
Exploiting dummy codes in Elliptic Curve

Cryptography implementations

Andy Russon
andy.russon@orange.com

Orange

Abstract. With the growing interest of Elliptic Curve Cryptography,
in particular in the context of IoT devices, security about both passive
and active attacks are relevant. The use of dummy operations is one
countermeasure to protect an implementation against some passive side-
channel attacks. However, a specific case of fault attacks known as C safe-
errors can reveal those dummy operations, and as a consequence the
secret data related to it. Even if only a few bits are revealed, this can be
enough to break the public-key signature scheme ECDSA.

In this paper, we show how to carry out such an attack on several
implementations in libraries such as OpenSSL and its forks. We give an
example with the assembly optimized implementation of the P-256 curve,
and scripts to help reproduce the attack.

1 Introduction

Elliptic Curve Cryptography is an approach to public-key cryptography
based on the algebraic structure of elliptic curves over finite fields. One
of its advantages against RSA based cryptography is the small size of
its parameters, keys, and also signatures for the Elliptic Curve Digital
Signature Agreement (ECDSA). As such, it is convenient for improving
the efficiency of communications, and there has been a growing interest in
implementing it in low-cost embedding systems such as smart cards, but
can also be found everywhere, such as IoT devices, PCs, servers, as it is
used in mutual authentication and key derivation protocols such as TLS,
SSH, Bitcoin or Signal.

An elliptic curve can be considered, roughly, as a set of points that
have an addition operation with a null point like zero. A private key k
is an integer and its matching public key is the point kP = P + P +
. . . + P where P is a point of an elliptic curve. This latter operation,
called scalar multiplication, is critical and must be properly protected. If
the implementation of this operation is too naive, an attacker can find
the private key through passive attacks, consisting of obtaining traces
of execution by analyzing timing, power consumption, electromagnetic

2 Exploiting dummy codes in Elliptic Curve Cryptography . . .

emanations, etc. For example, if the implementation of the double-and-add

algorithm is not protected, a single trace of power consumption during its
execution can be used by the attacker to distinguish at each step if the
bit of the secret key is 0 (one point doubling) or 1 (one point doubling
and one point addition).

There are various countermeasures against these attacks. One of them
is to use an algorithm that executes the same operations for each bit of
the key, such as the double-and-add-always algorithm. It performs a point
doubling and a point addition for each secret bit by introducing a dummy
point addition when the key bit is 0 to achieve the regularity.

However, these routines are not necessarily protected against active
attacks, such as the use of fault injections to disrupt the execution of
a cryptographic calculation (with various means such as clock glitches,
voltage spikes, laser injection, electromagnetic pulses, etc). Fault attacks
can be exploited in several ways. Usually, the fault injection causes the
cryptographic algorithm attacked to output an erroneous result, which
is then used to deduce the secret key. There is another class of fault
attacks, called C safe-errors [16], consisting only of looking if the fault
injection had an effect or not on the output. Indeed, a fault injection is
induced on an alleged dummy operation, and the result is correct only if
the operation was actually dummy. Consequently, secret bits related to
this operation can be deduced. For instance, a fault on the point addition
in the double-and-add-always algorithm reveals that the secret bit is 0 if
the output is correct, or 1 otherwise.

In ECDSA the value k is an ephemeral key called nonce, and is
unique to each signature. It has been shown that partial knowledge of
this value for several signatures is sufficient to retrieve the private key of
the signer [12]. C safe-error attacks can be used to recover a few bits per
nonce to attack ECDSA. This has been done in [2] where it is applied on
the countermeasures of [3, 15] that both introduce dummy operations to
mask the difference between a point doubling and a point addition. In [1],
it is shown that such an attack can also be applied when the Montgomery

ladder algorithm [11] is used for scalar multiplication, since the last point
additions can become dummies when the least significant bits of k are 0s.

In this paper, we carry out C safe-error attacks on ECDSA signa-
tures, but applied to implementations using a dummy point addition
in windowing methods for the scalar multiplication. These can be seen
as a generalization of the double-and-add-always algorithm, and can be
found in several cryptographic libraries. In particular, we show that the
optimized implementation of the P-256 curve with part of the code written

A. Russon 3

in assembly is vulnerable. It is present in OpenSSL (since version 1.0.2),
and its forks LibreSSL and BoringSSL. For the latter, we also show that
the default algorithm used with other elliptic curves is vulnerable. As
a consequence, other libraries that rely on them for their cryptographic
operations are vulnerable, such as Fizz (Facebook), S2n (Amazon), and
Erlang/OTP. Given the nature of the algorithms and the model of the
attack, it is practical. A proof of concept with its source code is made
available.

The outline of the paper is as follows. In section 2 we present the
vulnerable implementations and the attack, followed by an example using
our tool. Then, section 3 describes the algorithms used in the vulnerable
implementations, the reasons the attack works, and characteristics of the
P-256 implementation we used to illustrate the attack. We finally propose
mitigations in section 4, and the appendices contain technical details,
including a proof of one of the proposed mitigations.

2 The attack in practice

In this section, we first give a list of vulnerable implementations in
cryptographic libraries, then the model and the steps of the attack. We end
with a presentation of how to use our tool that performs the mathematical
aspects of the attack, with practical results on OpenSSL.

