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Abstract. Modern basebands are an interesting topic for reverse engi-
neers. However, the lack of debugger for these components makes this
work harder.

This article presents how a 1-day vulnerability in Samsung Trustzone can
be used to rewrite the Shannon baseband memory and install a debugger
on a Galaxy S7 phone. The details of the debugger development are
explained and a demonstration will be done by using specific breakpoints
to extract interesting informations.

1 Introduction

In 2020, smartphones are used by everyone and have become ones of
the most targeted devices. However, phone manufacturers put a lot of
effort into securing them by hardening kernel, browsers, and every binary
running on the application processor.

As a consequence, researchers began looking for vulnerabilities in other
components such as Wi-Fi firmware, Bluetooth firmware, or basebands [2,
4, 5] which became easier targets.

This presentation focuses on the baseband component which is used
by a modern phone to connect to cellular networks (2G, 3G, 4G and even
5G).

Another motivation for a researcher may have been the fact that
several smartphone’s basebands are a target for the mobile pwn2own 1

competition. During the last 3 years, the team Fluoroacetate has been
able to exploit a vulnerability in the Samsung baseband called Shannon.

The Shannon’s real-time operating system is relatively big, and many
tasks are involved to provide a connection to the cellular network. The
functioning is quite complex to understand, and no debugger is available
to do dynamic analysis of the OS/Tasks.

This presentation covers the Shannon’s architecture, and how a debug-
ger can be implemented on top of that.

1. https://www.zerodayinitiative.com/Pwn2OwnTokyo2019Rules.html
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2 Related work

In 2012, Guillaume Delugre has presented a debugger of Qualcomm’s
baseband running on a 3G USB stick [3]. The debugger code is available
online 2 and has been used as inspiration for doing our research.

Comsecuris published some script to perform static analysis on Shan-
non Firmware image 3 [4].

3 Shannon architecture

The component studied in this paper is the Communication Processor
(CP) developed by Samsung and known as Shannon. The firmware provided
by Samsung runs on a dedicated processor which is based on ARM Cortex-
R7. It is used on all non-US Samsung phones (US-Phones use Qualcomm
chips).

The code running on the baseband processor is responsible for handling
the full mobile phone stack: 2G-5G, communication with the Application
Processor (AP), communication with SIM cards.

The file modem.bin provided in Samsung’s firmwares is the code
that runs on the baseband. It can be easily loaded in IDA in order
to start reverse engineering. Previously, this file was stored encrypted and
decrypted at runtime but this is not the case anymore, recent firmwares
being in cleartext.

3.1 Shannon operating system

The baseband runs a Real Time OS that switches between tasks. Each
task is dedicated to a particular function such as communicating with the
application processor, handling a radio layer, etc.

Each task has the same structure. Every necessary component is
initialized first and then runs a message loop waiting for events from other
tasks. The communication between tasks is done using a mailbox system
which allows reading or writing based on a mailbox ID. The figure 1 shows
a simplified example of communication between tasks.

Tasks related to radio messages are interesting when looking for vul-
nerabilities. Indeed; they can easily be found in the firmware by following
the strings <RADIO MSG>.

2. https://code.google.com/archive/p/qcombbdbg/

3. https://github.com/Comsecuris/shannonRE

https://code.google.com/archive/p/qcombbdbg/
https://github.com/Comsecuris/shannonRE
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Fig. 1. Mailboxes used for inter tasks communications

3.2 Tasks scheduling

In order to debug a stand alone task running in the RTOS, the
mechanism responsible for scheduling tasks as been reversed engineered.

The task structure has been studied and the following offsets of interest
are used by the developer.

00000000 next_task DCD ?

00000004 prev_task DCD ?

00000008 task_magic DCB 4 dup (?)

0000000 C id_plus_1 DCW ?

0000000 E id DCW ?

00000010 field_10 DCW ?

[...]

00000018 sched_grp DCD ?

0000001 C sched_id DCD ?

00000020 sched_grp_ptr DCD ?

00000024 task_start_fn_ptr DCD ?

00000028 stack_top DCD ?

0000002 C stack_base DCD ?

00000030 stack_ptr DCD ?

00000034 running_or_not DCD ?

[...]
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0000004 C saved_stack_ptr DCD ?

[...]

0000005 C task_name DCB 8 dup (?)

[...]

Listing 1. Example of logs

A list of tasks is saved by the RTOS at the address 0x04802654 and
the id of the current task is saved at the address 0x04800EE8.

