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Abstract. The aim of the current article is to provide both methodolog-
ical and technical feedback on the “Inter-CESTI” challenge organized
by ANSSI in 2019 with all 10 ITSEFs licensed for the French CSPN
scheme. The purpose of this challenge is to evaluate their approaches to
attack a common target representative of the “Hardware devices with
boxes” domain, which groups products containing embedded software
and combines hardware and software security elements. The common
target chosen was the open-source and open-hardware project WooKey,
presented at SSTIC 2018 [30, 31]. It is a relevant test vehicle both in
terms of software and hardware due to its architecture and threat model.
The article aims to capitalize on the feedback from the challenge, with
a focus on the hardware and software tests that the labs were able to
conduct in a white box setting, as well as the identified attack paths.

1 Context

Traditionally, an Information Technology Security Evaluation Facility
(ITSEF) is licensed by the ANSSI’s Centre national de certification (CCN,
french for National Certification Body) for a given domain, either software
or hardware. ITSEFs licensed for software generally deal more with software
evaluations (VPN, anti-virus, disk encryption software, etc.). Whereas
ITSEFs licensed for hardware focus on evaluating targets closer to hardware
products (smart cards, accelerated encryption hardware, etc.).

The “Hardware devices with security boxes” domain includes HSM
(Hardware Security Modules), smart meters and various embedded systems.
An analysis of this type of product shows a high degree of interdependence
between embedded software and the underlying hardware, a feature not
found as strongly in the classical purely software or purely hardware areas.
This means that in order to evaluate this type of product, a laboratory
must necessarily have a dual competence: software and hardware. The
strict distinction between these two areas is thus tending to blur. We
have indeed noted during the licensing audits of the ITSEFs that those
identified in one of the domains may also have skills in the other domain.

The “Hardware devices with security boxes” domain is unfortunately
only found under the Common Criteria (CC) [4] scheme for which only
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a part of the ITSEFs are licensed. However, France also has a national
scheme, called Certification de Sécurité de Premier Niveau (CSPN) [1],
but where this domain does not exist. As a result, many ITSEFs that are
not licensed for CC cannot demonstrate their competence in evaluating
products intertwining software and hardware. A possible new CSPN
domain “Hardware Device” is therefore being considered to fill this gap.

It so happens that CCN organizes annual challenges to test the skills
of ITSEFs, usually with a separation between hardware and software
challenges. In the hereabove described context, it has been decided to
organize a common “Hardware Device” challenge in 2019, which reflects
this domain, and which would allow skill evaluation of all ten ITSEFs
for this potential new CSPN domain. To accentuate the difficulty and
stimulate the relevance of the outcome, the ITSEFs are encouraged to
step out of their comfort zones via dedicated test plans where the ANSSI
has selected security functions: the so-called “software” ITSEFs have been
allocated a majority of hardware tests, while the so-called “hardware”
ITSEFs have tested more software functions.

For this challege’s test vehicle, CCN wanted to find a representative
product of the “Hardware Device” domain, with, if possible, an open-
source design to ease the characterization of the paths of attack and white
box testing. The choice fell on the WooKey project [25,30,31] developed
at ANSSI for which laboratory experts can more easily appreciate the
work of the ITSEFs, and eventually provide them technical assistance.

In this article, we first give a quick description of the WooKey product
and the elements that made up the test vehicle. We then briefly present the
envisaged attack surface and the different attack paths distributed over the
ten ITSEFs. Finally, we give various concrete attack paths explored and/or
exploited by the ITSEFs with, for each of them, a context, reproducible
results and a small quotation.

2 WooKey: the challenge test vehicle

The WooKey project [30, 31] has been selected as a test vehicle for its
very representativeness of the “Hardware Device” domain: its hardware
design and software architecture (rich in external interfaces) lead to
numerous attack paths to undermine the product security. Beyond the
attacks themselves, the methodology and test plans of the ITSEFs are
a relevant element taken into account for their evaluation (including
assessment of their understanding of the target).

WooKey is composed of two main elements (shown on Figure 1):
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— A device containing an STM32 MCU (MicroController Unit), a
touch screen for user interaction, a micro-SD slot, two USB ports
(full-speed and high-speed) and a slot for inserting a standard credit
card size smart card.

— An authentication token in the form of an extractable contact
smart card (communicating via an ISO7816 bus).

When running in nominal mode, Wookey is a disk encrypting platform
allowing to store user’s data on a micro-SD card while ensuring their
confidentiality. Access to the platform’s master secrets is done after a
strong user authentication phase involving two factors: an AUTH smart
card and two PIN codes (PetPIN and UserPIN). To unlock his WooKey,
the user inserts this authentication token in the device, enters his PetPIN
on the touch screen, validates a PetName to ensure that the token is
correct, then enters his UserPIN to completely unlock the platform. From
there, the device connected via USB to a host PC is presented as a mass
storage device, and the user can drop and retrieve data with transparent
(de)encryption. PIN unlocking actually allows the decryption master key to
be retrieved from the token and injected into the cryptographic accelerator
of the platform’s microcontroller.

WooKey provides another running mode: Device Firmware Upgrade
or DFU. In this mode, the device waits for an encrypted and signed
update file that upgrades the embedded firmware. In order to unlock
this mode, the user presses the physical button to start the platform in
DFU mode, inserts a dedicated token (called DFU token), enters PINs
(PetPIN, validates PetName, then UserPIN) relevant to this token, and
thus accesses the device from the host PC via USB as a DFU class device.

The firmware is encrypted and signed on a trusted PC, using a third
dedicated token named SIG (inserted in a generic smart card reader on
the PC) and containing notably the private firmware signing key.

WooKey’s security relies on various elements of defense in depth:

— A software protection of the firmware through a microkernel written
in ADA (type-safe language), isolated tasks with dedicated userland
device drivers (for USB, micro-SD card, smart card, display). Thus,
a vulnerability from an exposed interface should be confined to the
task managing this interface. Additional software security elements
are used to reinforce protection: stack canaries, W⊕X thanks to the
MPU (Memory Protection Unit), etc.

— Cryptographic protection of sensitive assets, thanks in particular to
tokens based on secure components evaluated at level EAL4+ [11]
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of the Common Criteria and ensuring robustness against several
classes of attacks.

For the sake of brevity, we do not give more information about the
WooKey project here. The reader is invited to check the bibliographic
references [30,31] and the project documentation [25] for more details. More
information can also be found in the CSPN security target evaluation [26]
that has been provided to the ITSEFs for the challenge.

Fig. 1. “Closed” WooKey tar-
get Fig. 2. “Open” WooKey target

3 Evaluation scope of the challenge

The main attacks we are interested in for this challenge are software
and hardware pre-authentication attacks, software post-authentication
attacks, stealthy hardware pos-authentication attacks, and this on both
the WooKey platform and its AUTH and DFU tokens. Attacks bypassing
the firmware verification at startup and at update time are also considered.
The parts of the tokens covered by their CC EAL4+ certification (notably
the Integrated Circuit IC and the Javacard platform) are not considered
relevant, only the code of the Javacard applets that runs on these tokens
on top of the VM is in the scope of the evaluation.

Hardware trapping and relay attacks, although interesting, are left
aside as less relevant to the challenge: the product is inherently suscep-
tible to such attacks. On the other hand, purely software trapping in
pre-authentication phases of a platform, or cloning of a platform must be
considered. These two scenarios are equivalent in the context of WooKey
because it is open-source and open-hardware without hardware “counter-
feiting” countermeasures: modifying the firmware of a genuine WooKey or
making a new one with the firmware of another brings the same attacks
aiming at stealing sensitive assets by pilferage attacks (possibly twice).
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The reason motivating our choice concerning the relevant attack paths
is the fact that an attacker who has to carry out hardware attacks or
combined attacks (hardware and software) will necessarily have an invasive
aspect, and will not be able to carry them out during the user authenti-
cation phase without him being aware of it. From this observation arise
the pre-authentication aspects of hardware attacks. Notable exceptions
in post-authentication are stealthy hardware attacks or combined attacks
that can be conducted without modifying the board and the token, during
the user authentication, and without the user noticing anything. Examples
of such attacks are for instance passive secrets recovery at wide-range
(with an antenna and so on), exploiting the USB interface consumption as
a wiretap to steal sensitive assets, or use voltage glitching through USB
to advantageously deflect nominal code execution.

Software attacks are for their part completely relevant in post-
authentication: infiltrating the firmware of a WooKey after entering the
user’s PINs from a malicious USB stack on the host PC or from a trapped
SD card to exploit a vulnerability in the platform’s SDIO stack are plausi-
ble scenarios.

Within the context of the challenge, a CSPN-type security target
grouping sensitive assets, usage contexts and security functions was written
and provided to the ITSEFs. This security target is made public as a
companion document to this article [26]. Finally, each ITSEFs was provided
with:

— A completely open WooKey platform (see Figure 2) with
JTAG/SWD accessible, and three AUTH/DFU/GIS open and
reprogrammable tokens.

— A closed WooKey platform (see Figure 1) with locked JTAG/SWD
(in RDP2), and two AUTH/DFU closed tokens (in the GlobalPlat-
form sense).

4 Identified attack paths and distribution methodology

In order to organize the distribution of the large amount of work
covered by the security target [26] to the various ITSEFs, we have split
the relevant attack paths between the software and hardware domains.
Beyond the search for vulnerabilities, the conformity of the product to
the announced specifications must also be verified and validated by the
ITSEF.

Each attack path can lead to a partial attack, a combination of them
may eventually lead to a complete attack path of the product in various
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scenarios such as theft, trapping, trapping with remediation and possibly
second flight, etc. As mentioned earlier, in order to be able to evaluate the
capacities of software ITSEFs to deal with hardware attacks, and conversely
of hardware ITSEFs to deal with software attacks, it was decided to assign
each ITSEF attacks at the margin of his area of competence. The results
of this distribution are very interesting, and show that the hybrid aspect
of the “Hardware Device” domain allows ITSEFs to find relevant attack
paths.

On the software side, the goal of the attacker is to exploit a vulnerability
in the code to hijack the operation of the product and recover assets. The
vulnerabilities considered are those that are purely software, notably Run-
Time Errors (stack and heap buffer overflows, integer overflows, etc.) as
well as logic errors in state machines. We have identified four axes:

— Static analysis and fuzzing of the exposed code:
— Exposed software stacks: the most important software elements

exposed to the outside are the software stacks managing the com-
munication interfaces. The ISO7816 bus handles communication
with the authentication token, the USB bus handles communi-
cation with the host PC, the SDIO bus handles communication
with the SD card, and the SPI bus handles communication with
the touch screen. A vulnerability exploited in one of the software
stacks handling them allows the control of the corresponding
task (in particular, the tasks managing the AUTH and DFU
tokens contain sensitive elements in their memory space).

— Syscalls: system calls are a potential entry point to either per-
form a privilege escalation, or to contaminate another task (e.g.
via poor IPC management/implementation), or to establish
covert channels between tasks.

