

Exploiting dummy codes in Elliptic Curve Cryptography

Andy Russon

4 June 2020

- PhD thesis on elliptic curves
- Orange, and Université de Rennes 1
- Risk assessment and audit
- Interest: challenges (root-me, CryptoHack), korean movies, science-fiction

About Elliptic Curve Cryptography:

Public-key cryptography with small parameters, keys, signatures, etc

Protocols: TLS 1.3, SSH, Bitcoin, Signal, etc

Servers, smart cards, IoT devices, etc

Hard to implement secure and efficient cryptography.

- Depends on threat model (physical access to the device, etc)
- One protection can lead to a vulnerability
- Passive attacks: timing, power analysis, etc

0 1-- 0 1-- 0 000001--

Active attacks: differential fault analysis, C safe-errors

C safe-error attacks against protected implementations to attack ECDSA¹.

¹Fouque et al., "Safe-Errors on SPA Protected Implementations with the Atomicity Technique"; Dubeuf, Hely, and Beroulle, "Enhanced Elliptic Curve Scalar Multiplication Secure Against Side Channel Attacks and Safe Errors."

We extend the previous results, and show that a C safe-error attack is also possible on these implementations:

- Assembly optimized implementation of P-256:
 - OpenSSL since version 1.0.2
 - BoringSSL
 - LibreSSL/OpenBSD
- P-224, P-384 and P-521 in BoringSSL

1 Why dummy codes in ECC?

2 Presentation of the attack

3 Why it works

4 Mitigations and conclusion

Basic operations:

- Addition: P + Q
- Doubling: P + P = 2P
- $\bullet P + \mathcal{O} = \mathcal{O} + P = P$

Basic operations:

- Addition: P + Q
- Doubling: P + P = 2P
- $\bullet P + \mathcal{O} = \mathcal{O} + P = P$

Basic operations:

- Addition: P + Q
- Doubling: P + P = 2P
- $\bullet P + \mathcal{O} = \mathcal{O} + P = P$

Basic operations:

- Addition: P + Q
- Doubling: P + P = 2P
- $\bullet P + \mathcal{O} = \mathcal{O} + P = P$

$$\lambda = \frac{y_P - y_Q}{x_P - x_Q}$$

$$\begin{cases} x_{P+Q} = \lambda^2 - x_P - x_Q \\ y_{P+Q} = \lambda(x_P - x_{P+Q}) - x_P \end{cases}$$

Basic operations:

- Addition: P + Q
- Doubling: P + P = 2P
- $\bullet P + \mathcal{O} = \mathcal{O} + P = P$

$$\lambda = \frac{3x_P + a}{2y_P}$$

$$\begin{cases} x_{2P} = \lambda^2 - 2x_P \\ y_{2P} = \lambda(x_P - x_{2P}) - x_P \end{cases}$$

Basic operations:

- Addition: P + Q
- Doubling: P + P = 2P
- $\bullet P + \mathcal{O} = \mathcal{O} + P = P$

Scalar multiplication:

$$kP = P + \cdots + P$$

- Discrete logarithm problem: hard to find k from P and kP
- k is often secret (private key or nonce)

- Available operations: point addition (A), point doubling (D)
- For efficiency: split k in groups of consecutive bits (windows)

Example: $k = 232 = (11\,101\,000)_2$

= O

- Available operations: point addition (A), point doubling (D)
- For efficiency: split k in groups of consecutive bits (windows)

Example: $k = 232 = (11\ 101\ 000)_2$ 11 3P = 3P

Historic of operations:

- Available operations: point addition (A), point doubling (D)
- For efficiency: split k in groups of consecutive bits (windows)

Example: $k = 232 = (11 \, \underline{101} \, 000)_2$

 $\begin{array}{rcrcrcr} 11 & 3P & = & 3P \\ 11\,000 & 2^3 \cdot 3P & = & 24P \ \ DDD \end{array}$

Historic of operations: D D D

- Available operations: point addition (A), point doubling (D)
- For efficiency: split k in groups of consecutive bits (windows)

Example: $k = 232 = (11 \ 101 \ 000)_2$

11	3 P	=	3P	
11000	$2^3 \cdot 3P$	=	24P	DDD
11 <mark>101</mark>	24P + 5P	=	29P	Α

Historic of operations: DDDA

- Available operations: point addition (A), point doubling (D)
- For efficiency: split k in groups of consecutive bits (windows)

