
How to design a Baseband debugger
SSTIC 2020

June the 3rd
Synacktiv
David Berard, Vincent Fargues

Table of Contents

1 Introduction

2 Shannon architecture

3 Debugger injection

4 Debugger development

5 Examples of use

6 Conclusion

3/77

Table of Contents

1 Introduction

Who are we

Context

Related Work

4/77

Who are we

David Berard Vincent Fargues

Synacktiv
Offensive security company created in 2012
Soon 74 ninjas !
3 poles : pentest, reverse engineering, development
4 sites : Toulouse, Paris, Lyon, Rennes

5/77

Table of Contents

1 Introduction

Who are we

Context

Related Work

6/77

Context

Smartphones

Most targeted devices
Many entry points

Browser
SMS/MMS
Instant messaging
Wifi/Bluetooth
Baseband

Target

Samsung phone baseband : Shannon

Galaxy s7

6/77

Context

Smartphones

Most targeted devices
Many entry points

Browser
SMS/MMS
Instant messaging
Wifi/Bluetooth
Baseband

Target

Samsung phone baseband : Shannon
Galaxy s7

7/77

Table of Contents

1 Introduction

Who are we

Context

Related Work

8/77

Related Work

Previous work - Baseband exploitation

Breaking Band – reverse engineering and exploiting the Shannon Baseband - Nico Golde and Daniel Komaromy
A walk with Shannon - Amat Cama

Previous work - Baseband debugging

Rétroconception et débogage d’un Baseband Qualcomm - Guillaume Delugré

Table of Contents

1 Introduction

2 Shannon architecture

3 Debugger injection

4 Debugger development

5 Examples of use

6 Conclusion

10/77

Table of Contents

2 Shannon architecture

Dedicated ARM Processor

Shannon operating system

AP-CP Communications

Boot

Memory Map

11/77

Dedicated ARM Processor

Shannon Communication Processor
Developed by Samsung
Arm Cortex R7
Used by all non-US Samsung phones

Firmware
The file modem.bin is the code that runs on the Baseband
Provided in Samsung Firmware
Easy to load in IDA

12/77

Table of Contents

2 Shannon architecture

Dedicated ARM Processor

Shannon operating system

AP-CP Communications

Boot

Memory Map

13/77

Shannon operating system - Operating system

Operating system

Real Time OS
Many tasks

Full mobile phone stack 2G - 5G
Communication with Application Processor
Communication with SIM cards
Remote File System

14/77

Shannon operating system - Tasks

Tasks
Each task has the same structure
Initialization
While loop waiting for messages
Communication between tasks using a mailbox system

15/77

Shannon operating system - Tasks

Mailboxes used for inter-tasks communications

16/77

Table of Contents

2 Shannon architecture

Dedicated ARM Processor

Shannon operating system

AP-CP Communications

Boot

Memory Map

17/77

AP-CP Communications(1/2)

Communications
Communications are done with shared memories and mailboxes

Mailboxes
Each mailbox is used for one way communication
Mailbox notifies the other processor with an interrupt
20 mailboxes are used by the GS7

18/77

AP-CP Communications(2/2)

SIPC5
CP and Linux Kernel communicate with a custom protocol called SIPC5
Linux Kernel dispatches to user-space programs with char devices

Userland binaries
Most of communications are done by 2 binaries
cbd : boot and initialization of the Baseband firmware
rild : Baseband communications, remote file system, OEM functionalities

19/77

Table of Contents

2 Shannon architecture

Dedicated ARM Processor

Shannon operating system

AP-CP Communications

Boot

Memory Map

20/77

Boot(1/6) - Copy of BOOTLOADER part from flash to physical memory

Copy of BOOTLOADER part from flash to physical memory

21/77

Boot(2/6) - Copy of MAIN part from flash to physical memory

Copy of MAIN part from flash to physical memory

22/77

Boot(3/6) - Tag memory as Secure

Tag memory as Secure

23/77

Boot(4/6) - Verify signature

Verify signature

24/77

Boot(5/6) - Configure Baseband memory

Configure Baseband memory

25/77

Boot(6/6) - Start Baseband Processor

Start Baseband Processor

26/77

Table of Contents

2 Shannon architecture

Dedicated ARM Processor

Shannon operating system

AP-CP Communications

Boot

Memory Map

27/77

Memory Map

After the Baseband start, some code is copied and the memory layout is as follows