— The analysis of the Bootloader:
The WooKey Bootloader is a critcal software element. On one
hand it is executed at boot time and decides which partition
will be executed on the platform (upon integrity checking and
verification of its version). On the other hand it is not updatable.
It is therefore crucial to check the proper functioning of its state
machines. The goal of the Bootloader study is to find by code
proofreading, fuzzing and other analyses, remaining vulnerabilities
as well as weaknesses/fragility to software attacks.

— MPU management analysis and privilege separation:
The MPU (Memory Protection Unit) is the cornerstone of
WooKey’s software defense in depth since it allows task parti-
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tioning and the W⊕X enforcement. It is therefore important to
validate by static analysis, code review or dynamic analysis (from
each task) the correct configuration of the MPU by the kernel.

— Analysis of the Javacard applets:
On the token side, the applets are implemented using the Javacard
language. The underlying NXP JCOP J3D081 platform is certified
by the Common Criteria [11] ensuring resistance to some advanced
attacks. Nevertheless, it is important to validate that the implemen-
tation of state machines and the product applet life cycle is free of
vulnerabilities. For instance, insure that it is impossible to extract
sensitive assets without prior authentication with PINs (in case of
loss or theft with token delivery for example). Moreover, as some
algorithms are not exposed or made available by the platform API,
they have been fully implemented in Javacard (this is the case for
example of the CTR mode of the AES, the HMAC, etc.), as they
are not covered by the Common Criteria certification. It is hence
important to validate that these custom implementations are not
subject to cryptographic weaknesses, and are SCA (Side-Channel
Attacks) as well as FIA (Fault Injection Attacks) resistant.

On the hardware side, the attacks foreseen in the CSPN framework are
those using hardware at a price considered as “reasonable”, e.g. oscilloscope,
logic analyser, common and/or accessible electronic hardware (MCU-based
development boards, FPGA, ChipWhisperer [3], etc.). Attacks using chip
stripping (e.g. heavy chemistry), laser faults, FIB (Focused Ion Beam),
etc., are considered to be too highly rated (and therefore out of scope).

In particular, we consider appropriate Fault Injection Attacks (FIA)
using voltage glitch [32], clock glitch or EM (electromagnetic emanations)
glitch [2] to be in scope. These attacks, as opposed to laser injections,
do not require chip stripping neither complex nor expensive hardware.
Disrupting the voltage requires, for example, an FPGA and an oscilloscope,
costing a few hundred euros (plus a rather “simple” preparation of the
target to be attacked by generally minor modifications of the PCB).

— Fault injection and glitch attacks (FIA): These attacks focus on
the glitch which allows, via the injection of one or more faults, to
hijack security primitives. The rating of such attacks is interesting
because it must take into account the target preparation time (for
example removing parasitic capacities on the PCB), the mapping
time to find exploitable faults (spatial and/or temporal mapping),
the probability that an exploitable fault will occur, etc. Stealthy
FIA that do not require any preparation or PCB modification (e.g.
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discrete injection through USB) are of course very relevant as they
either do not require stealing the target for a very long time, or
allow a direct attack without any stealing.
— Attacks against RDP: RDP (Readout Protection) is the tech-

nology implemented in STM32 MCUs to protect flash data and
remove access to JTAG/SWD. RDP seems to be quite prone to
faults as recent publications have shown [21,32,49]. A successful
pre-authentication attack on RDP would allow the trapping or
cloning of a WooKey.

— Fragility of the Bootloader: the Bootloader implements itself
protections against RDP downgrade, in order to potentially
detect a successful fault injection before its execution. The
Bootloader is also supposed to check the integrity and manage
an anti-rollback mechanism on the partitions present in the
internal flash. All these elements are potentially “faulty”, and
the analysis of their robustness is interesting.

— Sensitive code fragility: generally speaking, any task or kernel
code exposed and sensitive to glitches in pre-authentication is
an interesting attack surface to evaluate, and this in relation to
and according to the fault model characterized on the target.

— Side-Channel Attacks (SCA):
Some cryptographic primitives are used in WooKey for pre-
authentication, and for those that manipulate secret data it may be
interesting to evaluate their robustness to SCA. These attacks
would make it possible to extract the secrets via the acquisi-
tion of consumption curves or electromagnetic emanations. They
can be devastating, specifically if such attacks are possible in a
stealthy way (e.g. with an antenna at a wide-range from the target,
through monitoring the USB interface, etc.): in this case, even
post-authentication attack scenarios must be considered. In this
last case, SCA somewhat meet TEMPEST evaluations (see below).

— Analysis of communication buses:
The target contains several buses on which potentially sensitive
data transit. Notably, the ISO7816 bus between the platform and
the token is supposed to establish a secure communication channel:
it is important to validate its conformity. The SDIO bus allows to
interact with the dedicated task, and potentially to take control
of it in case of a programming error. Logic analyzers allow bus
sniffing, as well as potentially induce malformed packets injections
allowing, for example, fuzzing at the lowest protocol level.
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— TEMPEST attacks:
PIN entry is done on a touch screen, which implies potential remote
EM leaks regarding the keys pressed by the legitimate user during
authentication. Knowing that these elements could be captured
several meters away using a well-sized antenna (and therefore
discreetly), a TEMPEST evaluation of the product is relevant.

Finally, and as previously mentioned, although interesting, attacks
by hardware trapping of the platform (especially relay attacks) are also
studied but with a lower priority.

5 Attacks overview: a reader’s digest

In the sequel of the article, various (partial or complete) attack paths
analysis performed by the ITSEFs during the challenge are reported in
detail. Although this does not cover all the analysis and all the explored
paths (for brevity reasons and to avoid an illegible article), the most
relevant results are compiled.

These results provide insightful details about the adopted technical
methodology, the necessary equipment and setup (software and hardware),
the found vulnerabilities and weaknesses and their possible (partial or
total) exploitation in the light of WooKey’s threat model and security
target [26]. In order to provide the reader a bird’s view of these results,
the current section classifies them in categories and places them in an
exploitation context with regard to WooKey. We also provide links between
described partial attacks that would lead to a more complete attack path,
as well as some results that can be used as technical inputs to other results,
that would improve the overall analysis.

The reader should also be aware that most of the described evaluations
have been conducted by various ITSEFs in an independent and parallel
way. This can induce some intersections between the descriptions, and
some explainable redundancies in the performed tests and explanations. In
any case, such a redundancy is interesting since it also allows to capture
different approaches for the same target problem. As a matter of fact,
WooKey’s Bootloader robustness against FIA has been widely stressed,
and sections 14, 16, 9 and 15 tackle various methodologies (EM and voltage
glitches, formal methods) to find defects and exploit them in this rather
critical piece of code. Finally, all the performed tests are not presented in
the current article mainly for concision considerations: we have selected
what we believe to be relevant and complementary attack paths. For
instance, fuzzing campaigns on the USB stack are not presented, although
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being apposite, as they provided less interesting feedback and results than
other approaches.

Our classification of the evaluations and attacks, albeit somewhat
artificial, tries to capture the big thematic axis presented in 4. Table 1
provides a good overview of the 15 attack paths detailed in the current
article, with their corresponding section references and the various techni-
cal aspects they cover. We can roughly distinguish three kinds of attack
paths (but this distinction is not exclusive, an attack path can be in more
than one category):

— First, the ones that are oriented towards software exploits (buffer
overflows, automatons weaknesses, etc.) and only use software
techniques (i.e. no PCB preparation or advanced equipment): 02
involves a pure software fuzzing of the ISO7816 driver and the
token abstraction library (exploiting their portability); 04 finds
a privilege escalation in the EwoK microkernel through syscalls
software fuzzing; 05 explores MPU configuration using dedicated

task instrumentation. 01 tries with the help of static code review
to check that the automatons in the Javacard tokens do not present
software weaknesses. 12 uses formal methods to explore potential
RTE (RunTime Errors) in the Bootloader code.

— Then, we have paths that are dedicated to evaluate physical attacks
resistance, mainly against SCA and FIA. These attacks usually
involve PCB preparation and dedicated equipment to be exploited,
and encompass scenarios where the WooKey platform and/or the
token are stolen for a certain amount of time. The main notable
exceptions are TEMPEST attacks since they require a dedicated
equipment, but do not require to steal the target and operate
stealthily. 08 reviews ECDSA and ECDH code against SCA during
pre-authentications attacks to recover the platform ECDSA key.
09 exploits a leakage in the HMAC computation of the platform
keys authenticity tag to extract encrypted platform keys using SCA.
10 uses FIA with voltage glitches to try to bypass the STM32
Readout Protection that prevents adversaries to read the MCU
internal flash. 11 explores EM fault injection effects on WooKey’s
Bootloader, more particularly on internal firmware integrity check.
12 uses voltage glitches to perform FIA and defeat the firmware

anti-rollback mechanism. 15 shows the relevance of TEMPEST
attacks on the SPI bus, and the results have to be coupled with
14 that analyses SPI communication details and paves the way to
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decoding them. Finally, 01 also analyses Javacard applets for heir
robustness against physical attacks and provides best practices.

— The inter-CESTI challenge has also exhibited interesting attack
paths that are neither purely software nor hardware, but are rather
so called hybrid attacks that advantageously mix the two aspects.
A good example of this is 03 where a voltage glitch is used to

trigger and exploit a buffer overflow in the ISO7816 library. 13
deeply analyses the SDIO software layer with bus fuzzing in mind
(in order to find software vulnerabilities), which requires a ded-
icated hardware setup. 12 , although already classified both in
software (RTE) and physical (FIA) attacks, also finds its place in
hybrid ones: static code analysis and formal methods are used to
find FIA exploitable spots and deceive anti-rollback. 06 mixes a
cryptographic weakness during pre-authentication with SPI bus
instrumentation to perform a bruteforce attack on the PetPIN.
Finally, 07 checks the conformity of the Secure Channel protocol
using specification review and bus ISO7816 sniffing.
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Since the attack paths and their place in the threat mode of the target
can be tedious to evaluate, we have represented on Figure 3 an overview of
the most representative scenarios that have emerged from the inter-CESTI
challenge. From bottom to top of Figure 3, we consider what the adversary
must do (steal the platform or the token or only stealthily observe them).
Then, what attacks in Table 1 might be used to obtain or modify one
of the critical assets (the encrypted platform keys EPK, the PetPIN and
PetName, the internal flash, etc.). Each asset recovery primitive can lead
to trapping the platform and/or the token, and takes place in a more
elaborate scenario where the adversary finally recovers the most sensitive
assets, i.e. the user data encryption master secrets (MasterKey, etc.).

Regarding the attacks, we distinguish pure software attacks xx where no
complex equipment is necessary from the ones xx where PCB modifications,
instrumentations and/or time (e.g. for multiple acquisitions or trials) are
necessary, typically to perform SCA and FIA. xx represents attacks that
might require PCB modifications for readiness, but could optionally be
performed otherwise with less efficiency. Finally, xx illustrates fully passive
and stealthy attacks (mainly TEMPEST based ones). Paths represented
with show how partial attacks can lead to other steps and unlock a full
attack path to sensitive user assets recovery, while are straightforwardly
applicable. Paths represented with are considered complex “as is”
because they either require more investigation to be practical, or are
blocked by other defense in depth mechanisms.