2.1 Vulnerable implementations in libraries

Several libraries rely on the introduction of dummy point additions to
make the scalar multiplication constant-time and with a regular behavior.

This is the case of a specific implementation of the P-256 curve, with
part of the code written in assembly for software optimization [5]. It is
present in the following libraries:

— OpenSSL: introduced in version 1.0.2 for x86_64, and later for x86,
ARMv4, ARMv8, PPC64 and SPARCv9. It is the default implementation
for this curve as long as the option no-asm (that disables assembly
optimization) is not specified at compilation [9].

— BoringSSL: introduced in commit 1895493 (november 2015), but
only for x86_64 [7].

— LibreSSL: introduced in november 2016 in OpenBSD, but is not
present in the re-packaged version for portable use (as of version
3.0.2) [8].

4 Exploiting dummy codes in Elliptic Curve Cryptography . . .

Additionally, the default algorithm in BoringSSL uses dummy point
additions, and it concerns the curves P-384, P-521 (and P-224 depending
of the compilation options).

In the previously cited implementations the dummy point addition
is related to consecutive bits of the secret scalar, which is important in
the attack. There are other cases where the algorithm uses dummy point
additions, but the corresponding bits are not consecutive, and this would
require several fault injections per execution as was done in [2]. This is
outside the scope of this article.

We note that the current threat model of OpenSSL 1 does not include
protection against physical attacks, in particular physical fault injection.
Thus, attacks such as the one presented in this article are not considered
vulnerabilities for OpenSSL.

2.2 Model and steps of the attack

In order to carry out the attack, an attacker must be able to make
a fault on an instruction in a specifc set of potential dummy operations
during an ECDSA signature calculation. He must be able to repeat this
attack several times when a same private key is used. Finally, the result
values must be retrieved by the attacker.

The location of the fault is important, but does not need to be com-
pletely precise, since the potential dummy operations are composed of
many instructions that perform calculations on large integers. Moreover,
the exact nature of the fault is irrelevant, therefore any random transient
fault inducing a computational error will work.

The public key, signatures and signed messages are public, and we
assume these can be acquired by the attacker.

We give below the main steps of the attack:

1. Make a fault on one of the alleged dummy instructions, during the
generation of an ECDSA signature;

2. Collect the signature and the corresponding signed message, then
check it with the public key of the signer and keep it if it is valid,
to be used in step 4;

3. Repeat steps 1-2 until the number of valid signatures reaches a min-
imal value (a few dozens, and depends on the scalar multiplication
algorithm’s characteristic, see section 3);

1. https://www.openssl.org/policies/secpolicy.html

https://www.openssl.org/policies/secpolicy.html

A. Russon 5

4. Use our tool presented in 2.3 to attempt a recovery of the private
key from the valid signatures collected in step 2. If the private key
was not recovered, go to step 1 to add valid signatures.

As said above, it is important that the fault is effectively induced in
one of the targeted instructions that does not impact the computation.
A fault made on an instruction other than these can have an impact on
step 4 of the attack. Indeed, the algorithm used to discover the secret key
would fail with a wrong signature taken into account.

Example of scenario. A possible scenario for this attack would be a
device (IoT, smartphone, etc) that performs ECDSA signatures using the
optimized implementation of the P-256 curve on OpenSSL, with a private
key physically hard-coded. The targeted instructions for fault injection
are those that compute the x-coordinate of the output in the last point
addition performed by the scalar multiplication algorithm as is explained
in section 3, and in particular in 3.2 for this implementation.

2.3 Simulation of the attack and tools

We provide a Python script 2 that contains the mathematical tools to
perform the attack, and then we give an application to OpenSSL followed
by results.

Tools for the attack. The script ec.py is written in Python 3 and its
only requirement is to install the external dependency fpylll.

The main tool is a function to perform step 4 of the attack to re-
cover the private key. The command is findkey(curve, pubkey_point,

signatures, msb, l) that returns the value of the private key, or −1
otherwise. The arguments are:

— curve: predefined values are secp192r1, secp224r1, secp256r1,
secp384r1, and secp521r1. These objects are instances of a
Python class Curve implemented in the script in order to per-
form elliptic curve operations, and is necessary to check if one of
the candidates for the private key matches the public key. Other
elliptic curves can be used by giving their explicit parameters.

— pubkey_point: the public key point of the signer, given as two
integers representing its coordinates.

2. https://github.com/orangecertcc/ecdummy

https://github.com/orangecertcc/ecdummy

6 Exploiting dummy codes in Elliptic Curve Cryptography . . .

— signatures: list of valid signatures, where each signature is given
as three integers corresponding to the hash of the signed message,
and the two components of the signature.

— msb and l: a boolean and an integer whose values depend on the
characteristic of the scalar multiplication algorithm (to indicate
if the l most significant bits (msb=True) or l least significant bits
(msb=False) of the nonces used to generate the signatures in the
list are set to 0, see 3.1).

Finally, we also provide a function to check if a signature is valid, with
the command check_signature(curve, pubkey_point, signature).

Application to OpenSSL. With the scenario given in 2.2, the attacker
retrieves the public key point of the signer stored in the file publickey.pem,
and store it as the variable pubkey_point in listing 1.

