
Hacking Excel Online:
How to exploit Calc

Nicolas Joly
nijoly@microsoft.com

Microsoft

Abstract. The Microsoft Security Response Center has a unique position
in monitoring exploits in the wild. While we have seen several cases in
the past years of exploits targeting Office applications, often PowerPoint
or Word, exploits targeting online applications are less common. Are they
even possible? And in which case, how would one attack the Office Online
Server? Can a malicious document be used? How hard would that be, how
much time would it take? I did a short project during summer 2018 to try
to answer these questions with Excel Online. This article describes the
bug and the exploit I wrote to get code execution in OOS by loading and
interacting with a malicious XLSX spreadsheet. It explores the feasibility
of such attacks using Excel’s features, and particularly formulas.

1 Attacking Office Online

In comparison with Office Desktop, Office Online, formerly known as
Office Web Apps (WAC), needs to be seen under a different perspective
when it comes to vulnerabilities and exploitation. Because the applications
run server-side, the road to get a functional exploit is less complicated
than with traditional desktop applications. There’s no specific need for
a one-shot exploit where one sends an Office document and hope some
exploit magic will just happen on the other side. It’s always better to have
something that works everywhere, but in the context of Office Online where
the attacker is dynamically interacting with his target the prerequisites
are simpler. A vulnerability that can produce visible results on which the
attacker can quickly interact might be enough. A heap overflow in a cell, a
memory disclosure vulnerability while rendering a picture, or even a logic
issue that could trigger the deserialization of arbitrary .Net objects would
be ideal scenarios. Mateusz “j00ru” Jurczyk from Google for example
demonstrated how malicious pictures embedded in Office documents could
potentially leak server memory back in 2016 [3]. Can we follow the same
steps to get remote code execution on the server?

OOS consists of several services running under IIS, all interacting
with an Exchange server. Different scenarios exist, the most common are

2 Hacking Excel Online

viewing email attachments or working on documents already present in the
cloud. The 2018 Onpremise version supports Word, Excel and Powerpoint
among others, and here is a picture of OOS running the Excel service in a
test environment on Windows 10 1709:

Fig. 1. Process Explorer running on OOS

This article only focuses on Excel. The main library is xlsrv.dll, and
unfortunately for the readers symbols are not public. It supports most of
the features present in the Desktop application, which means that a bug
affecting Desktop will likely affect OOS as well.

2 Finding the right bug

For a product like Excel that has been extensively fuzzed by so many
researchers, including of course the product team, blind fuzzing appears
unlikely to provide quick and actionable results. With all sorts of mitiga-
tions in mind, it is crucial to find the right chain of bugs. At least one
bug good enough to leak memory and defeat ASLR, and a second one,
potentially the same, to redirect the execution flow. This does not mean
that fuzzing Excel does not work, as of 2019 the MSRC received more than
50 reports affecting Excel, with severities rating from low to important.
It just tends to illustrate that this technique may have limited results
given a restricted timeline. Besides, finding as many bugs as possible in
a couple of weeks was clearly out of scope for this project, the question
was essentially about the feasibility of an exploit. Exploiting OOS, is this
something that we can expect, and if so, how would one do it?

Exploits for memory corruptions without a scripting environment
like Excel tend to be rare these days. ASLR and DEP combined usually
require an exploit to dynamically calculate addresses before executing

N. Joly 3

a ROP that needs to bypass CFG. While it is true that Chakra has
been recently integrated, it does not allow a spreadsheet to run arbitrary
scripts. Therefore, is it still possible to craft a one-shot exploit? Excel
provides loads of features, for instance formulas. Some of them like IF
allows conditional branching, MID can extract characters from a string,
and others like REPT or CONCAT can potentially do heap spray. Many
also work on columns and rows, and can consequently emulate for loops
(see VLOOKUP). With this in mind, it might theoretically be possible to
build a spreadsheet that would abuse a vulnerability in a formula, and
have the result of that vulnerability propagated to other cells. Imagine one
vulnerability to leak a vtable, add some heap spray and build dynamic
gadgets, and finish with another vulnerability to cause memory corruption.
The question is, can we put this together and build a poc?

