Andy Russon

4 June 2020
orange

About me

PhD thesis on elliptic curves

Orange, and Université de Rennes 1

Risk assessment and audit

Interest: challenges (root-me, CryptoHack), korean movies, science-fiction

ek

2/20

Introduction

About Elliptic Curve Cryptography:

m Public-key cryptography with small parameters, keys, signatures, etc

PARAMETER SIZE
128-BIT SECURITY 256-BIT SECURITY

] q
ECC RSA EC RSA

m Protocols: TLS 1.3, SSH, Bitcoin, Signal, etc

m Servers, smart cards, loT devices, etc

Introduction

Hard to implement secure and efficient cryptography.

m Depends on threat model (physical access to the device, etc)
= One protection can lead to a vulnerability
m Passive attacks: timing, power analysis, etc
01=10 1:-10 Oﬂﬂﬂﬂlnn‘
| "‘]'1*" i
fmT

m Active attacks: differential fault analysis, C safe-errors

C safe-error attacks against protected implementations to attack ECDSA!.

Fouque et al., “Safe-Errors on SPA Protected Implementations with the Atomicity Technique”;
Dubeuf, Hely, and Beroulle, “Enhanced Elliptic Curve Scalar Multiplication Secure Against Side
Channel Attacks and Safe Errors.” 4/20

In this presentation .
orange”

We extend the previous results, and show that a C safe-error attack is also possible on
these implementations:

m Assembly optimized implementation of P-256:

m OpenSSL since version 1.0.2
= BoringSSL
m LibreSSL/OpenBSD

m P-224, P-384 and P-521 in BoringSSL

N

N

5/20

Plan

Why dummy codes in ECC?

6,20

Operations on elliptic curves

Basic operations:
m Addition: P+ Q
m Doubling: P4+ P=2P
n P+O=0+P=P

7/20

Operations on elliptic curves

oo e,

E:y2 =3 —3x+137 mod 251

10 Basic operations:
m Addition: P+ Q@
m Doubling: P4+ P=2P
n P+O=0+P=P

7/20

Operations on elliptic curves

oo e,

E:y2 =3 —3x+137 mod 251

10 Basic operations:
m Addition: P+ Q@
m Doubling: P4+ P=2P
n P+O=0+P=P

7/20

Operations on elliptic curves

: ,,—"TO Basic operations:

m Addition: P+ Q@

m Doubling: P4+ P=2P
n P+O=0+P=P

Xp — XQ

{ XP+Q:)\2—XP—XQ
YP+Q = A(xp — xp1q) — xp

E y2 x3—3x+137 mod 251

7/20

Operations on elliptic curves

T 1o Basic operations:
! P
= Addition: P+ Q
el e = Doubling: P+ P=2P
N NI " P+O=0+P=P
! 3
[I A= e
) 2P e
.i. { XQP:)\2_2XP
L yap = Axp — xop) — Xp

E:y2 =3 —3x+137 mod 251

7/20

Operations on elliptic curves
orange”

10 Basic operations:
m Addition: P+ Q@
m Doubling: P4+ P=2P
n P+O=0+P=P

Scalar multiplication:

kP=P+.--+P

m Discrete logarithm problem: hard to
find k from P and kP

E: W= x3 _ éx+ 137 mod 251 m k is often secret (private key or nonce)
7/20

P

Windowing scalar multiplication

m Available operations: point addition (A), point doubling (D)

m For efficiency: split k in groups of consecutive bits (windows)

Example: k=232 = (11101 000)5

= O

8/20

Windowing scalar multiplication

m Available operations: point addition (A), point doubling (D)
m For efficiency: split k in groups of consecutive bits (windows)

Example: k=232 = (11101000)5

11 3P = 3P

Historic of operations:

8/20

Windowing scalar multiplication

m Available operations: point addition (A), point doubling (D)
m For efficiency: split k in groups of consecutive bits (windows)