Memory Layout

0x00000000 - Bootloader
0x40010000 - Main (Shared with application Processor)
0x04000000 - Tightly Coupled Memory (Not shared)

Table of Contents

1 Introduction

2 Shannon architecture

3 Debugger injection

4 Debugger development

5 Examples of use

6 Conclusion

29/77

Table of Contents

3 Debugger injection

Exploit a 1-day vulnerability

Baseband code injection

30/77

Exploit a 1-day vulnerability : Secure World

Baseband Boot
Baseband MAINmemory is marked as secure memory by the EL3 monitor
Baseband firmware signature is checked by the EL3 monitor

Required vulnerability

A vulnerability in the Baseband itself : but cannot be used to debug the Baseband initialization and is Baseband
firmware dependant.
A vulnerability in the Secure World which allows to bypass the code signature. This kind of vulnerability is not
Baseband firmware dependant, and permits to load newer and older Baseband versions on a vulnerable phone.

Available vulnerabilities
Quarkslab has presented a chain of vulnerabilities at Blackhat-US 2019 that allows to gain code execution at the
highest privilege on the AP : EL3 monitor => perfect chain for our objective.

31/77

Exploit a 1-day vulnerability : Exploit chain

Samsung S7 TrustZone software architecture

32/77

Exploit a 1-day vulnerability : Step 1 Trusted Application

Trivial stack buffer overflow in SSEM Trusted Application

Can be reached from Android Userland (need a favorable SElinux context / rooted phone)
TEE Kernel does not implement ASLR
This Trusted Application is built without stack cookies

Communication between TA and Secure Drivers
Trusted Application can communicate with driver with IPC
Driver may implement a whitelist of allowed TA

33/77

Exploit a 1-day vulnerability : Step 1 Trusted Application

Gaining code execution in the SSEM TA.

34/77

Exploit a 1-day vulnerability : Step 2 Secure Driver

Trivial stack buffer overflow in VALIDATOR Secure Driver
Can be reached from the SSEM Trusted Application
Drivers are just Trusted Application with access to an extended API
TEE kernel does not implement ASLR
This Secure Driver is built without stack cookies

35/77

Exploit a 1-day vulnerability : Step 2 Secure Driver

Gaining code execution in the VALIDATOR Secure Driver.

36/77

Exploit a 1-day vulnerability : Step 3 TEE Kernel

Driver API
Driver can map physical addresses in their address space
TEE Kernel deny some address ranges to be mapped

Physical memory access

TEE Kernel forgot to denies itself to be mapped by Secure Drivers
Exploit in VALIDATOR driver can map the TEE Kernel R/W
TEE Kernel code can be live patched from the driver

adresses verification in the map syscall is NOP’ed
Driver can now map everything

37/77

Exploit a 1-day vulnerability : Step 3 TEE Kernel

Patching TEE kernel from VALIDATOR driver

38/77

Exploit a 1-day vulnerability : Step 4 Secure Monitor

Secure Monitor patching

After TEE Kernel patch, driver can map everything
Signature check is disabled
Function responsible of marking the Baseband memory secure is NOP’ed

39/77

Exploit a 1-day vulnerability : Step 4 Secure Monitor

Patching Secure Monitor from VALIDATOR driver

40/77

Exploit a 1-day vulnerability : Patched but still exploitable

Anti-rollback mechanism
Vulnerable TA and Secure Driver are still loadable (no anti-rollback)
TEE Kernel is still vulnerable on the latest firmwares (Galaxy S7)