Example: $k = 232 = (11\,101\,000)_2$

11	3 <i>P</i>	=	3P	
11000	$2^3 \cdot 3P$	=	24P	DDD
11101	24P + 5P	=	29P	Α
11101000	$2^3 \cdot 29P$	=	232P	DDD

Historic of operations: DDDA DDD

- Available operations: point addition (A), point doubling (D)
- For efficiency: split k in groups of consecutive bits (windows)

Example: $k = 232 = (11\,101\,000)_2$

11	3 P	=	3P	
11000	$2^3 \cdot 3P$	=	24P	DDD
11101	24P + 5P	=	29P	A
11101000	$2^3 \cdot 29P$	=	232P	DDD
11101000	232P	=	232P	

Historic of operations: $D\,D\,D\,A\ D\,D\,D$

- Available operations: point addition (A), point doubling (D)
- For efficiency: split k in groups of consecutive bits (windows)

Example: $k = 232 = (11\ 101\ 000)_2$

11	3 P	=	3P	
11000	$2^3 \cdot 3P$	=	24P	DDD
11101	24P + 5P	=	29P	Α
11101000	$2^3 \cdot 29P$	=	232P	DDD
11101000	232P	=	232P	

 From power consumption, attacker remarks the missing addition and learns that:

k = * * * * * 000

Historic of operations: DDDA DDD

- Available operations: point addition (A), point doubling (D)
- For efficiency: split k in groups of consecutive bits (windows)

Example: $k = 232 = (11\ 101\ 000)_2$

11	3 <i>P</i>	=	3P	
11000	$2^3 \cdot 3P$	=	24P	DDD
11101	24P + 5P	=	29P	Α
11101000	$2^3 \cdot 29P$	=	232P	DDD
11101000	232P	=	232P	

Historic of operations: $D\,D\,D\,A\ D\,D\,D$

 From power consumption, attacker remarks the missing addition and learns that:

$$k = * * * * * 000$$

Solution: perform a dummy point addition:

DDDA DDDA

- Available operations: point addition (A), point doubling (D)
- For efficiency: split k in groups of consecutive bits (windows)

Example: $k = 232 = (11\,101\,000)_2$

11	3 P	=	3P	
11000	$2^3 \cdot 3P$	=	24P	DDD
11 <mark>101</mark>	24P + 5P	=	29P	A
11101000	$2^3 \cdot 29P$	=	232P	DDD
11101000	232P	=	232P	

Historic of operations: DDDA DDD

 From power consumption, attacker remarks the missing addition and learns that:

$$k = * * * * * 000$$

Solution: perform a dummy point addition:

DDDA DDDA

 Consequence: same sequence of operations for all possible secret k

Make a fault in the last point addition (exact details in the article):

DDDA DDDA

Make a fault in the last point addition (exact details in the article):

Make a fault in the last point addition (exact details in the article):

Make a fault in the last point addition (exact details in the article):

Number ℓ of bits of the last window in the targeted implementations:

- Assembly optimized implementation of P-256: 5 most significant bits
- BoringSSL (P-224, P-384, P-521): 5 least significant bits

1 Why dummy codes in ECC?

2 Presentation of the attack

3 Why it works

4 Mitigations and conclusion

Prerequisite:

- Physical access to the device
- Can inject a fault on potential dummy addition
- Acquire public data (public key, signatures, messages)

Steps:

²https://github.com/orangecertcc/ecdummy (MIT license)

Prerequisite:

r and a second

- Physical access to the device
- Can inject a fault on potential dummy addition
- Acquire public data (public key, signatures, messages)

Steps:

Make a fault in last point addition of ECDSA signature calculation (random computational error is sufficient)

²https://github.com/orangecertcc/ecdummy (MIT license)

Prerequisite:

2

- Physical access to the device
- Can inject a fault on potential dummy addition
- Acquire public data (public key, signatures, messages)

Steps:

- Make a fault in last point addition of ECDSA signature calculation (random computational error is sufficient)
- Keep the signature only if valid
- **3** Repeat the above steps

²https://github.com/orangecertcc/ecdummy (MIT license)

Prerequisite:

- Physical access to the device
- Can inject a fault on potential dummy addition
- Acquire public data (public key, signatures, messages)

Steps:

- Make a fault in last point addition of ECDSA signature calculation (random computational error is sufficient)
- Keep the signature only if valid
- 8 Repeat the above steps
- **4** Use our tool² to recover the private key from valid signatures.