Some interesting elements can be observed on Figure 3: practically
recovering the user data encryption assets requires scenarios that involve
stealing either the platform or the token, trapping them, putting them
back to deceive the legitimate user, and get back the assets by other
means (e.g. stealing the platform or token again, or send them using radio
communication in an advanced hardware trapping scenario). In all these
cases, the stolen elements must be attacked using PCB preparation and
hardware attacks that could be destructive: the adversary can provide
a hardware clone in this case. The pure software privilege escalation 04

can help to modify the attacked platform when it is fixable to give it
back and deceive the user (i.e. this prevents investing too much money in
fabricating a new cloned platform).

All in all, many of the discovered attack paths have been extensively
patched by the WooKey project in recent commits. 04 , 06 and 09 have

direct and forthright patches that discard the attacks. 01 , 07 and 08
advice some code improvements and mitigation (that have been indeed
developed) even though no practical attack have been found and/or other
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defense in depth mechanisms prevent exploitation. 02 , 05 , and 13 did

not leverage concrete exploitable attack paths, so nothing to do here. 14

and 15 , related to TEMPEST attacks, are a work in progress as they
require more characterization and could result in hardware modifications.
Finally, 03 , 10 , 11 and 12 are the most tedious to address as they are
a direct consequence of the STM32 susceptibility to FIA. Best efforts have
been put (using double checks and so on) in recent commits to achieve
some minimum robustness level, although no absolute “formal proof” can
be provided here.1 It should be however noticed that such attacks take
place in quite elaborate and complex scenarios involving stealing (possibly
twice) the platform and deceiving the user with a trapped device. Almost
equivalent (yet more complex to mount) threats are relay attacks, that
are very hard to mitigate in an open-source and open-hardware context.

6 Analysis of the tokens: Javacard applets

The WooKey tokens (AUTH, DFU and SIG) are critical pieces of the
project as they protect the main sensitive assets. Hence, an analysis of the
applets implementation regarding their automatons and their compliance
with Javacard coding best practices is necessary.

6.1 Threat model

The rationale behind the three token types automatons is that almost
no command 2 should be allowed outside the Secure Channel that should
be established with a legitimate platform through mutual authentication.
The idea with limiting the command set here is attack surface reduction
at its strict minimum in the pre-authentication phase. Moreover, all the
“privileged” commands (retrieving sensitive assets) must only be accessible
after a full user authentication using his PetPIN and then his UserPIN.

The underlying possible attacks cover very critical software and logical
attacks on the automatons where the assets could be retrieved only by
interacting with the token through APDUs without advanced equipment
(e.g. using a buffer leak in the APDU memory), by bypassing the user
authentication (e.g. bad verification of the PINs), or by exploiting bad
implementations of the Secure Channel yielding in command injection
without authentication.

1. This is even more true when including compilation and optimization related issues.
Software code FIA resistance is an ongoing academic and industrial research topic.

2. The two exceptions are the command used for the platform keys PK decryption,
and the command establishing the Secure Channel.
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Beyond “pure software” attacks, side-channel and faults injection ro-
bustness of the code is also put under the microscope. The main issue with
such an analysis is that this robustness may heavily rely on the underlying
chip and Javacard VM countermeasures. Such elements should however
be covered by the EAL4+ certification. Consequently, the assumptions
taken in the next analysis are the following:

— All the native algorithms (AES, ECDSA, ECDH, SHA, etc.) and
modes (ECB, CBC, etc.) are supposed to be resistant against
SCA and FIA. On the other hand, algorithms and modes that
do not directly call the Javacard API (i.e. partially or completely
implemented in Javacard) should be scrutinized for robustness
against such attacks.

— PIN handling primitives (OwnerPIN offered by the Javacard API)
should be resistant against common attacks.

— GlobalPlatform token locking is working as specified and no new
applet can be loaded on the smart cards without knowing the
dedicated secret key.

Since in the WooKey project each token is physically dedicated to its
role, and since no new applet can be loaded on the token, attacks where a
malicious applet tries to attack the project applets (using shared static
variables or a bad implementation) can be discarded from the security
analysis since only trusted applets are loaded on the locked tokens.

By extension, attacks abusing possible VM vulnerabilities with regard
to the Javacard security model such as type confusion and firewall is-
sues [41] can also be discarded (even if such attacks should be covered by
the EAL4+ certification).

As a side note, around 20 man days have been allocated to the applets
code review.

6.2 Analysis of the Javacard tokens

Overview of the Javacard tokens code The first step of the evaluation
consisted in the code architecture analysis of the three token types AUTH
(user authentication for nominal mode), DFU (open a firmware update
session and derive keys in DFU mode), and SIG (open a signing session
and sign the firmware with ECDSA on a trusted PC host).

An overview of the code architecture is presented in Table 2. Three
different applets are compiled, one for each token. Most of the code is
shared among all the applets and is present in the common/ folder. For
each token, a dedicated applet class (WooKeyAuth for the AUTH token,
WooKeyDFU for the DFU token, WooKeyDFU for the DFU token, WooKeySIG
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for the SIG token) extends a shared WooKey class. This shared class
implements all the APDU commands that handle the Secure Channel, the
user authentication and token life cycle regarding the PINs and PetName.
WooKeyAuth adds a command to handle the user SD card master encryption
key retrieval after a successful authentication. WooKeyDFU and WooKeySIG

implement commands that handle firmware verification and signature using
session keys derivation sessions. Finally, the (private) folder contains the
personalization data for each token as static buffers that are automatically
generated by the WooKey SDK.

The tokens have two phases during their life cycle:

1. Personalization phase: at the first select of the applets, objects and
buffers are allocated and some personalization data is instantiated
in dedicated internal objects.

2. Nominal phase: the instantiated objects are used without new
allocations.

Folder Token Files Usage

auth/

Specific files
dedicated to
AUTH token

WooKeyAuth.java

(129 lines)
AUTH token specific code
(GetKey command)

Aes.java

(353 lines)
AES object and dedicated methods
(CBC, CTR, etc.)

ECKeyPair.java

(12 lines)
Wrapper object for ECC private
and public key pair

SecureChannel.java

(406 lines)
Methods for the Secure Channel
handling

ECCurves.java

(588 lines)
ECCurves object and methods for
ECDSA signature and ECDH

Hmac.java

(352 lines)
HMAC object and methodscommon/

Files that are
common to
all tokens

WooKey.java

(609 lines)

WooKey object and methods, handling
common token commands (opening
the Secure Channel, authentication, etc.)

dfu/

Specific files
dedicated to
DFU token

WooKeyDFU.java

(299 lines)

Code specific to the DFU token (dedicated
commands to open an update session and
derive keys)

sig/

Specific files
dedicated to
SIG token

WooKeySIG.java

(427 lines)

Code specific to the SIG token (dedicated
commands to open a signature session and
derive keys)

(private)

Specific files
dedicated to
private data

Keys.java

(32 lines)
Static class containing personalization
keys, PetName and PINs

Table 2. Overview of the Javacard tokens source code tree
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Assets protection analysis In the (private) folder, a dedicated Javac-
ard class Keys.java is generated by the WooKey SDK (see Listing 1).
The elements of this class are passed as arguments to the WooKey common
class constructor at the personalization phase at the first applet selection
as shown on Listing 2. Consequently, the static buffers present in the
Keys class are used to instantiate internal objects such as ECC keys:
for instance, 32 bytes OurPrivKeyBuf is used to fill an internal Javacard
ECPrivateKey object. Since ECPrivateKey is provided by the native API,
it should be safe to use and covered by the EAL4+ certification. Once the
initialization of the ECPrivateKey has been performed, the static buffer
Keys.OurPrivKeyBuf is zeroized.

The same “instantiate a secure object and zeroize” logic is performed
for most of the assets, except for four of them. Table 3 presents an
overview of static assets buffers from the class Keys.java life cycle after
the personalization phase. The buffers stored in secure objects are in
green, while those that remain in non secure buffers are in red. More
specifically, the MasterSecretKey that holds the SD card encryption key,
EncLocalPetSecretKey (ELK in the security target), and the PetName
remain in non secure buffers.

A potential issue with zeroization of the initialized buffers is the fact
that zeroization yields in known values to the attacker. If the attacker tricks
an already initialized token (e.g. with a fault injection) making it believe
that it is not, zeroes are copied in sensitive assets (e.g. the PINs): it is then
possible to establish a Secure Channel and get the MasterSecretKey.4 It
is recommended to fill the used buffers with random values.

Even though there is no direct attack path to recover such sensitive
assets, it is strongly advised to protect such buffers with dedicated secure
objects provided by the Javacard API. This is not an easy task on general
purpose buffers. Possible solutions consist either in abusing the existing
native Javacard key objects as discussed in section 5.5 of [58], or in locally
encrypting such buffers with a key protected in a secure buffer.

package wookey_auth ;

3. See WooKey security target [26] for assets details.
4. Such an attack is a bit trickier to mount though, since the ECC keys will contain

zeroes and probably provoke exceptions.
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Key /
perso data

Type Size Asset 3 Asset cleaning
method

Destination
Type
destination

OurPrivKeyBuf
static

byte[]
32 [A13]

Constructor and
self_destroy_card()

in WooKey class

W.schannel.OurKey

PairWrapper.PrivKey

ECPrivate

Key

OurPubKeyBuf
static

byte[]
65 [A13]

Constructor and
self_destroy_card()

in WooKey class

W.schannel.OurKey

PairWrapper.PubKey

ECPublic

Key

WooKeyPubKey

Buf

static

byte[]
65

Constructor and
self_destroy_card()

in WooKey class

W.schannel.WooKey

KeyPairWrapper.PubKey

ECPublic

Key

LibECCparams
static

byte[]
2

self_destroy_card()

in WooKey class
W.schannel.ec_context.

ECCparams
byte[]

PetPin
static

byte[]
4 [A3]

Constructor and
self_destroy_card()

in WooKey class
W.pet_pin OwnerPIN

PetName

Length

static

short
1 [A4] Never W.PetNameLength short

PetName
static

byte[]
64 [A4]

self_destroy_card()

in WooKey class
W.PetName byte[]

UserPin
static

byte[]
4 [A2]

Constructor and
self_destroy_card()

in WooKey class
W.user_pin OwnerPIN

MasterSecretKey
static

byte[]
32 [A9]

self_destroy_card()

in each applet
None N/A

EncLocalPet

SecretKey

static

byte[]
64 [A6]

self_destroy_card()

in WooKey class
None N/A

max_pin_tries

static

final

byte

1 Never
W.pet_pin and

W.user_pin
OwnerPIN

max_secure

_channel_tries

static

final

short

1 Never
W.sc_max_

failed_attempts
short

Table 3. Javacard tokens assets review
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class Keys {

static byte [] OurPrivKeyBuf = { ( byte )0x2d , ( byte )0x87 , ... };

static byte [] OurPubKeyBuf = { ( byte )0x04 , ( byte )0xc3 , ... };

static byte [] WooKeyPubKeyBuf = { ( byte )0x04 , ( byte )0x91 , ... };

static byte [] LibECCparams = { ( byte )0x01 , ( byte )0x01 , ... };

static byte [] PetPin = { ( byte )0x31 , ( byte )0x32 , ( byte )0x33 , (

byte )0x34 , ... };

static short PetNameLength = 5;

static byte [] PetName = { ( byte )0x57 , ( byte )0x6f , ... };

static byte [] UserPin = { ( byte )0x31 , ( byte )0x33 , ( byte )0x33 , (

byte )0x37 , ... };

static byte [] MasterSecretKey = { ( byte )0x27 , ( byte )0x59 , ... };

static byte [] EncLocalPetSecretKey = { ( byte )0xa6 , ( byte )0x89 ,

... };

static final byte max_pin_tries = ( byte )3;

static final short max_secure_channel_tries = 10;

}

Listing 1. Keys class with sensitive assets

if ((W == null ) || ( init_done == false )){

init_done = false ;

W = new WooKey ( Keys . UserPin , Keys .PetPin , Keys . WooKeyPubKeyBuf ,

Keys . LibECCparams , Keys . PetName , Keys .

max_secure_channel_tries );

init_done = true ;

}

Listing 2. WooKey class construction

Whenever a security issue is detected on the tokens, e.g. too much
failed attempts for user authentications or Secure Channel establishment,
sensitive assets are destroyed using the self_destroy_card() method of
the WooKey object. This consists of zeroizing the assets in the Keys class,
but the copies of the assets in the native API secure buffers (ECPrivateKey

and so on) are not erased while they should be.