41/77

Table of Contents

3 Debugger injection

Exploit a 1-day vulnerability

Baseband code injection

42/77

Patch the firmware : format

Firmware Format : TOC
The firmware starts with a header that contains information for memory segments :

address where the section will be copied in the Baseband memory
offset in the firmware file
segment size

Segments in original firmware

BOOT
MAIN
NV
OFFSET

43/77

Patch the firmware : add a segment

Patches
All the debugger code is injected in a new segment (after the MAIN segment)
The debugger code starts with an interruption vector table
MAIN segment is modified to change interruption handler addresses
This patched firmware can be loaded since Secure Monitor has been patched to remove the signature check

Load the patched firmware

stop the CBD service
setprop ctl.stop cpboot-daemon

start a new one
cbd -d -tss310 -bm -mm -P ../../data/local/tmp/modem.bin

Table of Contents

1 Introduction

2 Shannon architecture

3 Debugger injection

4 Debugger development

5 Examples of use

6 Conclusion

45/77

Table of Contents

4 Debugger development

Architecture

Interrupts Handler

Communication

Breakpoint handling

GDBServer

Improvements

46/77

Architecture

3 main components

Debugger server that runs on the Android Userland
A Linux driver that provides the debugger server to communicate with the Baseband
Injected code in the Baseband that handles exceptions and communications from/to the debugger server.

47/77

Architecture - Overview

Communication between different components

48/77

Table of Contents

4 Debugger development

Architecture

Interrupts Handler

Communication

Breakpoint handling

GDBServer

Improvements

49/77

Catched Interrupts

Vector table offset Name Mode catched / why

0x00 Reset Supervisor no
0x04 Undefined instruction Undefined yes (catch undefined instructions in debugger)
0x08 Software interrupt Supervisor yes (used for asserts by the Baseband, need to be

catched)
0x0C Prefetch Abort Abort yes (catch breakpoint and instruction fetch issue)
0x10 Data Abort Abort yes (catch memory issues)
0x18 IRQ IRQ yes (used for Communication)
0x1C FIQ FIQ no

50/77

Table of Contents

4 Debugger development

Architecture

Interrupts Handler

Communication

Breakpoint handling

GDBServer

Improvements

51/77

IRQ & Mailboxes

Communication mechanism
The debugger injected code uses the same mechanisms as the standard communication between AP and CP :

A dedicated mailbox for CP->AP communications (Interrupts handled in Linux driver)
A dedicated mailbox for AP->CP communications (Interrupts handled in IRQ handler)
A dedicated shared memory area

52/77

IRQ & Mailboxes

IRQ handler

Debugger server in the Android Userland uses IOCTL to write a command inside a mailbox
Driver writes into the mailbox control register, an interrupt is generated on the CP side
Injected code handles the IRQ, checks the current interrupt ID on the GIC
Injected code handles the mailbox interrupt and redirect other interrupt to the original IRQ handler

53/77

IRQ & Mailboxes

Debugger commands

Mailbox interrupt allows receiving commands from the debugger server
The CP->AP mailbox is used to acknowledges the command

Signal notification

Breakpoints / data abort / asserts / undefined instructions are handled in their respective interruption handler
The CP->AP mailbox is used to notify the debugger server

54/77

Shared memory

Shared memory area

A shared memory area is dedicated to communications between injected code and the debugger server.
A zone already in the CP-AP shared memory is used (not used by the Baseband)

Memory synchronisation

AP side : Cache flushes / sync with dedicated ARMv8 instructions
CP side :

CP uses a PL310 cache controler, need to read/write some registers to perform cache flush/sync operations

Cortex-R7 cache management instructions do not affect these caches

54/77

Shared memory

Shared memory area

A shared memory area is dedicated to communications between injected code and the debugger server.
A zone already in the CP-AP shared memory is used (not used by the Baseband)

Memory synchronisation

AP side : Cache flushes / sync with dedicated ARMv8 instructions
CP side :

CP uses a PL310 cache controler, need to read/write some registers to perform cache flush/sync operations
Cortex-R7 cache management instructions do not affect these caches