Example: k=232 = (11101 000),

11 3P = 3P
11000 27 . 3P = 24P DDD

Historic of operations: D D D

8/20

Windowing scalar multiplication

m Available operations: point addition (A), point doubling (D)
m For efficiency: split k in groups of consecutive bits (windows)

Example: k=232 = (11101 000)5

11 3P = 3P
11000 22.3P = 24P DDD
11101 24P+5P = 29P A

Historic of operations: DD D A

8/20

Windowing scalar multiplication

m Available operations: point addition (A), point doubling (D)
m For efficiency: split k in groups of consecutive bits (windows)

Example: k=232 = (11101 000),

11 3P = 3P

11 000 22.3P = 24P DDD
11101 24P+5P = 29P A
11101000 22-29P = 232P DDD

Historic of operations: DDDA DDD

8/20

Windowing scalar multiplication

m Available operations: point addition (A), point doubling (D)
m For efficiency: split k in groups of consecutive bits (windows)

Example: k=232 = (11101000),

11 3P = 3P

11 000 22.3P = 24P DDD
11101 24P+5P = 29P A
11101000 22-29P = 232P DDD
11101000 232P = 232P

Historic of operations: DDDA DDD

8/20

Windowing scalar multiplication
orange”

m Available operations: point addition (A), point doubling (D)
m For efficiency: split k in groups of consecutive bits (windows)

m From power consumption, attacker
remarks the missing addition and

Example: k=232 = (11101 000), learns that:
117” ,-);;P - i k= *x * % %000
11 000 27 . 3P = 24P DDD
11101 24P+ 5P = 20P A
11101000 27 .29P = 232P DDD
11101 000 232P = 232P

Historic of operations: DDDA DDD

8/20

Windowing scalar multiplication
orange”

m Available operations: point addition (A), point doubling (D)
m For efficiency: split k in groups of consecutive bits (windows)

m From power consumption, attacker
remarks the missing addition and

Example: k=232 = (11101 000), learns that:
117 ,-):;P - o1 k=% %% %000
11000 23.3P = 24P DDD
11101 24P+5P = 29P A . .
11101000 23.29P = 232P DDD Sgldt_'t_'on_' perform a dummy point
11101000 232P = 232P addition:
DDDA DDDA

Historic of operations: DDDA DDD

8/20

Windowing scalar multiplication
orange”

m Available operations: point addition (A), point doubling (D)
m For efficiency: split k in groups of consecutive bits (windows)

m From power consumption, attacker
remarks the missing addition and

Example: k=232 = (11101 000), learns that:
! ,,.):;P = 3P k= %% %% %000
11000 23.3P = 24P DDD
11101 24P+5P = 29P A . .
11101000 2°-20P = 232P DDD ™ S;’LL_'t_'O": perform a dummy point
11101000 232P = 232P addition:
DDDA DDDA

Historic of operations: DDDA DDD
m Consequence: same sequence of

operations for all possible secret k
8/20

Principle of C safe-error

DUMMY OR NOT DUMMY?

9/20

Principle of C safe-error
orange”

Make a fault in the last point addition (exact details in the article):

/
DDDA DDDA

9/20

Principle of C safe-error
orange”

Make a fault in the last point addition (exact details in the article):

Point addition is not dummy:

7 m Incorrect output for kP
DDDA DDDA

9/20

Principle of C safe-error
orange”

Make a fault in the last point addition (exact details in the article):

Point addition is not dummy:

7 m Incorrect output for kP
DDDA DDDA

Point addition is dummy:
m Correct output for kP

m Last window is null: k= %% % xx 000

9/20

Principle of C safe-error

Make a fault in the last point addition (exact details in the article):

Point addition is not dummy:

7 m Incorrect output for kP
DDDA DDDA

Point addition is dummy:
m Correct output for kP

m Last window is null: k= %% % xx 000

Number ¢ of bits of the last window in the targeted implementations:

m Assembly optimized implementation of P-256: 5 most significant bits
m BoringSSL (P-224, P-384, P-521): 5 least significant bits

Plan

Presentation of the attack

10/20

Main steps of the attack .
orange”