1 text = open (’publickey .pem ’, ’r’). read (). split (’\n’)

2 pubkey_bytes = base64 . b64decode (text [1] + text [2]) [27:]

3 pubkey_point = int. from_bytes (pubkey_bytes [:32] , ’big ’), int.

from_bytes (pubkey_bytes [32:] , ’big ’)

Listing 1. Converting a public key of the curve P-256 as two integers from a PEM
file.

Then, for each signature generation the attacker makes a fault during
the execution in one of the determined instructions, and retrieves the
signature and the signed message in the files sig.bin and message.txt.
The signature is checked in listing 2, and the valid signatures are kept in
the list valid_signatures.

1 m = int. from_bytes (sha256 (open (’message .txt ’, ’rb ’). read ()). digest ()

, ’big ’)

2 raw_sig = open (’sig.bin ’, ’rb ’). read ()

3 rlen = raw [3]

4 r = int. from_bytes (raw [4:4+ rlen], ’big ’)

5 s = int. from_bytes (raw [6+ rlen :], ’big ’)

6 valid = check_signatures (secp256r1 , pubkey_point , (m,r,s))

7 if valid :

8 valid_signatures . append ((m,r,s))

Listing 2. Converting the signature and signed message as integers, and verification
with the public key point.

Finally, in listing 3, an attempt to recover the private key can be
made. According to the implementation characteristics given in 3.2 and to
table 2, the parameters msb and l in the function findkey must be set to
True and 5, and the number of valid signatures should be greater than 52.

A. Russon 7

1 key = findkey (secp256r1 , pubkey_point , valid_signatures , True , 5)

2 if key != -1:

3 print (’The private key is {:064 x}’. format (key))

Listing 3. Attempt to find the private key from a list of valid signatures.

Results on OpenSSL. The previous example has been tested. First, a
script openssl_p256_attack_simulation.py is used to run an OpenSSL
binary to simulate the fault injection during the execution. This is done
by modifying systematically the output of one of the instructions that
could be dummy in the last point addition in the code of OpenSSL. Then,
a script p256_privatekey_recovery.py uses the tools of ec.py to verify
the signatures and recover the private key.

We give in listing 4 the output of one simulation, where the private
key was recovered from 54 valid signatures.

1 $./ openssl_p256_attack_simulation .py ./ openssl_altered privkey .pem

SSTIC 2200

2 Signatures and messages will be stored in the directory SSTIC

3 Generating 2200 signatures with fault in last point addition ...

4 ... done

5 $

6 $./ p256_privatekey_recovery .py publickey .pem SSTIC

7 Nb valid signatures : 1 / 51

8 Nb valid signatures : 2 / 70

9 Nb valid signatures : 3 / 91

10 (...)

11 Nb valid signatures : 51 / 1836

12 Nb valid signatures : 52 / 1838

13 Recovering the key , attempt 1 with 52 signatures ...

14 Nb valid signatures : 53 / 1880

15 Recovering the key , attempt 2 with 53 signatures ...

16 Nb valid signatures : 54 / 1885

17 Recovering the key , attempt 3 with 54 signatures ...

18 SUCCESS !

19 The private key is:

ba2c97646898ee0cf8ab9673eb2656de76c2ef674454b3609323f767f9c8759d

20 Nb signatures valid : 54

21 Nb signatures total : 1885

Listing 4. Output of our running example on the altered OpenSSL binary.

To give an idea of the number of valid signatures needed in average,
and the number of signature generations attacked, we ran 100 tests and
give the results in table 1. In the majority of cases, the last point addition
is not dummy, so the number of signature generations to attack is far
greater.

8 Exploiting dummy codes in Elliptic Curve Cryptography . . .

min average max

Number of valid signatures 52 55 58
Number of signatures attacked 1274 1764 2382

Table 1. Number of valid and total number of signatures attacked to recover the
private key out of 100 tests on the assembly optimized implementation of the
P-256 curve in OpenSSL.

3 Technical details

In this section, we first give a general description of the algorithms
used in the vulnerable implementations, and the reasons why the attack
works. Then, we present the characteristics of the assembly optimized
implementation of the P-256 curve based on the code from OpenSSL.

3.1 Why the attack works

We give a description of the windowing methods for scalar multiplica-
tion, where the fault has to be injected during the execution, and why the
attack works.

Scalar multiplication with windowing methods. Windowing meth-
ods process several bits of the scalar at a time. Those are used when
storage is available in order to have precomputed values and decrease the
number of point additions. They consist of three phases:

1. Precomputation: precomputed points are stored in a table (this
phase can be offline);

2. Encoding: the scalar k is split into windows d0, d1, . . . , where each
di comes from several bits of the scalar;

3. Evaluation: the core of the computation of kP : at each iteration
of the loop of the algorithm, a point addition with a precomputed
point that depends on a value di occurs.

The important parts for the attack are the encoding phase, and the
addition with the precomputed point in the evaluation phase. We target
algorithms that meet the following two conditions:

— the values di are computed from consecutive bits of the scalar and
can be equal to zero;

— the point addition in the loop is dummy when either of the points
is the null point O of the curve.

A. Russon 9

The last case is the consequence that commonly used point addition
formulas do not handle the null point O (they are said to be incomplete).
Therefore a dummy point addition is introduced instead, as in the double-

and-add-always algorithm. This occurs when a value di is equal to zero,
hence the first condition.

