
Clement Lecigne <clem1@google.com, @_clem1>

Exploits of a TAG analyst chasing in the wild

mailto:clecigne@google.com

Whoami

Why this talk and what not to expect?

Security @ Google

What is TAG

Understand targeted threats. Build intelligence systems.

 ~30 people (US / Zurich)

Software Engineering, Reverse Engineering and Threat Intelligence

Large scale malware analysis, automation and intelligence databases

Few billion samples indexed the Google way

+------+------------+----------+---+
| Rank | Similarity | Label | Function |
+------+------------+----------+---+
| 1 | 100 | WANNACRY | 3e6de9e2baacf930949647c399818e7a2caea2626df6a468407854aaa515eed9#402560 |
| ... | ... | ... | |

| 12 | | WANNACRY | cfe24b052ca24f4d88fdb9378a9025e9cd391bfe0694d3d321edd5aecb643322#402560 |

| ... | ... | ... | |

| 20 | 81 | SWIFT | 766d7d591b9ec1204518723a1e5940fd6ac777f606ed64e731fd91b0b4c3d9fc#10004ba0 |

| ... | ... | ... | |

+------+------------+----------+---+

Maintain threat picture on the world’s targeted attackers
(including targeted disinfo)

Work with Google Defenders and
Products to protect Google and our users

40,000 warnings in 2019
 149 countries

https://blog.google/threat-analysis-group/identifying-vulnerabilities-and-protecting-you-phishing/

https://blog.google/threat-analysis-group/identifying-vulnerabilities-and-protecting-you-phishing/

Credential phishing
Spear phishing

Drive-by download
Man in the middle

Supply chain attacks
...

Exploits

Why?

https://securelist.com/new-flash-player-0-day-cve-2014-0515-used-in-watering-hole-attacks/59399/

https://www.fireeye.com/blog/threat-research/2014/02/operation-snowman-deputydog-actor-
compromises-us-veterans-of-foreign-wars-website.html

https://securelist.com/new-flash-player-0-day-cve-2014-0515-used-in-watering-hole-attacks/59399/
https://www.fireeye.com/blog/threat-research/2014/02/operation-snowman-deputydog-actor-compromises-us-veterans-of-foreign-wars-website.html
https://www.fireeye.com/blog/threat-research/2014/02/operation-snowman-deputydog-actor-compromises-us-veterans-of-foreign-wars-website.html

“Study public exploits and you’ll find 0-day”

Example #1 - 2014

rule HTML0day
{
 strings:
 $a01 = "S(0x00000000)"
 //$a02 = "function showexp"
 $a03 = "heapspray"
 $a04 = "var shellcode"
 $a05 = "S(0x12121202)"
 $a06 = "%u1414%u1414"
 $a07 = "%u9090%u9090"
 $a08 = "%u4141%u4141"
 $a09 = "\\u9090\\u9090"
 $a10 = "\\u4141\\u4141"
 $a11 = "exploit()"
 $a12 = "eval(helloWorld())"
 …
 $a113i = "var ga = new Array(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);"
 $a113j = "return DataView.prototype.getUint8.call(dv, 0, true);"
 $a113k = "read32(export_table + 20);"
 $z00 = "Gamers1023"
 $z02 = "MagicCookies|"
 ...
condition:
 new_file and (file_type contains "html" or any of ($js*)) and not file_type contains "DLL" and filesize < 200KB and positives < 20 and not tags contains "cve" and any
of ($a*) and not any of ($z*)
}

Learnt from previous exploits

Growing list of FPs to discard

Please meet CVE-2014-1815
0day?

CVE-2014-1815
1,922 bytes, 70 lines of code
Use-After-Free vulnerability
Need to trigger GC
Heapspray done from Flash
Similar to previous exploits

Example #2 - 2015

rule SwfExploit__HackingTeamStrings {
 meta:
 hash = "b738ce1efe164d35b04071239392c60c8751867255f79259db2ce4f970276bd6"
 desc = "Strings found in HackingTeam SWF exploits."
 strings:
 $ = "faile!"
 $ = "isWin"
 $ = "todo: unsupported x64 os in mac"
 $ = "todo: unsupported x86 os"
 $ = "bad MyClass2 allocation"
 $ = "ShellWin32"
 $ = "ShellWin64"
 $ = "ShellMac"
 ...
 $ = "CallVP"
 $ = "CallMP"
 $ = "mcOffs"
 $ = "in sandbox"
 $ = "can't find MZ from"
 $ = "can't find PE"
 $ = "MyClass2"
 $ = "MyClass1"
 $ = "CleanUp"
 condition:
 swf and 4 of them
}

<dc:date>Oct 22, 2014</dc:date>

Maybe you need a 3rd example?

Source: https://www.zdnet.fr/actualites/kaspersky-decele-une-faille-dans-silverlight-grace-a-un-piratage-39831230.htm

https://www.zdnet.fr/actualites/kaspersky-decele-une-faille-dans-silverlight-grace-a-un-piratage-39831230.htm

Lessons learned?

Fast forward to 2019… what not changed?

Mitigations everywhere and exploits are $$$
What does that mean for in the wild exploit?

Stories of Internet Explorer 0-days

CVE-2018-8653
32k bytes, ~500 lines of code
Use-After-Free vulnerability in CB
Need to trigger GC
No more heapspray
ROP
Use Enumerator()

CVE-2019-1367
32k bytes, ~500 lines of code
Use-After-Free vulnerability in CB
Need to trigger GC
No more heapspray
ROP
Use Enumerator()

Variant analysis
with project-zero

JSON.stringify({toJSON:F});

CVE-2019-1429

CVE-2020-0674
32k bytes, ~500 lines of code
Use-After-Free vulnerability in CB
Need to trigger GC
No more heapspray
ROP
Use Enumerator()

CVE-2020-0674CVE-2019-1367

EPM escape?

IE CVE-2020-0674

Lessons learned?

iOS exploit arsenal

Version Webkit Sandbox

10.X CVE-2018-4121 CVE-2017-13861

10.X CVE-2017-2505 Ioaccel2 (keenlab)

11.X webkit_commit_68323812747f5125a33c6220bd3d8183ecea5274 sbx_esc_fixed_11_4_1

11.X CVE-2018-4438 sbx_esc_fixed_11_4_1

11.X CVE-2018-4201 sbx_esc_fixed_11_4_1

12.X CVE-2018-4442 sbx escape 0day (2 bugs)

12.X Webkit_regexp (public 0day) CVE-2019-6225 (*) (used before public!)

Since we blogged?

New chains…
iOS 12.1.3 and 12.1.4
iOS 12.2 and 12.3.X

Implant

Use of another webkit N-days

Sandbox escape?

Why not iOS 13.X?

Lessons learned?

What do we do?

Reducing attack surface

https://www.chromium.org/Home/chromium-security/memory-safety

https://www.chromium.org/Home/chromium-security/memory-safety

Killing bugs, variant analysis
Bug collisions are real and attackers are also performing variant analysis

Reducing impact of “N-days”

Conclusion