All these informations are used to pass on tasks related information
to the gdbserver stub and to enable thread debugging.

3.3 AP-CP Communications

Communications between the application processor and the baseband
processor are done using shared memories and mailboxes. Mailboxes are
used for one-way communications, some of them are used for CP to AP
communications while some others are used for AP to CP communications.

Mailboxes notify (using an interrupt) the other processor and send a
32-bit value. Sixty-four mailboxes are available, but only twenty are used
in the Galaxy S7.

The baseband and the Linux kernel use a protocol called SIPC5 to2

communicate. The protocol has multiple channels; the Linux driver acts
as a demultiplexer to dispatch these channels to user-space programs.
Samsung publishes the kernel source code, it is therefore simple to study.

Most communications are handled by 2 processes on the AP:
— cbd: this process is responsible for the boot and initialization of

the baseband firmware.
— rild: this process handles baseband communications after the base-

band starts.

3.4 Boot

The baseband boot is driven by the cbd process and operates as follows
(simplified):

— The MODEM firmware image is read from the internal flash mem-
ory. This image is parsed to get two major parts:BOOTLOADER

and MAIN.
— The BOOTLOADER part is sent to the kernel with the

IOCTL_MODEM_XMIT_BOOT ioctl. This part is copied
in the future baseband bootloader physical memory address
(0xF0000000 4 on the GS7).

4. All physical addresses can be found in the Linux Device-Tree.
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— The MAIN part is sent to the kernel. This part is copied in the
future baseband physical memory address (0xF0000000 + 0x10000

on the GS7).
— cbd emits the IOCTL_SECURITY_REQ ioctl. This ioctl is used

to emit an SMC call to the Secure Monitor. The Secure Monitor is
the most privilegied code running in the AP.

— The Secure Monitor marks the baseband memory zone (BOOT-

LOADER and MAIN ) as secure memory in order to prevent modi-
fication from the non-secure world (i.e Linux Kernel).

— The Secure Monitor verifies the signature of the BOOTLOADER

and MAIN parts of the baseband firmware.
— The Secure Monitor configures the baseband processor. As part of

this configuration, the physical memory reserved for the baseband
(0xF0000000 on GS7) is set to be the baseband main memory.

— If all the previous steps succeeded the cbd emits the
IOCTL_MODEM_ON ioctl to start the baseband processor.

During its initialization, the baseband firmware configures the Cortex-
R7 Memory Protection Unit (MPU) to restrict access to memory zones.

The Cortex-R7 core does not provide advanced memory management
features like address translation.

4 Debugger injection

All the injection steps are performed by exploiting a vulnerability
in the application processor which allows to write the memory shared
between AP and CP. This memory is used by the baseband to store the
MAIN part of its firmware.

4.1 Exploit a 1-day vulnerability

As seen in the baseband boot section, the bootloader memory is
signed by Samsung, and the memory is marked secure before checking the
signature.

To be able to modify the baseband code, two methods can be explored:
— Find a vulnerability in the baseband itself and try to bypass the

MPU from here in order to patch the code. This method is base-
band’s firmware dependant.

— Find a vulnerability in the application processor software to gain
the ability to modify the secure memory. This method depends
on the AP software version, but not on the baseband’s firmware
version.
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The second method was chosen as a 1-day vulnerability can be used
and the debugger will not depend on the baseband version.

Quarkslab recently disclosed a chain of vulnerabilities in the Trusted
Execution Environment which allows gaining code execution in a secure
driver on the Samsung Galaxy S7 Exynos [6]. Samsung did not imple-
ment correctly the anti-rollback mechanism, thus the exploit chain is
still applicable to up-to-date phone by loading the old driver and trusted
applications.

Trusted Execution Environment The Galaxy S7 (G930F) uses Kinibi
as Trusted Execution Environment (TEE). Many good descriptions of its
internals can be found online, so only the required knowledge is covered
by this document. Readers are strongly encouraged to read the full ex-
planation given by Quarkslab on the TEE internals/exploitation in their
presentation.

Kinibi is a small operating system built by Trustonic 5 running in
Secure World which provides security functionalities to the Normal World
OS and applications. The segmentation between secure and non-secure
world relies on ARM TrustZone technology as seen on figure 2.