We give in algorithm 1 a 2w-ary windowing method [4, section 2.2] as
an example where each di is composed of w consecutive bits of the scalar.

Require: k = (kt−1, . . . , k0), P , w
Ensure: kP

Precomputation phase
1: for i← 0 to 2w − 1 do
2: Tab[i]← iP

Encoding phase
3: m← ⌈t/w⌉
4: for i← 0 to m− 1 do
5: di ← (kiw+(w−1), . . . , kiw+1, kiw)2

Evaluation phase
6: R← Tab[dm−1]
7: for i← m− 2 down to 0 do
8: R← 2wR
9: R← R + Tab[di]

return R

Algorithm 1. 2w-ary windowing scalar multiplication algorithm.

Target of the fault injection. Our C safe-error attack consists of
targeting the last point addition that occurs in the evaluation phase of
the algorithm. It is important to know what are the corresponding bits
of the scalar k, which are the number l of bits, and if they are related
to the most or to the least significant bits. For instance, in algorithm 1,
the last addition corresponds to the w least significant bits of the scalar.
These two characteristics are needed for step 4 of the attack described in
section 2.

We note in particular that the instructions to target in the last point
addition should be related to the calculation of the x-coordinate of the
output, since only this coordinate is used for the generation of an ECDSA
signature (see appendix A). Then, a valid signature reveals that it was in
fact a dummy point addition.

10 Exploiting dummy codes in Elliptic Curve Cryptography . . .

Why it reveals knowledge of the nonce. To understand what is
obtained about the nonce from a valid signature, we have to look back at
the algorithm in the last iteration of the loop in the evaluation phase. The
dummy point addition means one of the entries is O. The active point R
depends on all the windows except the last one, and can be O if all of
them are null. On the other hand, the precomputed point depends only
on one window, therefore it is much more likely that O is this point, from
which we deduce the value of the l bits of the nonce corresponding to this
window.

Keeping only the valid signatures and the corresponding messages,
then we can apply the technique described in [12] and given in appendix C
to recover the private key since we know that the valid signatures give us
a partial knowledge of the nonces.

Table 2 gives an estimate of the minimum number of valid signatures
needed based on experiments for several elliptic curve sizes. The number
of total signatures can be estimated by multiplying with 2l.

Elliptic curve size 224 bits 256 bits 384 bits

l 4 5 6 7 4 5 6 7 5 6 7
Minium number

56 45 37 31 65 52 43 36 91 65 56
of valid signatures

Table 2. Estimation of the minimum number of valid signatures needed where l
is the number of bits known from the nonce in each signature.

3.2 The assembly optimized implementation of the P-256

curve in OpenSSL

We present the scalar multiplication algorithm and how the point
addition is handled in this implementation, to show how it relates to the
description in 3.1.

Scalar multiplication algorithm. The scalar multiplication used in
ECDSA signature generation for this implementation is a variant of
the windowing method presented in 3.1. We give in algorithms 2 and 3
respectively the encoding of each window, and the scalar multiplication.
The important elements to notice for the attack is that the window that
corresponds to the last addition is null only if the 5 most significant bits

A. Russon 11

of the scalar are 0s. Therefore, the values msb and l in our tool findkey

must be set to True and 5.

Require: d with 0 ≤ d < 28

Ensure: encoding of d
1: if d ≥ 27 then
2: d← 28 − 1− d
3: s← 1
4: else
5: s← 0

return s, ⌊(d + 1)/2⌋

Algorithm 2. Window encoding for scalar multiplication algorithm in P-256
implementation in OpenSSL.

Require: k = (k255, . . . , k0)2, P
Ensure: kG

Precomputation phase (offline)
1: for i← 0 to 36 do
2: for j ← 0 to 64 do
3: Tab[i][j] = j27iP

Encoding phase
4: for i← 0 to 36 do
5: si, di ← Encoding(k7i+6, . . . , k7i, k7i−1)

Evaluation phase
6: R← (−1)s0 Tab[0][d0]
7: for i← 1 to 36 do
8: R← R + (−1)si Tab[i][di]

return R

Algorithm 3. Single scalar multiplication with the generator in P-256 implemen-
tation in OpenSSL.

To provide the rationale, we first notice that the processing order of
the windows makes the last addition related to the most significant bits.
Second, we give some remarks about the encoding phase:

— Each window is computed from 8 consecutive bits of the scalar
(including a common bit with a previous window, or bit 0 for the
first window);

— The window is null in two cases: when the 8 selected bits are all
0s or all 1s. Indeed, in algorithm 2 if d ≥ 27, then the encoding
will be ⌊(28 − d)/2⌋ which is zero only if d = 255 = (11111111)2,

12 Exploiting dummy codes in Elliptic Curve Cryptography . . .

and if d < 27, the encoding is ⌊(d + 1)/2⌋ which is zero only if
d = (00000000)2.

The last window is composed of only 5 bits of the scalar and is padded
with 0 bits. According to the previous remark, it is encoded as zero only
if those 5 bits are 0s.

Then, this implementation meets the first condition given in 3.1. In
particular, we have l = 5, and a 256-bit curve.

Point addition. The point addition used in line 8 of algorithm 3 is
implemented in the function ecp_nistz256_point_add_affine. We give
in algorithm 4 the arithmetic instructions of the formulas and in listing 5
part of the x86_64 assembly code (instructions are similar for other
architectures).