²https://github.com/orangecertcc/ecdummy (MIT license)

Minimum number of valid signatures to recover the private key:

Number of bits ℓ of last window		4	5	6	7
Elliptic curve size	224-bit 256-bit 384-bit	$\frac{56}{65}$	$45 \\ 52 \\ 91$	$37 \\ 43 \\ 65$	$31 \\ 36 \\ 56$

Minimum number of valid signatures to recover the private key:

Number of bits ℓ of last window		4	5	6	7
Elliptic curve size	224-bit 256 -bit 384 -bit	$\frac{56}{65}$	$45 \\ 52 \\ 91$	$37 \\ 43 \\ 65$	$31 \\ 36 \\ 56$

Average of one valid signature out of 2^ℓ signatures attacked

Example for curve P-256 in OpenSSL ($\ell = 5$) out of 100 tests on average

- 54-55 valid signatures
- 1764 signatures attacked

Tools for the attack in script ec.py:

- check_signature(curve, pubkey_point, signature)
- findkey(curve, pubkey_point, valid_signatures, msb, 1)
 - 1: number of bits of last window
 - msb: last window corresponds to most or least significant bits

Target: assembly optimized implementation of P-256 in OpenSSL 1.1.1g

Code modified to simulate the fault

```
for (i = 1; i < 37; i++) {
    //(...)
    if (i == 36) {
        ecp_nistz256_point_add_affine_faulty(&p.p, &p.p, &t.a);
     }
    else {
        ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
     }
}</pre>
```

- Last window: 5 most significant bits
- The tool will be called as

```
findkey(secp256r1, pubkey_point, valid_signatures, True, 5)
```


Target: assembly optimized implementation of P-256 in OpenSSL 1.1.1g

Code modified to simulate the fault

- Last window: 5 most significant bits
- The tool will be called as

```
findkey(secp256r1, pubkey_point, valid_signatures, True, 5)
```


1 Why dummy codes in ECC?

2 Presentation of the attack

3 Why it works

4 Mitigations and conclusion

Given a private key d in [1, q - 1], the process of signing a file is:

 $^{^3\}text{Nguyen}$ and Shparlinski, "The Insecurity of the Elliptic Curve Digital Signature Algorithm with Partially Known Nonces." \$16/20\$

Given a private key d in [1, q - 1], the process of signing a file is:

 $m \leftarrow$ hash of the file $k \leftarrow$ random secret nonce in [1, q - 1]signature: $\begin{cases} r = x(kP) \\ s = (dr + m)/k \end{cases}$

 $^{^{3}}$ Nguyen and Shparlinski, "The Insecurity of the Elliptic Curve Digital Signature Algorithm with Partially Known Nonces." 16/20

Given a private key d in [1, q - 1], the process of signing a file is:

3-> d can be recovered from partial knowledge of k for several signatures³

 $^{^3}$ Nguyen and Shparlinski, "The Insecurity of the Elliptic Curve Digital Signature Algorithm with Partially Known Nonces." \$16/20\$

We can rewrite the signature:

$$d \cdot r/s + m/s = k$$

We can rewrite the signature:

We can rewrite the signature:

$$d \cdot r/s + m/s =$$

We can rewrite the signature:

 $d \cdot u_1 + v_1 =$ small

We can rewrite the signature:

$$d \cdot r/s + m/s =$$

 $d \cdot u_1 + v_1 =$ small $d \cdot u_2 + v_2 =$ small

We can rewrite the signature:

$$d \cdot r/s + m/s =$$

 $\begin{array}{rcl} d \cdot u_1 & + & v_1 & = & \texttt{small} \\ d \cdot u_2 & + & v_2 & = & \texttt{small} \\ & \vdots \\ d \cdot u_n & + & v_n & = & \texttt{small} \end{array}$

LLL: find short vectors

1 Why dummy codes in ECC?

2 Presentation of the attack

3 Why it works

4 Mitigations and conclusion

Mitigations:

- Scalar encoding to avoid null windows
- Scalar blinding
- Avoid these cryptographic libraries for IoT devices

Wrap-up:

- Physical attack on ECDSA in OpenSSL and its forks
- Private key recovered from a few thousands signatures
- Proof of concept and tools for the attack available⁴
- Open questions: are there other libraries using dummy additions?

⁴https://github.com/orangecertcc/ecdummy (MIT license)