This research begins with CVE-2008-4019, Microsoft Excel REPT
Formula Parsing vulnerability [1] that affected any version of Excel below
2007. The issue at the time was that the repeat formula did not properly
validate its second argument, potentially leading to an integer overflow. For
example, a formula like REPT("AAAA", 1073741825) would force the code
to allocate 4 * 0x40000001 bytes, a result truncated to 4 if the operation
is done on 32 bits. Depending on the size allocated, this vulnerability was
causing either a stack overflow or a heap overflow. Because of the nature
of the bug, one can either type the formula and evaluate it in a cell or craft
the formula in an XLSX document and load it. Something like that would
be enough to add in sheet1.xml (an XLSX file is just a ZIP containing
xml and binary files):

<row r="457" spans ="1:1" x14ac:dyDescent ="0.25">

<c r="A457" t="str">

<f t=" shared " ref=" A457:A520 " si="7">REPT ("ZZZZ" ,1073741825) </f>

<v/>

</c>

</row >

Listing 1. Embedding a malicious formula in a .XML

I personally worked on this issue at the time in 2008 and was curious
to see if anything similar remained in the code 10 years later. My first
take was to look at the REPT formula, see how this one worked exactly.
Given 10 years passed since this issue was found, the likelihood of discov-
ering something similar in the code was fairly low, but still provided an
interesting exercise for somebody who wanted to familiarize with the code.
Without much surprise, the multiplication is now properly checked:

4 Hacking Excel Online

case FUNC_REPT :

{

WCHAR * pch;

int ichTotal ;

BOOL fOverflow = false ;

ichTotal = CbAllocSafe (ich , cch , 0, & fOverflow);

if (fOverflow)

goto LRetErrOom ;

Listing 2. Checking the REPT parameters

Notice the call here to CbAllocSafe which sets the fOverflow bit if ich
* cch + 0 overflows:

DECL_CSYM UINT32 __fastcall CbAllocSafe (UINT32 cRec , UINT32 cbRec ,

UINT32 cbExtra , BOOL * pfOverflow)

{

SAFEINT si;

si. Init (cRec);

si. Mult (cbRec);

si.Add(cbExtra);

* pfOverflow = si. FOverflow ();

return (si.Acc ());

}

Listing 3. CbAllocSafe

Any attempts to supply malicious integers will then be caught. There-
fore, use of this function should reveal locations in the code where dynamic
arrays are allocated. As I was aiming at finding a strong primitive, anything
dealing with array out-of-bounds was particularly interesting. "X-REFing"
with IDA on CbAllocSafe revealed 107 locations in xlsrv.dll where the
function was called, and in particular, three occurrences within a function
called fnConcatenate including one highly suspicious, with tons of risky
Maths done before the call:

text :000000018012 DBCF mov ecx , [rsi +0 Ch]

text :000000018012 DBD2 lea r9 , [rbp +280 h+ var_248]

text :000000018012 DBD6 sub ecx , [rsi +8]

text :000000018012 DBD9 xor r8d , r8d

text :000000018012 DBDC mov eax , [rbp +280 h+ var_254]

text :000000018012 DBDF add ecx , r13d

text :000000018012 DBE2 sub eax , r14d

text :000000018012 DBE5 add eax , r13d

text :000000018012 DBE8 imul ecx , eax

text :000000018012 DBEB lea edx , [r8 +8]

text :000000018012 DBEF mov eax , [rsi +4]

text :000000018012 DBF2 sub eax , [rsi]

text :000000018012 DBF4 add eax , r13d

N. Joly 5

text :000000018012 DBF7 imul ecx , eax

text :000000018012 DBFA mov [rbp +280 h+ var_244], ecx

text :000000018012 DBFD call cballocsafe64

Listing 4. Some highly suspicious instructions in fnConcatenate

A quick X-REFing reveals that fnConcatenate is reachable from the
TEXTJOIN formula, that has the following syntax (the documentation
can be found here [2]):

Fig. 2. How to use TEXTJOIN

Here’s a quick example of the formula:

Fig. 3. Using TEXTJOIN

Delimiter can have all sorts of values, including cell references. In 2015,
the function was extended to support three dimensions: columns, rows
and sheets. Note the following lines in the source added at that moment
corresponding to the new feature:

cDelimiter = pcalcrefData -> GetHeight () * pcalcrefData -> GetWidth

() * (isheetLast - isheet + 1);

cbrgDelim = CbAllocSafe (cDelimiter , sizeof (XCHAR *) , 0, &

fOverflow);

if (fOverflow)

goto LRetErr ;

6 Hacking Excel Online

if (! SUCCEEDED (pevalglob -> PmemheapRecalcBuffer () -> HrAllocPv (

cbrgDelim , (void **) & rgstDelim)))

goto LRetErr ;

Listing 5. A few lines of fnConcatenate

At first sight, assuming we have full control over Height, Width, and
the number of sheets provided, it seems possible to get an integer overflow
before reaching CbAllocSafe, which makes this function a good candidate
for more investigation. Getting a poc isn’t too difficult, the following line
will magically reach the code path above and crash any vulnerable version
of Excel:

TEXTJOIN (Sheet2 : Sheet10 !A1: KZB529328 ,TRUE ,"AAAA","BBBB","CCCC","e")

Listing 6. Crafting a poc

Executing this formula on a vulnerable version of Excel will cause a
write access violation in fnConcatenate. Why does that formula magically
work? KZB indicates a width of 11*26*26 + 26*26 + 2 = 8114, and 529328
* 8114 = 4294967392 which in hex gives 0x100000060. Excel truncates then
that number to 0x60 and uses it times the number of sheets to allocate an
array on the heap, in this case an array of (10-2+1)*0x60 = 0x360 bytes.
Follow three loops in which pointers to strings are stored in the freshly
allocated array rgstDelim:

while (true)

{

for (rw = pcalcrefData -> RwFirst (); rw <= pcalcrefData ->

RwLast (); rw ++)

{

for (col = pcalcrefData -> ColFirst (); col <= pcalcrefData

-> ColLast (); col ++)

{

xlsoper . FastInit ();

...

rgstDelim [iIndexDelimiter] = stDelimItem ;

Listing 7. Loops overwriting the heap

A few constraints to have in mind, Excel only supports up to 1048576
rows and 16384 columns (0x100000, 0x4000). Luckily, A1:KZB529328 fits
well in there. For bugs like this, we can either start with the final number
we want to obtain and have it decomposed into prime factors or just run
a solver to return all the possible solutions.

Loops with huge counters often result in wild access violations which
are hard to exploit. This is not the case here, as developers took care of

N. Joly 7

the case where a cell would contain an error. Such cells are marked by a
specific Err property, and when the code encounters them it just exits the
loops, frees anything allocated and returns an error:

if (xlsoper . FIsErr ())

{

hr = xlsoper . HrFinalizeAndTransferErrorResult (pxlsoperRes);

if (FAILED (hr))

{

fNeedDoJmp = true ;

}

xlsoper . FastFree ();

goto LDoneConcat ;

}

...

LDoneConcat :

pevalglob -> SetPenvMem (penvSav);

for (iIndexDelimiter = 0; iIndexDelimiter < cDelimiterAllocated ;

iIndexDelimiter ++)

{

PchBufReleaseXls (pevalglob -> PmemheapRecalcBuffer () ,

const_cast <XCHAR *>(rgstDelim [iIndexDelimiter]));

}

pevalglob -> PmemheapRecalcBuffer () ->FreePv (rgstDelim);

Listing 8. Encountering an error will exit the loops and free rgstDelim

If we include a buggy cell in our references we will be able to exit
the loop and have the overflow controlled, the hardest part, finding a
suitable bug, now seems over. This vulnerability was documented as CVE-
2018-8331. Note also CVE-2018-8574 a similar vulnerability affecting the
formula Forecast.ETS but not available in Excel Online at the time.

Readers who have access to a Visual Studio Subscription and who
wish to experiment can download Office Online Server with the November
2017 update. This version should be vulnerable to CVE-2018-8331 and
reproducing should be straightforward.

3 Exploiting the issue

The primitive obtained is strong but not perfect to the eyes of the
exploit writer. On the plus side, one can arrange the various variables to
allocate an array whose size is controllable, which provides some flexibility
regarding what sort of object we would like to overwrite. There are certainly
some constraints on the rows and columns, but the poc shows that fairly

8 Hacking Excel Online

small arrays can still be allocated. It is however and unfortunately not
possible to overwrite the heap with arbitrary bytes, only pointers to
strings. Besides as we’re forced to cause an error to exit those loops and
end fnConcatenate, those strings are ephemeral, they are allocated in
fnConcatenate and free()’d before the function returns, which means that
data in the heap will be overwritten by dangling pointers. In summary, we
can allocate an (almost) arbitrarily sized array, and write past its bounds
as many pointers to free()’d strings as we want. In general, this kind
of bug provides a primitive strong enough to bypass the most common
mitigations, as described in the following lines.

The first thing that one can notice is how Excel allocates strings in
memory. Those consist of a size followed by the string itself, which means
that if an attacker can touch the string’s length, he can then trick Excel
into reading past its bounds to read and disclose heap memory. This
is how the attack should work. First spray the heap with strings and
objects, free some of these strings, trigger the vulnerability and hope that
the vulnerable array will be allocated right before a string to guarantee
successful corruption. This sounds simple when described like this in a
few words, but in Excel Online, just deleting a cell containing a string
in a spreadsheet does not necessarily free the string in memory. This is
because of the “Undo” mechanism. User actions are recorded, and the
user can always revert and come back to an initial state. Because of this,
the user does not have direct control over the memory, unless he chooses
to recalc the form, in which case all modifications stored in the undo
chain are lost. The exploit works then in multiple steps, all separated by a
click to recalc. This is where user interaction with the exploit is essential,
as forging a one-shot exploit seems at first sight very complicated. In
summary the plan is as follows: first spray the heap with strings, manually
delete a couple of them, and eventually recalc(), to free the deleted strings
in memory.