Code review, SCA and FIA robustness The code makes ex-
tensive use of secure Javacard primitives for buffers manipulations
(arrayCopyNonAtomic, arrayFillNonAtomic, arrayCompare and so on),
which is a good practice. The evaluation has then focused on all the
classical for() and while() loops to check if they manipulate sensitive
assets (hence showing potential issues with regard to SCA leakage or FIA
bypass).

A first loop is used in the AES-CTR IV incrementation for Secure
Channel encryption (see Listing 3). This loop is not fully balanced but
exploiting it in SCA seems complex and of little interest.
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private void increment_iv (){

short i;

byte end = 0, dummy = 0;

for(i = ( short )IV. length ; i > 0; i--){

if(end == 0){

if ((++ IV [( short )(i - 1)] != 0))

end = 1;

}

else dummy ++;

}

}

Listing 3. AES-CTR IV incrementation

Some ephemeral Secure Channel keys are also handled in a way that
could potentially leak information, but their ephemeral aspect renders
this exploitation useless.

On the core algorithms side, although SCA attacks are residual and
post-authentication, it is recommended to add some masking and shuffling
protections:

— The Javacard implementation of HMAC, although masked, manip-
ulates the key bytes in order.

— The AES-CTR xor operation is performed unmasked and in order,
yielding in a possible leakage.

Logical checks about the automaton sequence and the privileged com-
mands access (post-authentication using PetPIN and UserPIN, and Secure
Channel establishment) have been checked to be correctly implemented
without apparent loopholes. The Secure Channel and DFU/SIG sessions
states (open or closed) handling is performed using a unique short variable
value {0xAA, 0x55} for the privileged state, which seems robust. However,
doubling the if checks should be enforced in order to add robustness
against fault injections and not fully depend on the underlying platform
countermeasures. The same advice holds for other parts of the code (PINs
checks conditions, Secure Channel failed attempts).

7 Cryptographic mechanisms review

7.1 Pre-authentication phase issue: PetPIN bruteforce

The cryptographic mechanisms are well detailed in the evaluation
companion documents, which helps in analyzing and reviewing them. This
helped to find an issue in the first phase of the pre-authentication protocol.
Since this protocol is quite complex, it won’t be detailed here: the reader
can refer to the WooKey project documentation [25,30] and the security
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target evaluation [26]. Here are the first steps of this pre-authentication
phase:

— The PetPIN is entered on the WooKey touch screen.
— A key called DK (for Derived Key) of 512 bits is computed using a

PBKDF2-SHA512 derivation function with 4096 rounds from the
PetPIN and a 128-bit salt stored in the WooKey internal flash at
personalization phase.

— The DK key is sent to the token in order for it to decrypt a secret
named ELK (for Encrypted Local Key). The decrypted form is
named KPK (for Keys Platform Key), and is returned to the WooKey
platform where it will be used to check a HMAC and decrypt a
bag of keys serving to mount the Secure Channel for the next steps
of the protocol.

The rationale here is that when the PetPIN is not correct, DK will
not be correct and ELK decryption will produce an invalid KPK failing in
platform keys HMAC verification and decryption.

The main issue here is that the operation KPK = DecDK(ELK) can be
reversed and stays true, whether DK is correct or not. As a consequence,
it is possible to enter an incorrect PetPIN on the WooKey, sniff the
communication between the platform and the token, extract the incorrect
values DK∗ and KPK∗, and compute ELK = EncDK∗(KPK∗) to get the secret
value in the smart card. For practicality, this attack can be mounted using
only a smart card reader on a PC and the target token.

What can be done then? It is possible to create a fake smart card
answering to the first step of the protocol but without the timing counter-
measures introduced in the real token (i.e. the failing attempts counters
and the increasing time with such failing counters). This fake token lays
the first brick to mount a bruteforce attack against the PetPIN: the idea
is to try every possible PetPIN and check whether a Secure Channel is
established by the platform (meaning that the PetPIN is correct). Once
the PetPIN is found, the PetName can be recovered on the WooKey screen.
What are the following steps for an attacker from here? The PetPIN has
been designed to limit theft attacks. Now that PetPIN and PetName are
known, the attacker is able to replace the genuine WooKey and token
with fake trapped ones: since the user will see the correct PetName after
entering his PetPIN, nothing stops him from entering his real UserPIN
that will be transmitted to the attacker using e.g. a relay attack. Now
that the attacker has the real token and the UserPIN at hand, the SD
card encryption secrets (MasterSecretKey) can be recovered.
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Now back on bruteforcing the PetPIN: a challenging issue is to auto-
mate the attack using the WooKey platform by instrumenting its user
interface. The keys layout on the virtual keyboard is randomized at each
boot, this can be solved by sniffing the SPI traffic between the main board
and the screen and interpret the pixels related commands. Now, one must
simulate “key presses”, which can be performed by injecting SPI traffic
between the main board and the touch screen: this part is a bit tedious
because of some issues in the code handling the SPI bus. More details
about the SPI communication can be found in the dedicated section 18.
All in all and after some tuning, a stable and automated solution has
been developed. The last element of the attack is the detection, by sniffing
the ISO7816 bus between the platform and the token, that an attempt
to mount the Secure Channel is triggered or not. All these elements are
implemented in a Teensy board [19] as shown on Figure 4. The 4 digits
PetPIN of the closed WooKey is found in 15 hours, with 4 attempts per
minute (41 hours are necessary to cover all the possible 4 digits PINs
search space). The counterpart of this attack is that bigger PINs highly
increase brute force computation, as the attempts frequency can’t be
significantly improved.

Fig. 4. WooKey instrumentation with a Teensy for PetPIN bruteforce
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On the other hand, if an attacker is able, using another attack vector,
to extract the WooKey firmware from the internal flash (and all the
encrypted key bags with it), then the PetPIN bruteforce can be performed
completely offline without the previous necessary instrumentation. This
allows to cover all the possible 4 digits PINs in 30 seconds on a common
laptop, and all the 8 digit PINs in 4 days, this time increasing exponentially
with the number of digits.

As a conclusion, the PetPIN of the WooKey project must have a better
protection, and an easy fix would be to use another relation between DK,
KPK and ELK to break the exploited reversible operation (e.g. a one-way
function). The number of allowed failed attempts to compute KPK should
also be reduced to limit bruteforce attacks. Increasing minimum PIN size
is also an efficient defense in depth countermeasure.

7.2 Secure Channel review and improvement

After the pre-authentication phase where the platform keys PK have
been decrypted, the Secure Channel is established between the platform
and the tokens. The main operations of this protocol are presented on
Figure 6: they are basically an ECDSA signed ephemeral ECDH. The
platform and the token both draw random scalars d1 and d2, send each
other signed ECDH points (d1×G) and (d2×G), from which they are both
able to compute (d1 × d2 × G) and derive the Secure Channel AES-CTR
encryption key for confidentiality, HMAC key for integrity, and IV for
anti-replay.

The evaluator has verified both on the platform and the token side
that the Secure Channel is properly implemented, in accordance with its
specification in the project documentation. Sniffing of the ISO7816 bus
has been realized using a Saleae Logic Pro 16 [17] logical analyzer and a
software protocol decoder [8], and developing a dedicated WireShark [22]
pcap decoder for WooKey high level APDU and response command parsing
as exposed on Figure 5. The analysis has shown that the APDUs and
the responses are indeed encrypted and integrity protected, and that
the sequence of commands to mount the Secure Channel is respected.
Section 12 focuses with more details on the ECDSA and ECDH primitives
as implemented on the platform side.

The platform and the token have asymmetrical roles here: because of
the ISO7816 bus constraints, the token is a slave waiting for the platform
initiator to trigger a Secure Channel. From the protocol design, nothing
prevents an attacker without the platform keys from replaying the same
sniffed initial value (d1 × G) and its ECDSA signature that will always be
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Fig. 5. Sniffing the ISO7816 bus for Secure Channel conformity check

verified by the token. The main consequence of this is that the token will
always perform its ECDSA signature computation on a random (d2 × G).
Although this does not leverage a cryptographic vulnerability (the attacker
will not be able to compute the shared secret anyways), an undesirable
consequence is that the attacker is able to collect randomized signatures
from the token, and hence possibly perform SCA to exploit potential
leakages.

Notwithstanding the fact that the smart cards used for the tokens
are EAL4+ certified (their ECDSA implementation should be immune
to such attacks or require very advanced equipment), a defense in depth
mitigation is advised by adding a random challenge sent by the token
during pre-authentication, and verified at Secure Channel establishment.

Fig. 6. Secure Channel establishment between the WooKey platform and the
tokens
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8 Fuzzing the libiso7816 and libtoken libraries

This section is about a fuzzing campaign for the WooKey’s implemen-
tation of the ISO7816-3 stack and the commands built above (i.e. the
token abstract communication protocol). The ISO7816-3 stack is used
to communicate with the smart card. This is a really interesting target
because it is exposed before the user authentication as the platform needs
to detects the smart card before asking the user for the PetPIN. If a
potential vulnerability resides in the code and can be exploited before
user authentication, then a code execution inside the SMART task could
be gained. Furthermore, this task contains all the secrets needed to cre-
ate a fake and backdored clone of the targeted WooKey. Those secrets
are the encrypted version of the Platform Key (PK) (asset [A8]) and the
PKBDF2’s seed used to generate the Derived Key (DK) (asset [A5]) from
the entered PetPIN (see the security target evaluation [26] for the details
on the assets). We could imagine a scenario in which the attacker steals
the device, runs an exploit against the ISO7816-3 stack, retrieves the
described secrets and then creates a trapped clone with those secrets.