Objective: retrieve an ECDSA private key

Prerequisite:

m Physical access to the device
N m Can inject a fault on potential dummy addition
& » Acquire public data (public key, signatures, messages)

Steps:

https://github.com/orangecertcc/ecdummy (MIT license) 11/20

https://github.com/orangecertcc/ecdummy

Main steps of the attack

Objective: retrieve an ECDSA private key

Prerequisite:

i m Physical access to the device
N m Can inject a fault on potential dummy addition
w » Acquire public data (public key, signatures, messages)
Steps:

Make a fault in last point addition of ECDSA signature
calculation (random computational error is sufficient)

https://github.com/orangecertcc/ecdummy (MIT license) 11/20

https://github.com/orangecertcc/ecdummy

Main steps of the attack

Objective: retrieve an ECDSA private key

Prerequisite:

i m Physical access to the device
N m Can inject a fault on potential dummy addition
w » Acquire public data (public key, signatures, messages)
Steps:

Make a fault in last point addition of ECDSA signature
calculation (random computational error is sufficient)

Keep the signature only if valid
Repeat the above steps

https://github.com/orangecertcc/ecdummy (MIT license) 11/20

https://github.com/orangecertcc/ecdummy

Main steps of the attack .
orange”

Objective: retrieve an ECDSA private key

Prerequisite:

j m Physical access to the device
N m Can inject a fault on potential dummy addition
w » Acquire public data (public key, signatures, messages)
Steps:

VALID SIGNATURES
l Make a fault in last point addition of ECDSA signature

calculation (random computational error is sufficient)

LLL Keep the signature only if valid
l Repeat the above steps

Use our tool® to recover the private key from valid signatures.
PRIVATE KEY

https://github.com/orangecertcc/ecdummy (MIT license) 11/20

https://github.com/orangecertcc/ecdummy

Performance

Minimum number of valid signatures to recover the private key:

Number of bits ¢ of last window 4 5 6 7

224-bit 56 45 37 31
Elliptic curve size 256-bit 65 52 43 36

384-bit 91 65 56

12/20

Performance

Minimum number of valid signatures to recover the private key:

Number of bits ¢ of last window 4 5 6 7

224-bit 56 45 37 31
Elliptic curve size 256-bit 65 52 43 36
384-bit 91 65 56

Average of one valid signature out of 2¢ signatures attacked

Example for curve P-256 in OpenSSL (¢ = 5) out of 100 tests on average

m 54-55 valid signatures
m 1764 signatures attacked

12/20

Tools for the attack

Tools for the attack in script ec.py:

m check_signature(curve, pubkey_point, signature)

m findkey(curve, pubkey_point, valid_signatures, msb, 1)
m 1: number of bits of last window
m msb: last window corresponds to most or least significant bits

L

13/20

orange’|

Target: assembly optimized implementation of P-256 in OpenSSL 1.1.1g
Code modified to simulate the fault
for (i = 1; i < 37; i++) {

if (i 36) {
ecp_nistz256_point_add_affine_faulty(4p.p, &p.p, &t.a);

}
else {

ecp_nistz256_point_add_affine(&p.p, &p.p, &4t.a);
}

}

Last window: 5 most significant bits
The tool will be called as
findkey(secp256rl, pubkey_point, valid_signatures, True, 5)

Demonstration of the attack

Target: assembly optimized implementation of P-256 in OpenSSL 1.1.1g
m Code modified to simulate the fault

e (G 1: i 37; i++) { ecp_nistz256_sqr_mont(Zlsqr, inl_z);
Z1sqr[0] 123456789;

if (i 36) {
ecp_nistz256_point_add_affine_faulty(4p.p, &p.p, &t.a);

}
else {
ecp_nistz256_point_add_affine(&p.p, &p.p, &4t.a);
}
}

m Last window: 5 most significant bits
m The tool will be called as
findkey(secp256rl, pubkey_point, valid_signatures, True, 5)

14/20

Plan

Why it works

15/20

Given a private key d in [1, g — 1], the process of signing a file is:

m < hash of the file

+ random secret nonce in [1,q — 1]

. r
signature:
gnature: { |

®Nguyen and Shparlinski, “The Insecurity of the Elliptic Curve Digital Signature Algorithm with
Partially Known Nonces."

