circuit behavior after fault injection during
our testing campaign were the following:

— The "Read" command is executed but the arguments are faulted
and an authorized data slot is returned instead of the requested
one.

— The command executed is not the correct one: this can happen
if the command code is faulted, or if the command dispatcher
control flow is modified. For instance, if the Random command is
executed instead of the Read command, the circuit will return an
"OK" status with generated random data.

— The command executed is not the correct one and overwrites
the data we want to read. This happens if a key generation is
accidentally started. This is a very problematic situation as it is
hard to detect and usually requires changing the slot to be read or
replacing the sample by a new one.

— The fault triggers an invalid write in the EEPROM configuration
memory. This may destroy the chip and require replacing it. We
encountered this case a few times, and this is the most annoying
result since we need to prepare a new sample to continue the tests.

— Command execution is faulted and produces an internal checking
error.

— And other behaviors very hard to understand in a black-box ap-
proach!

— The "Read" command is executed but the data sent seems to be
incorrect, probably overwritten.

8 Refining the attack

The attack campaign detailed previously showed that there might be
a risk to erase the targeted asset data before being able to retrieve it. We
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spent more time to refine the attack parameters to reduce the risk of data
loss. We identified a precise timing and laser beam position for which the
chances of success of the attack is high, and the chance of data lost is low.

We tested those new parameters on a new device and we were able to
extract the expected data (0123456789abcd...) in less than 2 minutes
of testing. This demonstrated that the vulnerability can be exploited in a
real-case scenario.

9 Further work

During our security evaluation of the ATECC508A circuit, we also
identified another vulnerability which allowed us to change the serial
number of a circuit. We also demonstrated this vulnerability can be used
to unlock the configuration zone of a locked circuit, which may grant
access to all the stored data. Those attacks were really hard to perform
compared to the one presented in this article, and we only managed to
perform it twice. Furthermore, there is a very high risk of destroying the
chip permanently when attempting to unlock it, making the attack not
very practical for the moment. We are still investigating on those attack
paths.

Microchip released the ATECC608A, which is the backward-compatible
successor of the ATECC508A. This circuit seems to use the exact same
silicon, with a new firmware providing more functionalities, and with
more software security hardening. A security evaluation of this circuit
against fault injection should be interesting to perform, and for sure a
real challenge!

10 Conclusion

We identified the Read vulnerability in less than one month of work
and demonstrated it is a practical attack. Although we used expensive
equipment, the gain from such an attack can be very high, in particular if
the target is a stolen hardware wallet.

Sample preparation is limited since it is not mandatory to thin the
silicon substrate. Since the samples can be easily acquired and do not
require a lot of preparation, we did not hesitate to inject faults with a
lot of power or pulse count in order to increase the success probability.
Therefore, two chips have been destroyed during the laser campaigns
before getting a successful breaking fault. Destruction may come from
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invalid EEPROM write operations at critical addresses, but we could not
verify this hypothesis.

A particular difficulty we met when researching exploitable faults on
the ATECC508A is that this circuit cannot be programmed back to default
factory settings. It is not either possible to load custom code for testing
purpose. Some chips were broken after bad EEPROM configuration, due
to misunderstanding of the datasheet while discovering the circuit and its
commands. Other chips have been broken with invalid writes in EEPROM
memory, induced by laser faults. During the Read attack campaign, known
data which have been loaded during configuration and before locking
the chip have sometimes been overwritten by undesired key generation
induced by faults - making the detection of a successful fault undetectable
since the dumped data was not the expected one. Every time a chip is
broken, a lot of time is spent preparing another sample. This slows down
attackers in finding vulnerabilities.

Vulnerabilities on standard microcontrollers usually give full access
to all stored data. Regarding the ATECC508A, our vulnerability is only
applicable to a specific data slot configuration. Data slots configured for
P256 key storage, which is the typical use case for this product in IoT,
are not vulnerable to this attack path.

As of today we consider this chip vulnerable to laser fault injection.
Despite the identified vulnerabilities, we think the ATECC508A circuit was
a smart choice to protect secrets and we want to remind it is a much safer
security solution than relying on microcontrollers non-volatile memory for
storing secrets. No agreement with the manufacturer is required to buy
and develop a product using this circuit. However, the security assurance
level of this solution is not as high as certified secure elements.
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