This ISO7816-3 stack is written in C language inside the standalone
library libiso7816.5 The token related commands are aslo implemented
in C in the standalone library libtoken.6 Because of the modularity
of the whole project, the libraries can be compiled for any architecture
and are hardware independent. This means that in order to fuzz the
libraries, we only have to replace the function responsible to retrieve the
data from the underlying device (the USART handling ISO7816 in this
case) with a function returning characters given by the fuzzer. Since the
source code is fully available, we have decided to use libFuzzer which is
a coverage-based fuzzer.7

Technically, libFuzzer only needs a LLVMFuzzerTestOneInput func-
tion which takes as input parameters the fuzzed buffer’s address and its
size. This buffer will be returned byte by byte to the libiso7816 through
the platform_SC_getc function. Thanks to the source code coverage,
libFuzzer will be able to discover new paths automatically. This path
discovery can be visualized using the LLVM’s source-based code coverage
visualizer.8

This fuzzing campaign does not give us any result despite 70 % of
code have been visited as shown on Figure 7.

5. https://github.com/wookey-project/libiso7816
6. https://github.com/wookey-project/libtoken
7. https://llvm.org/docs/LibFuzzer.html
8. https://clang.llvm.org/docs/SourceBasedCodeCoverage.html
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Fig. 7. libfuzzer results on libiso7816 and libtoken

9 Glitch attack on the ISO7816 library

The current section describes how a power glitch can be used to attack
the libiso7816 library. This attack allows gaining code execution in
the SMART task which uses this library. This task hosts the platform
encrypted secrets, gaining access to these secrets (even in their encrypted
form) allows an attacker to build a clone. Coupled with the kernel privilege
escalation described in 10, an attacker can gain privileged code execution
and modify the firmware on a closed platform. Due to the security design
of the WooKey project, even if these vulnerabilities may be used by an
attacker to gain the highest privileges on the WooKey device, encrypted
user data are not directly accessible to the attacker. Attack scenarios
require the attacker to have a physical access to the device during few
hours to clone or modify the device, then interact again with the legitimate
user to fool him with a fake clone, and finally relay stolen secrets.

One of the tests given to the ITSEF was the analysis of the Readout
Protection of the STM32F4 regarding its resistance to power glitch attacks.
These tests were performed on a STM32F4-discovery board since the board
has to be modified. The MCU has to be directly powered by an external
power supply. To render the injected glitch pulse as narrow as possible,
decoupling capacitors responsible of stabilizing the MCU power supply
have to be removed. To perform the glitching campaigns, cheap hardware
has been used:

— Power supply: DPS3005 (25 e)
— FPGA: Digilent Arty A7-100T (≈200 e)
— Multiplexer: MAXIM4619 (≈2 e)
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The FPGA drives the STM32 reset PIN and the Multiplexer enable
PIN (see Figure 8). The FPGA allows setting the delay between the MCU
reset and the glitch injection and the width of the glitch pulse.

Fig. 8. Glitcher setup

The computer sends delay and width values to the FPGA, checks the
results (UART logs + try JTAG), saves these results and tries another
couple of delay and width values.

The Romcode and Bootloader execution time can be identified, by
looking at the power supply and at the UART I/O as shown on Figure 9.

During the assessment of the Bootloader regarding its resistance to
fault attacks, we observe many successful faults using power glitching.
Replaying the power glitch parameters of successful glitches gives a good
success rate. Unfortunately, the Readout Protection was not bypassed
with the Bootloader because of its fault protection mitigation catching the
attempts (see section 14 for more details on this). The reproducibility of
power glitches in the Bootloader encourages however analyzing the other
software components regarding this kind of faults.
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Fig. 9. Boot components timings

One of the only interfaces available on the WooKey platform before
authentication is the smart card interface. The ISO7816-3 stack is imple-
mented in the libiso7816 component. The analysis was focused on this
component, especially the part responsible for parsing incoming messages.

Unlike the Bootloader, libiso7816 does not implement any fault
attack mitigation (double checks, state automaton robustness, etc.).

The function SC_get_ATR is used to parse the ATR (Answer To Reset)
message coming from the smart card, this message is the first message
sent by the card (see Listing 4 for the code snippet).

int SC_get_ATR ( SC_ATR *atr){

// [...]

/* Get the historical bytes */

atr -> h_num = atr ->t0 & 0x0f;

for(i = 0; i < atr -> h_num ; i++){

if( SC_getc_timeout (&( atr ->h[i]) , WT_wait_time )){

goto err;

}

checksum ^= atr ->h[i];

}

Listing 4. ATR parsing code in libiso7816

If a glitch is performed during the masking of the incoming size
(atr->t0), the size may be fully controlled from the smart card interface.
The variable atr->h[i] is a stack buffer of 16 bytes, it can be overflowed
by 239 bytes.

The WooKey project implements stack cookies as a protection to
exploitation of such stack overflows, but at the time of the evaluation a
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typo in the build configuration prevents this protection to be applied to
generated binaries “depends on STACK_PROT_FLAGS” should be “depends

on STACK_PROT_FLAG” as presented on Listing 5. This issue has been fixed
in recent commits after being reported.

config STACK_PROT_FLAG

bool " Activate -fstack - protection - strong "

default y

...

config STACKPROTFLAGS

string

default "-fstack - protector - strong "

depends on STACK_PROT_FLAGS

Listing 5. Typo in the SDK that removes stack cookies

Without stack cookies, exploiting the stack overflow triggered by
the glitch is highly simplified. By crafting a dedicated ATR message on
the smart card interface, an attacker could gain code execution in the
SMART task using ROP (Return Oriented Programming) gadgets as the
W⊕X prevents data execution. To demonstrate this, a similar vulnerable
code pattern is integrated to the BLINKY task running on STM32F4-
discovery board as this development board does not provide a smart card
interface and does not have the SMART task. The mask applied to the
size is targeted in power glitch, and when we have a successful glitch
(one successful fault per hour with 5 attempts per second), the Program
Counter is controlled by the input (see Figure 10).

10 Kernel privilege escalation

This part describes how a kernel privilege escalation has been found
inside the EwoK kernel.9 EwoK is a secure microkernel targeting embedded
systems. It is written in ADA/SPARK language, a strongly typed language
often used by domains which need safe and secure software. One of the main
security features of EwoK is the strict memory partitioning between tasks.
Also, the tasks permissions are fixed at compile time and cannot change at
runtime. Like in almost every operating system, EwoK’s tasks can discuss
with the kernel through syscalls. Those syscalls are the kernel’s main
attack surface. If a vulnerability exists inside one of them, an unprivileged
task (likely already compromised) could possibly gain kernel privileges.

In order to find basic vulnerabilities inside the kernel, we run a “dumb”
fuzzing campaign against EwoK’s syscalls. Because EwoK is developed in

9. https://github.com/wookey-project/ewok-kernel
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Fig. 10. Controlling the Program Counter with a voltage glitch

the ADA language and is highly dependent on the underlying hardware,
running a custom task on a real platform seems to be the simplest way to
fuzz the syscalls. Hence, a simple fuzzing task has been developed, with a
simple algorithm:

— select a random syscall
— choose 4 arguments between:

— 0 value
— a valid pointer inside the task memory, containing random data
— a random value

— fire the syscall

All the attempts are logged on the UART port. When a kernel panic
occurs, it is possible to quickly see which syscall panics EwoK. This fuzzing
campaign reveals some crashes and many of them are just arbitrary address
dereference and are hardly exploitable.

One bug stands out though. The vulnerability resides inside the
SYS_REGISTER_DMA syscall, which takes two parameters: dma_config and
descriptor. These parameters are passed by address, it means that the
kernel must check that these addresses are part of the caller’s memory
space. EwoK contains those sanity checks, but performs an affectation to
descriptor in every failing case as shown on Listing 6.

procedure svc_register_dma

( caller_id : in ewok . tasks_shared . t_task_id ;

params : in t_parameters ;



32 Inter-CESTI

mode : in ewok . tasks_shared . t_task_mode )

is

dma_config : ewok . exported .dma. t_dma_user_config

with import , address => to_address ( params (1));

descriptor : unsigned_32

with import , address => to_address ( params (2));

index : ewok . dma_shared . t_registered_dma_index ;

ok : boolean ;

begin

-- Forbidden after end of task initialization

if is_init_done ( caller_id ) then

goto ret_denied ;

end if;

-- ...

-- ...

-- ...

-- ...

<<ret_inval >>

descriptor := 0;

set_return_value ( caller_id , mode , SYS_E_INVAL );

ewok . tasks . set_state ( caller_id , mode , TASK_STATE_RUNNABLE );

return ;

<<ret_denied >>

descriptor := 0;

set_return_value ( caller_id , mode , SYS_E_DENIED );

ewok . tasks . set_state ( caller_id , mode , TASK_STATE_RUNNABLE );

return ;

Listing 6. sys_register_dma code

This allows a malicious task to write the NULL value to an arbitrary
address within the kernel space. We choose to exploit this vulnerability by
writing NULL at the MPU_CTRL’s address, hence deactivating the memory
partitioning between tasks. Then the task is able to read and write the
whole memory. Thus, privileges can be elevated by modifying the kernel’s
task list to become a privileged task as show on Listing 7.

EXPLOIT MPU_CTRL is @ 0 xe000ed94

EXPLOIT Writing 0...

EXPLOIT MPU should be turned off !

EXPLOIT Looking for tasks @ 0 x10000000

EXPLOIT struct task is @ 0 x100006e0

EXPLOIT name = EXPLOIT

EXPLOIT entry_point = 0 x8090001

EXPLOIT ttype = TASK_TYPE_USER

EXPLOIT control = 0x3

EXPLOIT setting to ttype = TASK_TYPE_KERNEL

EXPLOIT control = 0x2

EXPLOIT Privileged mode !

Listing 7. Privilege escalation on EwoK
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11 Analysis of the address spaces of WooKey’s tasks

This section presents the analysis of the address space of each task,
a test proposed and executed in order to evaluate the conformity of the
security function “MPU usage” described in the security target [26].

The main security properties claimed by the EwoK microkernel take
root on the restricted access each task has on the resources of the system.
The first property is privilege separation: tasks are run in unprivileged
mode and should only have indirect access to the resources managed by
EwoK. The second property is the confinement of running applications:
tasks should only be able to communicate or interfere with other tasks
through authorized kernel interfaces. The purpose of this test is to verify
that the MPU is correctly configured and used for privilege separation
and confinement.

In regard to these two security properties, the MPU management of
EwoK is a critical mechanism in the WooKey platform since ARMv7-
M, the architecture of the MCU, is memory-mapped: the resources (e.g
RAM, Flash, system registers, peripheral registers) of the system are
directly accessed through memory accesses. Consequently, an incorrect
MPU configuration could grant a task an unpredicted access to some
resources that could be leveraged to corrupt or access data of another task
or of the kernel. In case of success, it could mean the direct disclosure of
an asset stored on the platform. Data corruption can be a mean to obtain
control of the execution flow or of privilege escalation, also leading in the
end to the compromise of assets of WooKey.

In any case, the exploitation of an error in the MPU management
corresponds to a partial attack path which assumes that the execution flow
of one task of WooKey has already been hijacked. This initial compromise
is typically obtained through a vulnerability in one of the protocols stacks,
executed in a task context, handling one of the external interfaces of the
platform.

