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About me

PhD thesis on elliptic curves
Orange, and Université de Rennes 1
Risk assessment and audit
Interest: challenges (root-me, CryptoHack), korean movies, science-fiction
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Introduction

About Elliptic Curve Cryptography:

Public-key cryptography with small parameters, keys, signatures, etc
Parameter size

ECC RSA

128-bit security

ECC RSA

256-bit security

Protocols: TLS 1.3, SSH, Bitcoin, Signal, etc
Servers, smart cards, IoT devices, etc
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Introduction

Hard to implement secure and efficient cryptography.

Depends on threat model (physical access to the device, etc)
One protection can lead to a vulnerability
Passive attacks: timing, power analysis, etc

Active attacks: differential fault analysis, C safe-errors

C safe-error attacks against protected implementations to attack ECDSA1.
1Fouque et al., “Safe-Errors on SPA Protected Implementations with the Atomicity Technique”;

Dubeuf, Hely, and Beroulle, “Enhanced Elliptic Curve Scalar Multiplication Secure Against Side
Channel Attacks and Safe Errors.”
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In this presentation

We extend the previous results, and show that a C safe-error attack is also possible on
these implementations:

Assembly optimized implementation of P-256:
OpenSSL since version 1.0.2
BoringSSL
LibreSSL/OpenBSD

P-224, P-384 and P-521 in BoringSSL
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Plan

1 Why dummy codes in ECC?

2 Presentation of the attack

3 Why it works

4 Mitigations and conclusion
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Operations on elliptic curves

Basic operations:
Addition: P + Q
Doubling: P + P = 2P
P +O = O + P = P
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Operations on elliptic curves

P
Q

P + Q

2P

E : y2 = x3 − 3x + 137 mod 251

O Basic operations:
Addition: P + Q
Doubling: P + P = 2P
P +O = O + P = P

Scalar multiplication:

kP = P + · · ·+ P

Discrete logarithm problem: hard to
find k from P and kP
k is often secret (private key or nonce)
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Windowing scalar multiplication

Available operations: point addition (A), point doubling (D)
For efficiency: split k in groups of consecutive bits (windows)

Example: k = 232 = (11 101 000)2

11 3P

= O

11 000 23 · 3P = 24P D D D
11 101 24P + 5P = 29P A
11 101 000 23 · 29P = 232P D D D
11 101 000 232P = 232P

From power consumption, attacker
remarks the missing addition and
learns that:

k = ∗ ∗ ∗ ∗ ∗ 000

Solution: perform a dummy point
addition:

D D D A D D D A
Consequence: same sequence of
operations for all possible secret k
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Principle of C safe-error

Dummy or not dummy?
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Number ℓ of bits of the last window in the targeted implementations:

Assembly optimized implementation of P-256: 5 most significant bits
BoringSSL (P-224, P-384, P-521): 5 least significant bits
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Main steps of the attack

Objective: retrieve an ECDSA private key

E

LLL

valid signatures

private key

Prerequisite:
Physical access to the device
Can inject a fault on potential dummy addition
Acquire public data (public key, signatures, messages)

Steps:

1 Make a fault in last point addition of ECDSA signature
calculation (random computational error is sufficient)

2 Keep the signature only if valid
3 Repeat the above steps
4 Use our tool2 to recover the private key from valid signatures.

2https://github.com/orangecertcc/ecdummy (MIT license)

https://github.com/orangecertcc/ecdummy
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Performance

Minimum number of valid signatures to recover the private key:

Number of bits ℓ of last window 4 5 6 7

224-bit 56 45 37 31
Elliptic curve size 256-bit 65 52 43 36

384-bit 91 65 56

Average of one valid signature out of 2ℓ signatures attacked

Example for curve P-256 in OpenSSL (ℓ = 5) out of 100 tests on average

54-55 valid signatures
1764 signatures attacked
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Tools for the attack

Tools for the attack in script ec.py:

check_signature(curve, pubkey_point, signature)
findkey(curve, pubkey_point, valid_signatures, msb, l)

l: number of bits of last window
msb: last window corresponds to most or least significant bits
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Demonstration of the attack

Target: assembly optimized implementation of P-256 in OpenSSL 1.1.1g

Code modified to simulate the fault

for (i = 1; i < 37; i++) {
//(...)
if (i == 36) {

ecp_nistz256_point_add_affine_faulty(&p.p, &p.p, &t.a);
}
else {

ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
}

}

Last window: 5 most significant bits
The tool will be called as

findkey(secp256r1, pubkey_point, valid_signatures, True, 5)

ecp_nistz256_sqr_mont(Z1sqr, in1_z);
Z1sqr[0] ^= 123456789; // "random" fault
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ECDSA

Given a private key d in [1, q− 1], the process of signing a file is:

m← hash of the file
k← random secret nonce in [1, q− 1]

signature:
{

r =

x(kP)

s =

(dr + m)/k

3-> d can be recovered from partial knowledge of k for several signatures3

3Nguyen and Shparlinski, “The Insecurity of the Elliptic Curve Digital Signature Algorithm with
Partially Known Nonces.”
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Idea of the attack on ECDSA

We can rewrite the signature:
kd · r/s + m/s =

d · u1 + v1 = small
d · u2 + v2 = small

...
d · un + vn = small

LLL

VU

LLL: find short vectors
If the short vector is found, we get d

U V short vectord + =
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Mitigations

Mitigations:

Scalar encoding to avoid null windows
Scalar blinding
Avoid these cryptographic libraries for IoT devices
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Conclusion

Wrap-up:

Physical attack on ECDSA in OpenSSL and its forks
Private key recovered from a few thousands signatures
Proof of concept and tools for the attack available4

Open questions: are there other libraries using dummy additions?

4https://github.com/orangecertcc/ecdummy (MIT license)

https://github.com/orangecertcc/ecdummy
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