Require: P1 = (x1, y1, z1), P2 = (x2, y2),
P1 6= O, P2 6= O, P1 6= P2

Ensure: P1 + P2 = (x3, y3, z3)
1: t0 ← z2

1

2: t1 ← x2 · t0

3: t2 ← t1 − x1

4: t3 ← t0 · z1

5: z3 ← t2 · z1

6: t3 ← t3 · y2

7: t4 ← t3 − y1

8: t5 ← t2

2

9: t6 ← t2

4

10: t7 ← t5 · t2

11: t1 ← x1 · t5

12: t5 ← 2 · t1

13: x3 ← t6 − t5

14: x3 ← x3 − t7

15: t2 ← t1 − x3

16: t3 ← y1 · t7

17: t2 ← t2 · t4

18: y3 ← t2 − t3

Algorithm 4. Arithmetic instructions of point addition, in the field of the curve,
in line 8 of algorithm 3 (highlights: instructions to target for fault injection in the
last addition).

The entries are two points P1 and P2, and those formulas are not
compatible with the point O. Two values are created to serve as booleans
to indicate if one of the two points is O (from line 5 to line 17 of listing 5).
The instructions of the point addition formulas are executed regardless of
these values. Then, if P1 = O (respectively P2 = O), the coordinates of the
resulting point are replaced with those of P2 (resp. P1). As a consequence
the previous calculations are ignored.

Therefore, if one of the inputs is O, the point addition is dummy.
The second condition given in 3.1 is met, and makes the implementation
vulnerable to the attack.

A. Russon 13

1 leaq 64 -0(% rsi) ,%rsi

2 leaq 32(% rsp) ,%rdi

3 call __ecp_nistz256_sqr_montq

4

5 pcmpeqq %xmm4 ,% xmm5

6 pshufd $0xb1 ,% xmm3 ,% xmm4

7 movq 0(% rbx) ,%rax

8 movq %r12 ,% r9

9 por %xmm3 ,% xmm4

10 pshufd $0 ,% xmm5 ,% xmm5

11 pshufd $0x1e ,% xmm4 ,% xmm3

12 movq %r13 ,% r10

13 por %xmm3 ,% xmm4

14 pxor %xmm3 ,% xmm3

15 movq %r14 ,% r11

16 pcmpeqd %xmm3 ,% xmm4

17 pshufd $0 ,% xmm4 ,% xmm4

18

19 leaq 32 -0(% rsp) ,%rsi

20 movq %r15 ,% r12

21 leaq 0(% rsp) ,%rdi

22 call __ecp_nistz256_mul_montq

23 leaq 320(% rsp) ,%rbx

24 leaq 64(% rsp) ,%rdi

25 call __ecp_nistz256_sub_fromq

Listing 5. Excerpt from the x86_64 assembly code generated by
the perl script https://github.com/openssl/openssl/blob/master/crypto/ec/

asm/ecp_nistz256-x86_64.pl in OpenSSL 1.1.1d (first three instructions of
algorithm 4).

4 Proposal of mitigations

We propose in this section mitigations against the attack. They consist
mainly of using a different encoding of the scalar to avoid the introduction
of dummy point additions.

The first assumption made in 3.1 is the use of an encoding that can
generate null windows so the point O can appear in the addition. Encodings
that avoid null windows are given in [6, 10, 13], but we warn the reader
that for some of those propositions, the two points in the last addition
may be equal in rare cases and could be incompatible with the formulas.
The use of complete formulas from [14] for the last addition only can take
care of it.

A particular case is the odd-signed-comb method implemented in
Mbed TLS (as of version 2.16.5), based on a modification of [6]. It avoids
all special cases of the point addition formulas if the curve cardinality q
satisfies q ≡ 1 mod 4 (contrary to what is claimed in the source code of this

https://github.com/openssl/openssl/blob/master/crypto/ec/asm/ecp_nistz256-x86_64.pl
https://github.com/openssl/openssl/blob/master/crypto/ec/asm/ecp_nistz256-x86_64.pl

14 Exploiting dummy codes in Elliptic Curve Cryptography . . .

library, the doubling case is possible for curves satisfying q ≡ 3 mod 4),
and we give a proof of it in appendix D.

This algorithm is well suited when storage of precomputed values is
possible, and could replace the scalar multiplication algorithms used for
key and signature generation in OpenSSL and its forks for the curves
P-224, P-256 and P-521. It retains a similar efficiency, and without the
need of bitwise masking technique or branch conditions to manage the
special cases of the point addition formulas.

Remark. The second assumption in 3.1 is the use of point addition
formulas incompatible with the point O. It might be tempting to use
complete formulas [14] to managed this special case. However, it can be
shown that there are still dummy instructions when one of the inputs
is O.

5 Conclusion

In this paper, we have shown that implementations of Elliptic Curve
Cryptography in some libraries such as OpenSSL, BoringSSL or LibreSSSL,
are vulnerable to C safe-error attacks. As a result, several bits of secret
nonces during ECDSA signature generations can be obtained, leading to
the recovery of the private key.

We proposed mitigations that can prevent this attack while retaining
other characteristics of the original algorithms and formulas, such as
efficiency and protection against passive attacks.