55/77

Table of Contents

4 Debugger development

Architecture

Interrupts Handler

Communication

Breakpoint handling

GDBServer

Improvements

56/77

Insert Breakpoint

57/77

Insert Breakpoint

58/77

Handle Breakpoint

59/77

Continue Execution

60/77

Table of Contents

4 Debugger development

Architecture

Interrupts Handler

Communication

Breakpoint handling

GDBServer

Improvements

61/77

GDBServer

A binary is developed in Userland which implements the GDB Remote Serial Protocol

Some functionnalities are in the Baseband payload

Read / Write memory
Read / Write registers
Stop Target
Resume Target
Continue

62/77

GDBServer - Stop/Non-Stop mode

2 modes for GDB
Choosen by gdb client with command set non-stop on/off
Both modes are handled by the gdbserver provided

Stop mode

The whole Baseband is debugged as one single program
Problems with inter-task communication and watchdog

Non-stop mode

Each Baseband task is a thread for gdb
Each task is handled separately
All stops reply by the gdb server are asynchronous

63/77

Table of Contents

4 Debugger development

Architecture

Interrupts Handler

Communication

Breakpoint handling

GDBServer

Improvements

64/77

Improvements

Work in progress

Handle multiple breakpoints in multiple tasks
Watchpoints
Watchdogs
Performance

Support

EL3 patching is done for version G930FXXS6ESJ2
Older and newer CP version can be load on this version
Some offset to adjust to support another version

Table of Contents

1 Introduction

2 Shannon architecture

3 Debugger injection

4 Debugger development

5 Examples of use

6 Conclusion

66/77

Table of Contents

5 Examples of use

Basic debugger functionning

Logs enabling

Modification of a Nas packet

67/77

Basic debugger functionning

Functionnality

Read/Write mem
List tasks
Insert breakpoint
Backtrace

68/77

Basic debugger functionning - Demo

69/77

Table of Contents

5 Examples of use

Basic debugger functionning

Logs enabling

Modification of a Nas packet

70/77

Table of Contents

5 Examples of use

Basic debugger functionning

Logs enabling

Modification of a Nas packet

71/77

Modification of a Nas packet

Breakpoint

Function responsible for sending GMM : mm_SendGmmMessage
Modify the content of the message buffer
Continue Execution

72/77

Modification of a Nas packet - GDB Script

target remote :1337
b * 0x40CC7010
commands

set $type = *(unsigned char *) ($r0+0x1+4)
printf "[i] GMM type : 0x%02x\n", $type
if($type==0x16)

printf "[i] Modifying identity response ...\n"
set *(unsigned long long*) ($r0+4+3) = 0x32344b43414e5953
printf "[+] modified IMSI : SYNACK42\n"
del br 1

end

continue
end
continue

73/77

Modification of a Nas packet - Demo

Table of Contents

1 Introduction

2 Shannon architecture

3 Debugger injection

4 Debugger development

5 Examples of use

6 Conclusion

75/77

Table of Contents

6 Conclusion

Conclusion

76/77

Conclusion

Conclusion
Now Shannon Baseband can be debugged
Still work to do for a full featured debugger
Code provided allows to execute code as the Baseband
Code will be available on Synacktiv’s github

MERCI DE VOTRE ATTENTION

QUESTIONS?

Contact :
david.berard@synacktiv.com
vincent.fargues@synacktiv.com

mailto:david.berard@synacktiv.com
mailto:vincent.fargues@synacktiv.com

	Introduction
	Who are we
	Context
	Related Work

	Shannon architecture
	Dedicated ARM Processor
	Shannon operating system
	AP-CP Communications
	Boot
	Memory Map

	Debugger injection
	Exploit a 1-day vulnerability
	Baseband code injection

	Debugger development
	Architecture
	Interrupts Handler
	Communication
	Breakpoint handling
	GDBServer
	Improvements

	Examples of use
	Basic debugger functionning
	Logs enabling
	Modification of a Nas packet

	Conclusion
	Conclusion