The evaluator did not identify in the literature specific techniques
or tools that can be reused to perform such tests dynamically. However,
a static analysis of the binary code, which encompasses MMU aspects
through a specific formal specification, targeting higher assurance through
formal methods was proposed to verify more general information flow
properties of kernels [36]. This work, while being relevant for the analysis
of the address space, does not include many hardware aspects - typically
specificities of the MCU and its architecture such as particular system
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registers. This is a common limitation for static approaches applied on
systems with hardware and software interactions.

For this reason, the evaluator decided to favor a dynamic approach for
this test. At the beginning of the work, a small preparative code review
took place to identify the cases where the MPU is reconfigured by EwoK.
From this analysis, the evaluator concluded that the address space of an
application is only changed at three occasions: task creation, the end of
the init phase and the handling of a request to map a device. According
to this observation and the fact that other mechanisms inducing changes
of the MPU configuration are covered in other items of the test plan, the
evaluator focused on the static allocation mapping that is applied during
task creation.

The dynamic test implemented follows a simple approach: each ap-
plication running on WooKey is recompiled to include a procedure that
systematically tries read and write accesses while traversing the whole
address space. If the access is not refused by the MPU, then the access is
considered to be successful. Each time a new accessible memory region
is identified by the procedure, a log message is sent to the debug UART
of EwoK. The results are captured for all tasks of the nominal mode and
analyzed to check for potential communication means through a shared
region that is readable by a task and writable by another. Accessible
memory regions are also manually reviewed to check for unexpected access
to kernel areas.

In the evaluated version of EwoK, upon a memory access outside of
the authorized regions configured via the MPU, the MPU fault handler is
executed and the kernel kills the task responsible of the fault. This behavior
is constraining for the implementation of access testing from user mode.
A slight modification, showed in Figure 11, of the MPU Fault handler of
EwoK allows to resume execution of the responsible task and to simulate
the execution (according to ARM ABI 10) of a return 1 statement in the
current function. This allows to define a simple access checking primitive
following the code skeleton of Figure 12 that returns zero in case of access
success and one when the access triggered a MPU fault.

The test procedure traversing the whole address space will check four
bytes (aligned) and one byte memory accesses. The idea is to have at least
one successful access to some memory mapped register that has specific
memory access constraints. In addition, the EwoK bus fault handler is
modified similarly to the MPU fault handler because this fault is triggered
in the case of an unprivileged access to a system register.

10. On the condition that the current function does not use the stack.
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function memory_fault_handler

( frame_a : t_stack_frame_access )

return t_stack_frame_access

is

new_frame_a : t_stack_frame_access ;

begin

#if CONFIG_KERNEL_CONTINUE_AFTER_FAULT

frame_a .R0 := 1 ; -- Emulate a " return 1;" executed by the task

frame_a .PC := frame_a .LR ;

return frame_a ;

# else

-- On memory fault , the task is not scheduled anymore

...

# endif

end memory_fault_handler ;

Fig. 11. Modification of EwoK MPU fault handler

int32_t __attribute__ (( noinline )) _check_read_access32 ( volatile

uint32_t * addr )

{

tmp = * addr ;

// access successful

return 0;

}

Fig. 12. Check access primitive
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To speed up the complete process for the whole address space, the
procedure only checks addresses at the start of a MPU region or subregion.
In the ARMv7-M architecture, the bits 4 to 0 of the base address of the
MPU region are always 0, and only regions of 256 bytes and larger can
be divided equally in 8 subregions, while any MPU region or subregion
starts with an address multiple of 32. Therefore, the address space can be
processed optimally from address zero using a step of 32.

A first run of the test identified three possible shared regions. The
three were false positives located in the Private Peripheral Bus (PPB).
The PPB is located in the system register area, which is not subject to
access control by the MPU. The ARMv7 reference manual describes cases
where the PPB registers are accessible in unprivileged mode. To confirm
or infirm the problem, these three regions are exhaustively traversed with
read, then write, then read accesses and the two values read are compared.
In each of these cases, the write accesses had no effects. Two regions
were reserved by ARM, and the last was dedicated for the registers of
the Instrumentation Trace Macrocell (ITM), a ARM debugging feature.
By default the ITM registers cannot be modified in user mode. However
according to ARM documentations, a specific configuration feature can
enable user mode access. The final test gives some assurance that it was
not the case.

As a result of the whole test, the evaluator concluded that the regions
effectively accessible by each task, from creation to the end of the init

phase, correspond to the mapping defined in the source code. This mapping
gives no access to EwoK resources and isolates tasks from each other.
This indicates that during the init phase of the tasks, the mechanisms
restricting the memory accesses correctly forbid tasks access to kernel
resources and preserve the two security properties: privilege separation
and task confinement. Four man-days were dedicated to this test during
the evaluation.

12 Analysis of ECDSA against physical attacks

In the WooKey project, the ECDSA scheme is used to authenticate
both the WooKey chip and the smart card when a Secure Channel commu-
nication handshake is performed (see section 7.2 for more details on this).
If an attacker is able to recover the ECDSA private key of the WooKey
platform, he is able to mount a Secure Channel with the token and opens
new attack vectors. Such a private key is also a first step to cloning attacks
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to create fake devices, fuzz a legitimate token to find new vulnerabilities,
and steal other secrets by fooling the legitimate user.

To counter this kind of threat, it is necessary to design protections
against physical attacks during the execution of the ECDSA primitive.
In the WooKey platform, the ECDSA implementation is provided by the
libecc project [10], and this section focuses on the study of its protections
against physical attacks. It should however be noted that these attacks
are only partial as they require that the Platform Keys PK have already
been decrypted using the dedicated key KPK derived from the PetPIN and
the token. The attacker needs first to steal the platform, the token, and
somehow guess the PetPIN (e.g. using bruteforce attacks such as the ones
described in section 7.1).

The ECDSA signature algorithm is provided in Appendix A. The goal
of the attacks is to recover the private key d. It is well known that, if
the attacker is able to recover the ephemeral scalar k, the static private
key d is easily recovered given a valid signature. In fact, as reminded in
the recent Minerva attack [24], only the knowledge of a few bits of the
ephemeral scalar used for several signatures is necessary to recover the
static private key.

First, we describe the platform that was used to get the power con-
sumption during the execution of atomic operations of libecc. Then, the
core analysis of physical attacks against libecc is provided. This analysis
leads to the discovery of a partial vulnerability, which is discussed.

12.1 Platform description for analysis

The ChipWhisperer-Lite board [3] was used for the different tests
described in the next subsection, together with the STM32F303CT7 MCU.
Note that the MCU used in the WooKey platform is STM32F439VIT6.
The main differences are:

— A hardware AES implementation is embedded within
STM32F439VIT6; this does not affect the analysis of libecc;

— STM32F439VIT6 operates at 180 MHz whereas STM32F303CT7
operates at 72 MHz.

The ChipWhisperer-Lite can handle up to 105 million samples per
second, which is enough for the STM32F303CT7 MCU whereas it would
not suffice if tests were performed with the STM32F439VIT6.
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12.2 Physical attacks against ECDSA

The attacker can use different ways to recover the ephemeral scalar k

(or parts of it) using physical attacks:
— during the generation of k;
— during the Elliptic Curve Scalar Multiplication (ECSM) within

ECDSA signature;
— during the other operations of ECDSA signature that manipulate

k in order to build the s component of the signature.
The analysis primarily focuses on the ECSM operation, for it is the

operation most prone to physical attacks.11 Many physical attacks against
ECC (and particularly targeting the ECSM execution) have been published
since the publication by Coron in 1999 [35]. For an overview of state-of-
the-art of physical attacks and protections, one can refer to [48].

It is recalled that a new ephemeral scalar is randomly generated for
each signature. This fact excludes vertical attacks such as CPA [35] and
CPA on addresses [39], in particular. Therefore, only attacks requiring
a single consumption trace, such as the SPA [35] and more advanced
horizontal attacks, are considered.

For analyzing the protections implemented in libecc, the code analysis
of the ECSM has been performed. In particular, the file prj_pt_monty.c

implements the ECSM core. The code of the main loop of the ECSM is
provided in Appendix B.

Regarding SPA, as seen in the source code (see Appendix B), the
Double-and-Add always countermeasure is implemented: a point addition
is systematically performed and the result is discarded if the current
scalar bit is 0. Also, the code does not contain any branching condition
depending on the current scalar bit, particularly in the function nn_getbit.
We verified in the assembly code 12 that no optimization was made by the
compiler to add branching conditions.

Because of the critical aspect of this function that directly manip-
ulates the scalar bits, we performed measures during the execution of
the nn_getbit function. The results are provided in Figure 13 and we
concluded that the attacker is not able to distinguish between the two
possible results of the function.

Then, we investigated protection against advanced horizontal physical
attacks. The base point randomization - that is the randomization of the

11. The modular inversion of k and other calculations using k for the signature
generation may also be prone to attacks, but their analysis did not expose weaknesses
and is not described here for brevity.

12. The code has been compiled with the -S option.
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# define WORD_BITS (32)

# define WORD(A) ( UINT32_C (A))

typedef uint8_t u8;

int main ( void )

{

init ();

word_t a[] = {

0 x5AC635D8 , 0 xAA3A93E7 ,

0 xB3EBBD55 , 0 x769886BC ,

0 x651D06B0 , 0 xCC53B0F6 ,

0 x3BCE3C3E , 0 x27D2604B

};

volatile u8 bit_value ;

// give time before

launching

// targetted observation

HAL_Delay (500) ;

TRIGGER_HIGH ();

bit_value = nn_getbit (a, 4);

// bit_value = nn_getbit (a,

5);

TRIGGER_LOW ();

while (1);

}

Fig. 13. nn_getbit - Program executed on the ChipWhisperer (left) and associated
consumption traces (right) with different values of bit position (which yields
different results returned by the function)
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base point (X, Y, Z) → (lX, lY, lZ) with a random non-zero field element
l - is implemented in libecc. This countermeasure thwarts the horizontal
CPA [34]. Also, the random register addresses countermeasure [40] is
implemented (this can be seen in Appendix B). This countermeasure
prevents the horizontal address-bit DPA [44].

In addition, we analyzed the assembly code of the main loop of the
ECSM mbit, (rbit ⊕ mbit) and rbit_next during the points copies. We
isolated the few assembly instructions that have an interest, and performed
measures on the ChipWhisperer. The results are provided in Figure 14
and we concluded that the attacker is not able to gain any information on
the bit scalar mbit or on the bits of the mask r.

int main ( void )

{

init (); // clock , gpio , leds

TRIGGER_HIGH ();

__asm__ __volatile__ (

"mov r5 , #400 \r\n"

"mov fp , #0 \r\n" // a

"mov r6 , #0 \r\n" // b

"eor r6 , fp , r6 \r\n"

"muls r6 , r5 , r6 \r\n"

);

TRIGGER_LOW ();

while (1);

}

Fig. 14. XOR and MUL - Program executed on the ChipWhisperer (left) and
associated observed traces (right) with different values of a and b

Another class of advanced horizontal attacks is considered: the Big
Mac-like attacks. The attack, introduced by Walter in [60], consists in
detecting possible repetitions of manipulated values within an ECSM.13

Some related attacks against ECC implementation, with experimental
results, were depicted in [28] (targeting a software implementation) and
in [48, Sections 8.2.3.2 and 8.14] (targeting a hardware implementation).