A ECDSA

In this appendix, we recall briefly how a signature is generated in
ECDSA. Given a base point G of prime order q on an elliptic curve, a
private key α in [1, q − 1] and a hashing function H (which outputs a t-bit
integer), signing a message m is done by generating a nonce k ∈ [1, q − 1]
and computing

{

r = x(kG) mod q,
s = k−1(H(m) + αr) mod q.

The pair (r, s) forms the signature of the message m. The verification
process consists in computing the point P = H(m)s−1G + rs−1Q where
Q = αG is the public key of the signer. Then if x(P) = r mod q, the
signature is valid.

A. Russon 15

B Mixed point addition

We give more details on the point addition formulas notably used in
the implementation given in section 3.2.

B.1 Definition

A mixed point addition is when P1 and P2 have a different representa-
tion. We present the case when P1 is in projective Jacobian coordinates,
represented by x1, y1 and z1 whose affine coordinates are x1/z1

2 and
y1/z1

3, and the point P2 by x2 and y2 which are its affine coordinates.

The resulting point of the addition is given in Jacobian coordinates by
the formulas

x3 = (y2z3
1 − y1)2 − (x2z2

1 − x1)2(x2z2
1 + x1),

y3 = (y2z3
1 − y1)(x1(x2z2

1 − x1)2 − x3) − y1(x2z2
1 − x1)2,

z3 = (x2z2
1 − x1)z1.

Those formulas are not compatible in these situations:

— P1 = P2: doubling formulas must be used instead;
— P1 or P2 is the point O, and in this case the shortcut P1 + O = P1

is used.

B.2 Handling of the special cases by OpenSSL

In the specific implementation of the curve P-256 described in sec-
tion 3.2 used in particular for signature generation, the special cases are
managed as follows:

— P1 = P2: this case is not managed, but it cannot happen;
— P1 = O: in this case O is represented by having z1 = 0, and a

bitwise masking technique replaces the resulting point with P2;
— P2 = O: in this case O is represented by having x2 = y2 = 0, and

a bitwise masking technique replaces the resulting point with P1.

C Lattice techniques

In this appendix, we explain the technique in [12] that recovers the
private key from ECDSA signatures with partial knowledge of the nonces.

16 Exploiting dummy codes in Elliptic Curve Cryptography . . .

C.1 Description

We note ⌊·⌋q the reduction modulo q in the range [0, q − 1] and | · |q
the absolute value of the reduction modulo q in the range [−q/2, q/2].

Suppose we have the following system of linear equations in variables
α, xi for 1 ≤ i ≤ n:

aixi + biα ≡ ci mod q.

With n equations and n + 1 unknowns, we cannot solve this system.
Now suppose we know the li most significant bits of xi, meaning we
know x′

i such that |xi − x′

i| < 2t−li and by centering around 0 we have
|xi − x′

i − 2t−li−1| < 2t−li−1.

We pose ui = ⌊−a−1
i bi⌋q and vi = ⌊x′

i − a−1
i ci⌋q + 2t−li−1. Then we

have the inequality

|αui − vi|q < 2t−li−1,

since ⌊αui − vi⌋q = ⌊xi − x′

i − 2t−li−1⌋q. It means that some multiple of
ui is very close to vi modulo q. This can be transformed as an instance
of a shortest vector problem by constructing a lattice generated by this
integer matrix:

L =

2l1+1q
2l2+1q

. . .

2ln+1q
2l1+1u1 2l2+1u2 · · · 2ln+1un 1 0
2l1+1v1 2l2+1v2 · · · 2ln+1vn 0 q

.

Given the two vectors

U = (2l1+1u1, . . . , 2ln+1un, 1, 0)
V = (2l1+1v1, . . . , 2ln+1vn, 0, q),

then there exist integers λi such that the vector αU − V +
∑n

i=1 λiLi

(where Li is the i-th line of the matrix L) is a short vector of the lattice.
By applying a reduction algorithm such as LLL or BKZ, we can hope one
of the vectors of the reduced basis is this short vector which contains the
secret value α in its penultimate coordinate by construction.

In the case we know the least significant bits of xi noted x′

i, we have
ui = ⌊−(ai2

li)−1bi⌋q and vi = ⌊x′

i2
−li − (ai2

li)−1ci⌋q + q/2li+1.

A. Russon 17

C.2 Application to ECDSA

Given n ECDSA signatures (ri, si) with their corresponding messages
mi, if the l most significant bits of the nonces are 0s, the values ui and vi

are
ui = ⌊ris

−1
i ⌋q

vi = ⌊−s−1
i mi⌋q + 2t−l−1,

and if the l least significant bits of the nonces are 0s, the values are

ui = ⌊−(si2
l)−1ri⌋q

vi = ⌊(si2
l)−1mi⌋q + q/2l+1.

D Odd-signed comb scalar multiplication algorithm

In this appendix, we give a description of the encoding and scalar
multiplication used for short Weierstrass curves in Mbed TLS, and a proof
that all exceptional cases of the point addition formulas cannot happen
and do not require a special treatment.