Kinibi is composed of multiple components:

— The microkernel (MTK), which runs at the S-EL1 exception level;
— The main task (RTM), which runs at the S-EL0 exception level;
— Secure drivers are running at the S-EL0 exception level;
— Trusted Applications are running at the S-EL0 exception level;

The microkernel provides a set of system calls to userland applications
(RTM, TAs, drivers). These system calls are filtered depending on which
components perform the call.

Trusted Applications can only call a limited part of these syscall:
basically no communication with underlying components (no SMC), no
direct memory mapping. Only basic syscalls and IPCs to secure drivers
are allowed.

TA Trusted Applications can be reached from Android allowed applica-
tions through a Linux driver and a set of SMCs forwarded by the Secure
Monitor to the TEE.

TAs implement a loop for incoming messages which waits for the
notification from Normal World (NW), handles the messages, and notifies
the NW that a response is available.

5. https://www.trustonic.com/

https://www.trustonic.com/
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Fig. 2. Aarch64 exception levels

Messages are exchanged through a shared memory.

The SSEM Trusted Application contains a trivial vulnerability inside
one of the command handler, a stack-based buffer overflow.

This TA is built without stack cookies and TEE does not provide
security mechanisms like ASLR / PIE, therefore the exploitation is quite
straightforward.

Since Trusted applications cannot change attributes on memory pages
to mark them as executable, the exploitation is done with a ROP chain.

A ROP chain is used to gain the ability to perform arbitrary IPC calls
to secure drivers.

Secure Driver Like TA, Secure Drivers implement a loop for incoming
IPC messages. Messages are memory pages shared between the TA and
the driver. When a message arrives, the driver maps the TA message
memory in its own memory virtual space.

Like the SSEM TA, the VALIDATOR driver contains a trivial vulner-
ability in one of the IPC message handler, a stack-based buffer overflow.

This driver is built without stack cookies, so the exploitation is quite
straightforward.

Secure Drivers are way more privileged than Trusted Application; they
can for example invoke syscall to:

— Map physical memory (inside a whitelist)
— Call other components by performing Secure Monitor Calls
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Secure Monitor The Secure Monitor is the most privileged piece of
software in the ARM TrustZone architecture. It runs at the EL3 exception
level, and it is responsible for handling Secure Monitor Calls and for the
switch from Normal World to Secure World.

From the secure driver, there are lot of ways to gain the ability to
patch the Secure Monitor/baseband (mmap of S-EL1 components, SMC
calls reserved to secure world, . . . ). There are no public vulnerability and
exploit to achieve this part.

In order to modify the baseband code from the application processor,
two Secure Monitor patches are applied:

— Signature check is disabled in order to load a modified baseband
bootloader;

— When the baseband is copied, the memory is not marked as secure.

4.2 Baseband code injection

Baseband memory zones The baseband memory layout is composed
of:

— The bootloader part is mapped at address 0 ;
— The main code is mapped at the address 0x40000000 and is hosted

on a physical memory shared with the application processor;
— The cortex-R7 provides a Tightly Coupled Memory (TCM). This

memory zone is not shared with the application processor, and is
used for low latency and time predictability. The baseband uses
this memory, and copies the code from the main part when the
baseband is being initialized.

Injection Since the monitor has been patched to remove integrity/au-
thenticity check of the baseband image, a patched baseband image can be
loaded into the communication processor.

This image includes the debugger host code and the modified interrupt
handlers.

After the baseband starts, all of the required memory patches are then
applied from the debugger host code (this allows for example modifying
TCM memory which is not available to the application processor).

The baseband debugger code can also be injected after the baseband
starts, but since there is no debugger code prior to that point to per-
form cache eviction operations, this may cause issues with the cortex-R7
caches. Modified interrupts handlers are not taken immediately after the
modification.
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5 Debugger Development

This section covers the development of the debugger. Two main compo-
nents are involved: a payload that runs on the baseband itself and a server
that runs on the application processor (AP) which provides a gdb-server
interface.

The baseband payload is compiled to run in the Cortex-R7 processor
(CP). It is responsible for communications with the server, handling all
the interrupts and providing useful primitives in order to read and write
memory and registers.

5.1 Interrupts Handler

To handle breakpoints, invalid memory accesses, invalid instructions
etc., the debugger must be able to handle all the interruptions.

In ARM architecture, there is a vector table at the entry point of the
firmware responsible for handling all exceptions. The list of vectors can
be seen in figure 3.

Fig. 3. Arm exception vector table
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When installing the debugger, the aim is to rewrite all the handlers
to redirect the execution flow to the code of the debugger to handle all
exceptions.