At that point we can now trigger the bug and hope that the array is
allocated in one of these holes. If this succeeds, the length of one string in
our spray will be changed to the lowest bytes of a pointer. We get then a
nice heap visualizer on this specific part of the memory.

4 What to leak, can we get a read/write primitive?

The ideal scenario would be an object with a vtable allocated in the
middle of these strings. Is it possible to achieve that with formulas only?
A quick review of all the supported formulas did not reveal any interesting

N. Joly 9

Fig. 4. Disclosing pointers and building gadgets

candidates, but Excel supports so many features that more investment
might reveal something actionable (typically a formula that changes a
graph layout, or alters a pivot table that may result in unexpected and
useful results). Regarding the primitive, it should be noted that although
we can corrupt the length of a string, this string is a read-only object
in Excel, and as such, it is not possible to change its content directly
with formulas. In other words, once the string is created in memory, it
cannot be modified by the UI, any modification to a string stored in a
cell will result in another string allocated. This in combination with the
constraints of the vulnerability makes it difficult to craft a read/write
primitive. However, once a string is corrupted, it is possible to change
the memory around and read it at any moment. If one formula changes,
the chain can be automatically recalculated. My first try was with Title
objects associated to Graph objects. Because of the specifics, we needed
to find an object that once corrupted could survive several (at least 2)
dereferences. These objects occupy 0x140 bytes and hold a pointer to a
string at a certain offset. By overwriting a pointer to the Title object in
the Graph object, it would be possible to get a double dereference and, in
the end, control the location of the string.

Manually changing those titles unfortunately caused more troubles
than expected and after trying various scenarios I couldn’t get that strategy
to work reliably.

I opted in the end for a more traditional way, freeing some strings,
recalc()ing again and inserting some Graph objects to fill the free space
with an object of 0x300 bytes beginning with a vtable. Those are fine,

10 Hacking Excel Online

Fig. 5. A simple graph with a title

because 0x300 is a multiple of 0x60 (remember the poc above), and chances
are that all these allocations will land in the same segment. A first pass
would then read the vtable, along with pointers to the heap segment,
and a second pass would trigger the issue to overwrite the vtable with
a pointer to a controlled string. The rest of the exploit was simple, as it
turns out that Excel would eventually use the vtable when the object is
manually resized, leading then later to remote code execution by loading
a library from a remote share.

5 Would that work in a real-world scenario?

The main issue with the steps above is that they don’t apply very well
to a production environment, with potentially dozens of users interacting
with the service at the same time, thus significantly reducing the probability
to get the heap layout in a predictable state. Memory leaks are easy to
get, but how to make sure that holes are allocated in the right way is a
different question. It’s worth noting though that the entire attack could
be automated by scripting on the attacker side. In the end, interacting
with Office Online is just a matter of sending HTTP requests and parsing
the response, so having to recalc() or choose which strings to delete should
not be an issue, although this is something that I have not personally
tried. The exploit works however quite well in a lab environment, with a
single user working on one spreadsheet at a time, where the heap can be
put more easily into a predictable state. This project nevertheless gave
the proof that attacks like these are possible, not only theoretical, and

N. Joly 11

that provided with a good vulnerability, an attacker has enough features
to play with to build a working exploit.

References

1. Microsoft Office Excel REPT Formula Parsing Remote Code Execution Vulnerability.
https://www.zerodayinitiative.com/advisories/ZDI-08-099/.

2. TEXTJOIN function. https://support.office.com/en-us/article/textjoin-

function-357b449a-ec91-49d0-80c3-0e8fc845691c.

3. Mateusz “j00ru” Jurczyk. Windows Metafiles - An Analysis of the EMF Attack
Surface and Recent Vulnerabilities (CVE-2016-3263 - slide 182). https://j00ru.

vexillium.org/slides/2016/metafiles_full.pdf, 2016.

https://www.zerodayinitiative.com/advisories/ZDI-08-099/
https://support.office.com/en-us/article/textjoin-function-357b449a-ec91-49d0-80c3-0e8fc845691c
https://support.office.com/en-us/article/textjoin-function-357b449a-ec91-49d0-80c3-0e8fc845691c
https://j00ru.vexillium.org/slides/2016/metafiles_full.pdf
https://j00ru.vexillium.org/slides/2016/metafiles_full.pdf

	Hacking Excel Online
	N. Joly