Based on the main loop of the ECSM algorithm given in Appendix B,
Figure 15 illustrates the operations of two successive iterations performed
depending on the scalar bit value, with:

13. In fact, the Big Mac targets modular exponentiation implementation but applies
to ECC as well.
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— DBL and ADD being the illustration of elliptic curve points dou-
bling and addition respectively; the incoming arrows are inputs
and outgoing arrows are the results;

— T is the accumulative point of the ECSM;
— P is the base point of the ECSM.

Fig. 15. Operations sequence of two iterations of ECSM if mi = 0 (left) and if
mi = 1 (right)

Then, by comparing one input of the addition at iteration i and the
input of the doubling at iteration i − 1, the attacker is able to deduce mi.
We analyzed the formulas used in libecc, in the file prj_pt_monty.c.
The three input point coordinates are multiplied by other values, in
both the doubling and addition formulas. Therefore, three Montgomery
multiplications can be used for comparison by the attacker.

From the above analysis, we conclude that libecc is vulnerable to a
horizontal collision attack.

12.3 Discussion of the exploitation of the vulnerability

Unfortunately, we did not validate the vulnerability with experimental
results, due to the time consumed for the libecc evaluation within the
inter-CESTI challenge time frame. However, we strongly believe that this
attack is practical to target individual bits of the scalar k. Indeed, the
success rate suggested in [28] is quite high given solely one Montgomery
multiplication. Here, we have access to three Montgomery multiplications.

In the Minerva attack [24], only a very few bits per signature are nec-
essary to recover the private key d. However, libecc implements a scalar
randomization countermeasure, making the Minerva attack unfeasible
(more specifically, exploiting the Hidden Number Problem is not possible
anymore). Therefore, the attacker would have to perform the attack on
all iterations to recover all the bits of k, making it more difficult.
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In conclusion, the attack would be practical with a strong expertise
in side-channel experimentation and many tries on a legitimate WooKey
target.

13 HMAC-SHA256 SCA against the message

13.1 State of the art and attack overview

During the pre-authentication phase, the WooKey platform checks
the integrity of its locally stored EPK (Encrypted Platform Key). To
achieve this step it computes an HMAC-SHA256 over the message
(IV || Salt || EPK), which will be called BigEPK in the rest of this
section. The key which is used to compute the HMAC is called KPK and
is provided by the token. This KPK is intended to be correct only if the
PetPIN was correct. If the attacker replaces the original token by its own
token or another hardware, he can choose the KPK used during the HMAC
computation in the platform. Since the static and fix message BigEPK is
“mixed” with the chosen KPK, the adversary is able to attempt Differential
Power Attacks (DPA) or Correlation Power Attacks (CPA). If he succeeds,
he could know the value of BigEPK which is the only secret of the platform
(although in encrypted form): the attacker could clone the platform in
such a situation. So the attacker needs to steal the platform, execute the
attack, make a clone with BigEPK but with modified code which allows
to memorize the secret assets in internal flash for instance, put back the
platform to its owner and finally make later a secondary robbery in order
to retrieve all the secrets. The steps are numerous but a successful attack
is powerful.

To the best of our knowledge, the HMAC and SHA-2 functions seem to
have little scrutiny in the Side Channel Analysis literature. All published
attacks against HMAC actually target the embedded hash function, e.g.
SHA-2. A first paper was written in 2007 by McEvoy et al. [47] which
mount a DPA attack with the Hamming distance model. In 2013 Belaid
et al. [29] extend the attack with a leakage in the Hamming weight model.
Finally in 2018 Kannwischer et al apply the same attack method as Belaid
et al. but against a SHA-2-based PRNG generation for XMSS [45].

The HMAC function is defined as:

HMAC(m, k) = H((k xor opad) || H((k xor ipad) || m))

where m is the message, k is the key, and ipad and opad are fixed
constants. H is the hash function which is SHA-2 for McEvoy’s or Belaid’s
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studies. In the case of XMSS, the formula for PRNG generation of the i-th
block is SHA-2(0x000..03 || seed || i). So in all cases, the known
and variable part (m resp. i) is hashed after the unknown fix and secret
part (k resp. seed). This is not the case in WooKey: m (equal to BigEPK)
is an unknown and fix secret whereas k (equal to KPK) is known and can
be manipulated. When previous attacks target the secret key, our attack
aims at retrieving the secret message.

Beyond the mere evaluation of WooKey’s usage of HMAC, one should
notice that our attack would probably be useful against the W-OTS+
hash function used in XMSS. Indeed, as precised in section 3.5 of [45], the
construction of the hash function is f_k(x)=f(0^n||k||x) where f can
be SHA-2. In this case, as in our attack, k is known and public and x is
the secret.

13.2 Attack details

Fig. 16. SHA-2 round function (source: Wikipedia)

Our attack targets the third execution of SHA-2 in the WooKey
platform. Indeed the first one computes h1=SHA-2(KPK xor ipad) and the
second one computes h2=SHA-2(KPK xor opad). The third one computes
h3=SHA-2(h1||m). SHA-2 round function is presented on Figure 16. All
data A to H, Wt and Kt are 32 bits long. Functions in dark blue are
composed of xor, and, or and shift. The addition is modulo 232 (which
is the normal addition on a 32-bits CPU). Kt is a known constant which
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changes at every round. At first round Wt is the first word of the message
(equal to BigEPK in WooKey context) which the attacker wants to retrieve
and A to H contain the result of first SHA-2 h1: these values are known but
cannot be chosen. For every execution of the HMAC, the attacker can make
a guess on Wt value. As other values are known, he can compute T1, T2

and T3 intermediate results. He can then compute the Pearson correlation
factor between the Hamming weight (HW) of each of these values and
each measurement over time of any physical quantity. Depending on the
measurement quality and as we know that no countermeasure has been
implemented, the correct Wt word should be found with the guess which
has the highest correlation. The attacker can then compute the next values
for A to H and reproduce the attack on next round. Finally he can make
the attack at every round of SHA-2 and so find the whole message. As
Wt is 32 bits wide, the guess space is very large for each time sample of
every trace. As a result the need for RAM memory and the computation
duration are huge. In order to make it easier and quicker, we have used
the same technique as previous studies so called “Partial DPA”. It simply
consists of considering each byte of Wt independently. At each round, the
first guess is done on the least significant byte Wt[0]. So there are only
256 possibilities. It is the same for T1[0], T2[0] and T3[0]. The attacker
makes then three Correlation Power Analysis (CPA) with the HW of each
of these bytes. When Wt[0] has been found, he makes a guess on Wt[1]

and computes T1[1], T2[1] and T3[1]. He realizes again a CPA with
the HW of these bytes and finds Wt[1]. Wt[2] and Wt[3] are processed
and retrieved the same way. This method could suggest that an error on
a lower byte will make the attack on next byte unfeasible: we provide
insights and discuss this issue in Appendix C.

13.3 Setup details and characterization on open platform

Before performing our attack on the WooKey platform, we designed
a specific board on which only the STM32F439 is routed. The board
contains only the minimum of decoupling capacitors. A serial resistor is
inserted on the ground in order to measure the current consumed by the
chip. We also extracted the HMAC function from the WooKey source
code and implemented our own command manager so that we are able
to easily change the KPK value. The WooKey kernel is not present and
no service can interrupt the manager linear execution, but the internal
hardware parameters of the STM32 is the same as on WooKey (like the
frequency which is set up at 168 MHz). A GPIO has been used in order
to make the synchronization easier.
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Fig. 17. HMAC execution on the STM32F439

Fig. 18. CPA on HMAC evolution (first round)
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With this hardware and software specific setup we probably have better
conditions than the direct attack on the WooKey platform, but it will
show us if and how we can fully realize the attack. The oscilloscope we
used to acquire our power measurements is a high end model with large
bandwidth. We did not choose it because of its capabilities which were
not fully exploited but simply because it was available in the ITSEF labs.
Its sampling rate was set to 500 MS/s so as to be above twice the target
frequency. In these conditions, the needed amount of samples are equal to
100,000 to see the whole HMAC execution.

The Figure 17 shows the execution of the HMAC in these conditions.
The blue trace is the GPIO that we added in the source code. We used this
signal to trigger the beginning of the HMAC_Update phase. The red trace
is a raw acquisition of the current. The pink trace is the raw average over
20 traces with the same key. No specific post-alignment has been done.
We can see that the average has less noise than the raw one whereas the
amount of information is still present over time. We could have acquired
every trace and then have used them in the CPA but in this case the total
transfer would have lasted longer and the disk space would have been also
larger. That is why we decided to use the average traces to mount the
CPA.

We realized our CPA on the beginning of HMAC_Update on intermediate
values T1, T2 and T3. The results on Wt[0] at first round are presented
on Figure 18: it shows for every guess the evolution of its maximum of
correlation against the amount of average traces. We can see that T2 and
T3 find the same (and correct) value with very few average traces and that
it remains stable when the amount of traces goes up. We note that T3

is less efficient than T2 probably due to the different amount of modular
additions involved for their computation and this is the only non linear
operation in SHA-2 round. Contrary to T2 and T3, T1 does not work at all
even with large amounts of traces, and we cannot really explain why. This
might be due to the fact that the quantity of additions is even lower for
T1, nevertheless we would have expected it to work with higher amount
of traces than T2 and T3. Another hypothesis is that T1 might not be
directly computed by the HMAC whereas this variable is present in the
source code: the compiler might have made an optimization and T1 is
never directly used at any assembler line. We missed time to investigate
this assumption.

The attack works very well on T2 and T3 for other bytes and rounds.
The Figure 19 shows the results for the three first rounds using T2. We
can see that the correct values of Wt bytes can be found with around 1,000
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averaged traces. This is particularly true after the first round. Indeed this
one has lower correlation values than next rounds: this is still an open
point in our results that could lead to further investigations.

13.4 Acquisitions on the WooKey platform

On the WooKey platform there are two main differences with our
specific setup: first, the power consumption cannot be measured as there
is no serial resistor on the ground or the Vdd and second, there is no
synchronization GPIO. Concerning the measurement issue, the attacker
could use an electromagnetic sensor but this is an additional tool which
needs to be located precisely over the target. Furthermore, EM signal
needs much higher sampling frequency: it means also that an expensive
scope and larger amount of samples per trace would be needed. There is
an easier way without modifying the WooKey platform: we measured the
voltage at the VCAP_1 pin on which the STM32F439 needs an external
decoupling capacitor. It is connected to the internal voltage regulator and
the goal of this capacitor is to absorb the current spikes when the core
needs more power. In order to have a correct synchronization we used the
ISO7816 IO signal between the token and the platform. As the attacker
has to replace the original token, it means he knows the IO sequence sent
by his token and he is able to synchronize on its last answered byte.