D.1 Odd-signed encoding

For a window size w, we note m = ⌈t/w⌉ and for a w-bit integer
d = (dw−1, . . . , d0)2 we note [d] = d0 + d12m + . . . + dw−12m(w−1). The
scalar k =

∑t−1
i=0 ki2

i can be rewritten as

k =
m−1
∑

i=0

[di]2
i,

where di = (ki+m(w−1), ki+m(w−2), . . . , ki+m, ki)2 is composed of w bits of
k all separated from a same distance m and [di] is called a comb.

We suppose the scalar k is odd, then [d0] is odd. We apply the following
algorithm to encode the other windows as odd values. Suppose every comb
[dj] is odd for 0 ≤ j ≤ i − 1. If the comb [di] is even, then we add the bits
representing [di−1] to the ones representing [di] bit-by-bit and for every
w bits of the comb, we save the eventual carry, and [di−1] is changed to
−[di−1]. The carry is then added to the next comb. The operation means
that [di−1] + 2[di] is changed to −[di−1] + 2([di−1] + [di]) in the expression
of k, which does not change its value.

The carry propagates until it reaches a new comb [dm] that is positive.
Denoting [d′

i] the value of the new comb windows and si a bit indicator for

18 Exploiting dummy codes in Elliptic Curve Cryptography . . .

the sign (0 for positive and 1 for negative), the scalar is then encoded as

k =
m

∑

i=0

(−1)si [d′

i]2
i,

where d′

i is odd for all 0 ≤ i ≤ m.

D.2 Comb method with odd-signed representation

The scalar multiplication is presented in algorithm 5. One drawback is
that it works only for an odd scalar k, but if k is even then q − k is odd,
so this case can still be handled by carefully implementing a branchless
selection between k and q − k.

Require: k = (kt−1, . . . , k0)2, P , w
Ensure: kP

Precomputation phase
1: for i← 0 to 2w−1 − 1 do
2: Tab[i]← [2i + 1]P

Encoding phase
3: if k is even then
4: k′ ← q − k
5: else
6: k′ ← k
7: (s0, d′

0), . . . , (sm, d′

m)← Encoding(k′)

Evaluation phase
8: R← Tab[(d′

m − 1)/2]
9: for i← m− 1 down to 0 do

10: R← 2R
11: R← R + (−1)si Tab[(d′

i − 1)/2]

12: if k is even then
13: y(R)← −y(R)

return R

Algorithm 5. Single scalar multiplication with odd-signed comb method.

D.3 Proof that there is no exception

We suppose the formulas for point addition are the same as those in
appendix B and we prove here that the special cases can never happen
when the curve order q satisfies q ≡ 1 mod 4 and m ≥ 2w + 5. This last
condition is satisfied for 256-bit curves when w ≤ 10.

A. Russon 19

For ease of notation, we note Ci = (−1)si [d′

i] and k = M0 + 2jM1

where M0 =
∑j−1

i=0 Ci2
i and M1 =

∑m
i=j Ci2

i−j . Also, we note the two
bounds that will be useful in the proof:

1 ≤ |Ci| < 2(w−1)m+1, and 2(m−1)w < q < 2mw.

Apparition of the null point in a loop. Suppose that j ≥ 1 and the
result of the addition in the loop is the point O, meaning the relation
R = −CjP , from which we get the relation

M1 ≡ 0 mod q,

and we get the bound |M1| < 2mw−j+2. If j ≥ w + 2, the bound becomes
|M1| < q, so M1 = 0 which is impossible since M1 is odd. Now we suppose
j < w + 2. We have k ≡ M0 mod q and the bound |M0| < 2(w−1)m+w+3.
Since we supposed m ≥ 2w + 5, we have |M0| < q. Then either k = M0

which implies M1 = 0, or k = M0 + q which implies q is even, both are
impossible.

Then the result of the addition is proved to never be the null point O,
except in the last loop which happens when the scalar is q. In this case,
the formulas compute a correct representation of this point in Jacobian
coordinates.

Doubling case in the last iteration of the loop. Before the addition
in the last loop, we have R =

∑m
i=1 Ci2

iP and cannot be the null point O
as proved above. Then the only exception would be if we have R = C0P ,
it means that k ≡ 2C0 mod q.

Since m is large enough, we have |2C0| < q, then either k = 2C0 or
k = q + 2C0. The first case is impossible because k is odd. In the second
case, C0 is negative, it means C1 is even according to the encoding. So
the second least significant bit of k is 0. Then k ≡ 1 mod 4 from which we
get that q ≡ 3 mod 4.

If a curve order satisfies this condition, it is possible that there is a
scalar that produces the doubling exception in the last loop. In particular
it happens for curve P-384 in the implementation of this algorithm in
Mbed TLS. But this is not possible when q ≡ 1 mod 4, which is the case
for curves P-224, P-256 and P-521.

Doubling case in a previous iteration of the loop. Suppose that
for j ≥ 1, the doubling case happens in the loop so we have the equality

20 Exploiting dummy codes in Elliptic Curve Cryptography . . .

R = CjP , from which we get the relation

M1 ≡ 2Cj mod q.

We get a large bound |M1 −2Cj | < 2mw−j+2 using the bounds on Ci and q.
If j ≥ w+2, then we have |M1−2Cj | < q, so M1 = 2Cj which is impossible
due to parity. Now we suppose j < w+2. We have k ≡ M0 +2j+1Cj mod q,
and the bound |M0 + 2j+1Cj | < 2(w−1)m+w+5. Since we supposed m ≥
2w + 5, we have |M0 + 2j+1Cj | < q. Then either k = M0 + 2j+1Cj which
implies the impossible equality M1 = 2Cj , or k = M0 + 2j+1Cj + q which
implies that q is even, but q is odd.