An example of the use of these handlers is presented in Figure 4
regarding how breakpoints are handled.

Fig. 4. Breakpoint handling

5.2 Communication

The communication between the injected code in the baseband and the
debugger server in Android userland relies on the same mechanisms used
by the Linux kernel to communicate: shared memories and mailboxes.

A Linux kernel module allows reading and writing on shared memories
from Linux userland. A set of ioctls is used to send messages through
mailboxes.

Mailboxes are an easy way to trigger an interrupt in the baseband
side. The IRQ interruption handler allows jumping on the injected code,
and getting commands from the debugger server.

The IRQ generated by the mailbox write is handled by a modified
IRQ handler. This handler uses the Generic Interrupt Controller (GIC) to
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know which IRQ is active. If the current interruption is the mailbox IRQ
(86) the handler uses the EXYNOS_MCU_IPC_INTMSR1 registers to
know which mailbox interruption is active, and jumps in the debugger
command handler if the mailbox interruption dedicated to the debugger
is active. In other cases, the modified handler jumps in the original IRQ
handler.

After handling the interruption, the modified handler acknowledges it
to the GIC and calls a function inside the modem firmware to perform
the end of exception routine (rescheduling, etc.).

Thanks to this mechanism based on mailbox IRQ, the debugger server
running on the AP is able to interrupt the execution of the CP, and send
commands to the injected code.

Commands handled here allow the debugger server to read and write
the CP memory, resume a task after a breakpoint, and stop and resume
the full CP OS.

In the other direction (CP->AP), the same mechanism is used. The
Linux driver registers a mailbox IRQ handler for the dedicated mailbox
interruption. Mailbox interrupts received by this handler can be read by
a userland application through a char device.

5.3 Shared memory synchronization

CP and AP share some memory ranges, but each CPU has its own
memory cache system. To be sure that the data is written to the memory
before interrupting the other CPU, the cache has to be flushed / synced.

The cache management in the AP is well known. It’s a standard
ARMv8 cache managed with dedicated instructions. Before generating
the mailbox interruption, the cache is flushed.

The CP cache management is less known. Reverse engineering the IPC
system in the CP firmware allows to understand the cache mechanisms.
The CP uses an external PL310 cache controller [1]. Cache sync and flush
requires some I/O mapped registers to be written/read. A cache flush is
done before each call to custom interruption handlers, the shared memory
range is flushed on the controller and after each call a cache sync operation
is requested to the controller.

5.4 GDB Server

The debugger server in userland implements the specification of gdb-
server in order to be able to connect a gdb-client. All the required func-
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tionalities such as read or write memory are implemented in the baseband
payload. The Figure 5 describes the flow.

Fig. 5. Communication between different components

6 Examples of use

6.1 Logs enabling

While reversing the baseband’s firmware, a function responsible for
printing logs has been identified. However, this function is not enabled on
production devices.
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As a demonstration of the debugger, a breakpoint has been set on
this function and a command has been written to print the logs when the
breakpoint is reached.

# ./ debug_server

[+] ******************************* GMC RX EVENT (1 -24)

**************************************

[+] GET int@HISR :81

[+] xdma is not running

[+] ShmTIMER KICK @ShmTask

[+] gmc_MsgPreProcessNoWait

[+] #### Processing the incoming message ####

[+] GET int@HISR :81

[+] xdma is not running

[+] ShmTIMER KICK @ShmTask

Listing 2. Example of logs

6.2 Modification of a NAS packet

A breakpoint can be set on a function responsible for sending NAS 6

packet to modify the content sent to the core network. This can be used
to test or fuzz this kind of equipment from a controlled device.

Here the example on 6 demonstrates the injection of the string SYNA

in the field p-tmsi of a GMM-Attach-Request packet.

Fig. 6. Injection in a GMM packet

6. https://en.wikipedia.org/wiki/Non-access_stratum

https://en.wikipedia.org/wiki/Non-access_stratum
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7 Conclusion

Due to to vulnerabilities on the GS7 phone, it is possible to write in
secure memory and to inject a custom payload on the Shannon Baseband.

A debugger has been written in order to debug potential crashes,
enable hidden functionalities such as logs or inject GPRS traffic.

This tool is provided for the Galaxy S7 but can be adapted to a more
recent Samsung Phone if a public vulnerability allows to writing in secure
memory.

The source code is available on Github.
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