Given a private key d in [1, g — 1], the process of signing a file is:

m < hash of the file

+ random secret nonce in [1,q — 1]

. r
signature:
gnature: { |

®Nguyen and Shparlinski, “The Insecurity of the Elliptic Curve Digital Signature Algorithm with
Partially Known Nonces."

Given a private key d in [1, g — 1], the process of signing a file is:

m < hash of the file

+ random secret nonce in [1,q — 1]

. r
signature:
g { .

3

3-> d can be recovered from partial knowledge of k for several signatures

®Nguyen and Shparlinski, “The Insecurity of the Elliptic Curve Digital Signature Algorithm with
Partially Known Nonces."

|ldea of the attack on ECDSA

We can rewrite the signature:
d-r/s+m/s= k

17/20

|ldea of the attack on ECDSA

We can rewrite the signature:

//////////////////
-r/s+ m/s=V\.7.....00000
//////////////////

17742227777 777777,

0 unknown (“small”)

17/20

|ldea of the attack on ECDSA

We can rewrite the signature:
d-r/s+m/s=

unknown (“small”)

17/20

|ldea of the attack on ECDSA

We can rewrite the signature:
d-r/s+m/s=

unknown (“small”)

d-uvy + wvi = small

17/20

|ldea of the attack on ECDSA

We can rewrite the signature:

d-r/s+m/s=

unknown (“small”)
d-uvy + wvi = small
d-u + v = small

17/20

|ldea of the attack on ECDSA

We can rewrite the signature:

d-r/s+m/s=
unknown (“small”)
d-uvy + wvi = small
d-ugy + vy = small
deu, + v, = small

17/20

|ldea of the attack on ECDSA

We can rewrite the signature:
d-r/s+m/s=

unknown (“small”)

LLL
demy + v = small /_><

d-u + v = small

deu, + v, = small

m LLL: find short vectors

17/20

|ldea of the attack on ECDSA

We can rewrite the signature:

d-r/s+m/s=

unknown (“small”)

U/
LLL
dfum] + v = small A o e —

d-us| + v = small
d-u,l + v, = small
U

m LLL: find short vectors

17/20

|ldea of the attack on ECDSA

We can rewrite the signature:

d-r/s+m/s=

unknown (“small”)

u%/
d-u] + [vi] = small .. - L£>L

dvus| + |w = small
d-u,| + |v,] = small
u v » LLL: find short vectors

17/20

|ldea of the attack on ECDSA

We can rewrite the signature:
d-r/s+m/s=

unknown (“small”)

u%/ ‘
dfuy| + [vi] = small — L£>L<

d-uy| + |wvg = small
d-lup| 4+ vy, = small
d U + VvV = m LLL: find short vectors

17/20

|ldea of the attack on ECDSA

We can rewrite the signature:
d-r/s+m/s=

unknown (“small”)

o
du] + [vi] = [small L£>L <

d-us| + |w| = |small
d-u,l + |vp, = |small
d U + V. = shortvector 5 |LL: find short vectors

m If the short vector is found, we get d

17/20

Plan

Mitigations and conclusion

18/20

Mitigations

Mitigations:

m Scalar encoding to avoid null windows
m Scalar blinding

m Avoid these cryptographic libraries for loT devices

19/20

Conclusion

Wrap-up:
Physical attack on ECDSA in OpenSSL and its forks

Private key recovered from a few thousands signatures

Proof of concept and tools for the attack available?

Open questions: are there other libraries using dummy additions?

*https://github.com/orangecertcc/ecdummy (MIT license) 20/20

https://github.com/orangecertcc/ecdummy

	Introduction
	Why dummy codes in ECC?
	Presentation of the attack
	Why it works
	Mitigations and conclusion