Other remarks. The doubling in line 10 of algorithm 5 can be removed
at the cost of having a precomputed table for each comb as has been done
in algorithm 3 for the implementation of curve P-256 in OpenSSL.

The algorithm is initialized by taking a precomputed point in the table
which cannot be O, then its coordinates can be easily randomized to add
protection against Differential Power Analysis.

References

1. Jeremy Dubeuf, David Hely, and Vincent Beroulle. Enhanced elliptic curve scalar
multiplication secure against side channel attacks and safe errors. In Sylvain Guilley,
editor, Constructive Side-Channel Analysis and Secure Design, pages 65–82, Cham,
2017. Springer International Publishing.

2. Pierre-Alain Fouque, Sylvain Guilley, Cédric Murdica, and David Naccache. Safe-

Errors on SPA Protected Implementations with the Atomicity Technique, pages
479–493. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.

3. Christophe Giraud and Vincent Verneuil. Atomicity Improvement for Elliptic Curve
Scalar Multiplication. In D. Gollmann and J.-L. Lanet, editors, CARDIS 2010,
volume 6035 of LNCS, pages 80–101, Passau, Germany, April 2010. Sprinter.

4. Daniel M. Gordon. A survey of fast exponentiation methods. J. Algorithms,
27(1):129–146, April 1998.

5. Shay Gueron and Vlad Krasnov. Fast prime field elliptic-curve cryptography with
256-bit primes. Journal of Cryptographic Engineering, 5(2):141–151, Jun 2015.

6. Mustapha Hedabou, Pierre Pinel, and Lucien Bénéteau. A comb method to render
ECC resistant against side channel attacks. Cryptology ePrint Archive, Report
2004/342, 2004. https://eprint.iacr.org/2004/342.

7. P-256 implementation in BoringSSL. https://boringssl.googlesource.com/

boringssl/+/refs/heads/master/crypto/fipsmodule/ec/p256-x86_64.c. Ac-
cessed: 2020-05-01.

8. P-256 implementation in LibreSSL. https://github.com/libressl-portable/

openbsd/blob/master/src/lib/libcrypto/ec/ecp_nistz256.c. Accessed: 2020-
05-01.

https://eprint.iacr.org/2004/342
https://boringssl.googlesource.com/boringssl/+/refs/heads/master/crypto/fipsmodule/ec/p256-x86_64.c
https://boringssl.googlesource.com/boringssl/+/refs/heads/master/crypto/fipsmodule/ec/p256-x86_64.c
https://github.com/libressl-portable/openbsd/blob/master/src/lib/libcrypto/ec/ecp_nistz256.c
https://github.com/libressl-portable/openbsd/blob/master/src/lib/libcrypto/ec/ecp_nistz256.c

A. Russon 21

9. P-256 implementation in OpenSSL. https://github.com/openssl/openssl/blob/

master/crypto/ec/ecp_nistz256.c. Accessed: 2020-05-01.

10. Bodo Möller. Securing elliptic curve point multiplication against side-channel
attacks. In George I. Davida and Yair Frankel, editors, Information Security, pages
324–334, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

11. Peter L. Montgomery. Speeding the Pollard and elliptic curve methods of factoriza-
tion. Mathematics of Computation, 48(177):243–264, 1987.

12. Phong Q. Nguyen and Igor E. Shparlinski. The insecurity of the Elliptic Curve
Digital Signature Algorithm with partially known nonces. Designs, Codes and

Cryptography, 30(2):201–217, Sep 2003.

13. Katsuyuki Okeya and Tsuyoshi Takagi. The width-w NAF method provides small
memory and fast elliptic scalar multiplications secure against side channel attacks.
In Marc Joye, editor, Topics in Cryptology — CT-RSA 2003, pages 328–343, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg.

14. Joost Renes, Craig Costello, and Lejla Batina. Complete addition formulas for
prime order elliptic curves. In Marc Fischlin and Jean-Sébastien Coron, editors,
Advances in Cryptology – EUROCRYPT 2016, pages 403–428, Berlin, Heidelberg,
2016. Springer Berlin Heidelberg.

15. Franck Rondepierre. Revisiting atomic patterns for scalar multiplications on elliptic
curves. In Aurélien Francillon and Pankaj Rohatgi, editors, Smart Card Research

and Advanced Applications, pages 171–186, Cham, 2014. Springer International
Publishing.

16. Yen Sung-Ming, Seungjoo Kim, Seongan Lim, and Sangjae Moon. A countermeasure
against one physical cryptanalysis may benefit another attack. In Kwangjo Kim,
editor, Information Security and Cryptology — ICISC 2001, pages 414–427, Berlin,
Heidelberg, 2002. Springer Berlin Heidelberg.

https://github.com/openssl/openssl/blob/master/crypto/ec/ecp_nistz256.c
https://github.com/openssl/openssl/blob/master/crypto/ec/ecp_nistz256.c

	Exploiting dummy codes in Elliptic Curve Cryptography implementations
	A. Russon