The Figure 20 shows an execution of the HMAC on the WooKey
platform. Synchronization is achieved through the green IO signal. The
blue signal shows the VCAP_1 voltage and the pink one shows the same
signal but after a low pass filter. We observe that every phases of the
HMAC are visible on the traces. The HMAC_Update phase lasts three times
longer as three SHA-2 are needed to hash BigEPK. Averaging the traces
directly on the scope as we did previously is not a good idea as the IO signal
is not completely synchronized. So it seems that post synchronization
after the acquisition of each trace is needed. This is an additional step but
it does not seem to be difficult. Another interest of traces post-alignment
would be to remove traces where an interruption pattern can be observed
during SHA-2 processing (due to kernel preemption and so on).

13.5 Attack quotation

The complete attack on the WooKey platform was not realized but we
estimate that the nature of the observed signals should lead to the same
vulnerability of the HMAC execution against SCA. However it has to be
noticed that the attacker would have to replace the WooKey screen by



48 Inter-CESTI

Fig. 19. CPA on HMAC evolution (three first rounds)
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Fig. 20. HMAC execution on the WooKey platform
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another SPI driven hardware so that he can repeatedly send the PetPIN
with high accuracy instead of using his fingers on the touch screen (see
the attack described in section 7 for details on how to perform this). The
complete amount of time needed for the evaluation of the HMAC function
was 19 days, including 2.5 days for report writing. The used equipment
is a high end digital scope which is expensive. As we do not need its
full specifications like the high bandwidth for this product, it would be
interesting to see if the attack is still doable with cheaper acquisition tools
like ChipWhisperer [3] or PicoScopes [12], which is left as future work.

14 Voltage fault injection attack on Readout Protection

Like most microcontrollers with integrated flash, the MCU embedded
in WooKey offers a protection against firmware readout or tampering.
This feature allows to protect sensitive assets, like cryptographic keys, in
confidentiality and integrity. In addition, the WooKey Bootloader performs
a verification to enforce the activation of this protection in a dedicated
state denoted RDP_CHECK, as shown on Figure 21.

Fig. 21. Bootloader state automaton, initial implementation

Readout protections, implemented in most MCUs, are known to be
weak and prone to fault injection attacks. The main goal of the attack
detailed hereafter is to dump EPK, the encrypted platform keys used
to ensure the authenticity of the WooKey board during user unlocking.
Indeed, the dumped firmware (or only EPK as the firmware is public) can
be used to build a malicious firmware which will be injected back into the
WooKey board or on a clone of it, and then steal user secrets by deceiving
him. In the remainder of this section, a two-step attack is considered: first,
disabling the readout protection to gain access to the JTAG interface and
then bypassing the software verification implemented in the Bootloader.
In case of success, assets can be dumped to build a malicious device. To
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perform this attack, the WooKey board needs to be stolen and trapped,
returned to its owner and eventually stolen again.

14.1 STM32 RDP attack state of the art

The STM32 series features a security function for JTAG and memory
lock called RDP (Readout Protection). There are 3 different protection
levels:

— Level 0: no read protection. RDP option byte is set to 0xAA.
— Level 1: no access to flash memory or backup SRAM can be per-

formed once a debug probe is connected or while booting from
SRAM or system memory bootloader (the bootROM). This protec-
tion level is not permanent and can be reverted by rewriting the
option bytes. Downgrade to level 0 causes the flash memory and
backup SRAM to be mass-erased. In order to activate the level 1
protection, any value (except 0xAA or 0xCC) has to be set in the
RDP option byte.

— Level 2: in this level, all protections provided by level 1 are active.
Additionally, booting from SRAM or system memory is no longer
possible. JTAG interface is also disabled. Setting the RDP level
to level 2 is irreversible because, in this mode of operation, option
bytes can no longer be changed. In order to activate the level 2
protection, 0xCC value has to be written into RDP option byte.

In [32], the RDP level 2 has been attacked with voltage glitch fault
injection allowing a downgrade to RDP level 1. Downgrade to RDP
level 0 by modifying the value using glitch fault injection is found not
possible because of the required precise bit manipulation. In this paper,
the attack is performed on a STM32F3 during the power-up phase. The
main difference between STM32F3 and STM32F4 (used by the WooKey
product) is the duplication of the RDP value in flash memory. However,
this work demonstrates that this additional protection does not protect
against RDP downgrade.

RDP level verification To fully validate the attack path, the verifi-
cation of the RDP level performed by the WooKey Bootloader must be
weak against fault injection. A source code analysis of this mechanism is
therefore carried out. The Listing 8 illustrates the corresponding piece
of code. A successful fault attack would cause the execution flow to go
through FLASH_RDP_CHIPPROTECT case. Considering that the normal case
when no fault is injected is the FLASH_RDP_MEMPROTECT case, a double
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fault injection is needed: one to bypass the FLASH_RDP_MEMPROTECT case
and another to enter the FLASH_RDP_CHIPPROTECT case. Additionally,
the decompiled assembly (using Ghidra [6]) is analyzed to ensure that
no optimization performed by the compiler could lead to a single fault
injection.

static loader_request_t loader_exec_req_rdpcheck ( loader_state_t

nextstate )

{

/* entering RDPCHECK */

loader_set_state ( nextstate );

/* default next req */

loader_request_t nextreq = LOADER_REQ_SECBREACH ;

#if CONFIG_LOADER_FLASH_RDP_CHECK

/* RDP check */

switch ( flash_check_rdpstate ()) {

case FLASH_RDP_DEACTIVATED :

goto err;

case FLASH_RDP_MEMPROTECT :

goto err;

case FLASH_RDP_CHIPPROTECT :

dbg_log (" Flash is fully protected \n");

dbg_flush ();

/* valid behavior */

nextreq = LOADER_REQ_DFUCHECK ;

break ;

default :

break ;

}

# else

nextreq = LOADER_REQ_DFUCHECK ;

# endif

return nextreq ;

}

Listing 8. RDP check extracted from the attacked WooKey Bootloader

loader_request_t loader_exec_req_rdpcheck ( loader_state_t nextstate )

{

t_flash_rdp_state tVar1 ;

loader_request_t nextreq ;

loader_set_state ( nextstate );

nextreq = LOADER_REQ_SECBREACH ;

tVar1 = flash_check_rdpstate ();

if ( tVar1 == FLASH_RDP_DEACTIVATED ) {

NVIC_SystemReset ();

do {

/* WARNING : Do nothing block with infinite loop

*/

} while ( true );

}

if ( tVar1 == FLASH_RDP_CHIPPROTECT ) {

dbg_log (" Flash is fully protected \n");

dbg_flush ();
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nextreq = LOADER_REQ_DFUCHECK ;

}

else {

if ( tVar1 == FLASH_RDP_MEMPROTECT ) {

NVIC_SystemReset ();

do {

/* WARNING : Do nothing block with infinite loop

*/

} while ( true );

}

}

return nextreq ;

}

Listing 9. Compiled code of the RDP check function

Reverse engineering of the binary presented on Listing 9 shows
that the FLASH_RDP_CHIPPROTECT case is actually handled before the
FLASH_RDP_MEMPROTECT case leading to the exploitation of the weak veri-
fication with only a single fault injection.

14.2 Setup of the attack

To ease the fault injection setup and avoid chip replacement on WooKey
open platform (due to a potential destruction of the chip), these tests are
performed on a STM32F439 chip placed in a custom board with TQFP100
socket. As the BYPASS_REG pin in not accessible on TQFP100 package,
the voltage regulator cannot be deactivated. Thus, injecting voltage glitch
through Vdd power supply is less efficient. However, Vcap pin is accessible
allowing to inject glitches directly on the CPU power supply, after the
voltage regulator (see Figure 22 left). To inject voltage glitches, a PMOS
transistor is placed in parallel of the capacitor of one of the two Vcap

pins (see Figure 22 right). The PMOS transistor is chosen to allow fast
switching (tRISE + tF ALL < 20 ns).

14.3 Test description

To sum up, a double fault injection attack scenario is found possible:
one fault on the STM32F4 core boot sequence for the RDP level downgrade
(to RDP level 1), and another fault on WooKey Bootloader to bypass the
RDP level verification. In case of success, the JTAG probe is connected
during the firmware integrity check operation which goes through the
whole firmware to compute its SHA-256 hash. Connecting the JTAG probe
in RDP level 1 halts immediately the STM32 core allowing to dump the
part of code which is being hashed. Repeating the attack, by incrementing
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Fig. 22. Power supply on STM32F4 (left) - Fault injection setup (right)

the timing where the JTAG probe is connected, allows to retrieve the
whole firmware. Knowing the exact position of the EPK key in the firmware
can accelerate the attack, requiring only few iterations of the attack. We
describe each partial attack individually hereafter before presenting the
full attack path exploitation.

RDP level downgrade First, a signal analysis is performed to find
the attack timing where the glitch has to be injected. The MCU power
consumption is recorded at the start-up of the chip, before the execution
of the user’s firmware.

As the boot process is targeted in this attack, the chip needs to be
power cycled at each iteration. A programmable power supply unit is used
to do that. The JTAG probe, controlled by a python script, is used to
verify if the attack succeeded. After each fault injection, the JTAG probe
tries to read the SRAM. If the probe cannot be connected to the ARM
core, the attack did not succeed.

Figure 23 highlights a fault injection timing where exploitable faults
were obtained. In this timing window, several timings are found where a
downgrade to RDP level 1 is possible. A statistical evaluation over 20,000
runs allows to identify the best one with the highest success rate. Finally,
downgrading to RDP level 1 using glitch fault injection is found possible
with a success rate of 1.5 %.

RDP level verification bypass A fault injection on the RDP level
verification mechanism is then performed. A chip is configured in RDP
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Fig. 23. Signal analysis of STM32 boot

level 1 to emulate a success of the first fault injection. To ease the signal
analysis, a GPIO is raised before the execution of the RDP level verification.
According to the code analysis, the chip restarts when the actual RDP

Fig. 24. Signal analysis of RDP level verification mechanism

level does not match the expected one. This is used to identify the end of
the RDP level verification (see Figure 24).

Then, the window identified during the signal analysis is scanned using
glitches until the right glitch parameters (i.e. the parameters for which
the chip does not restart) are found. Finally, a timing is identified where
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the reset did not occur and the firmware continues its execution. After an
optimization of the fault injection parameters, the success rate for this
attack is around 10 %.

Full attack path Finally, the full attack has been tested. Figure 25
shows the fault injection timing for each pulse. Without fault injection,
the firmware continues its execution due to RDP level 2 protection.

Fig. 25. Signal analysis of both boot and RDP verification

The firmware being public, a simulation of its execution is performed
allowing to find the area in SRAM used for firmware manipulation during
the firmware integrity check. Thus, only the SRAM area identified has to
be dumped to extract the product firmware.

Then, JTAG probe is connected 2.1 seconds after the chip start-up,
corresponding to the timing where firmware check is performed. This
limitation did not allow to perform as many fault injections as for the
partial attacks. Despite of this, combining the two fault injections succeed
with a success rate of 0.1 % in means: 16 bytes of the firmware can
be dumped and verified using the HEX file corresponding to the loaded
firmware.

14.4 RDP level verification improvement

A new code version has been deployed to fix the exploitable vulnerabil-
ity described previously. This time, the RDP level verification is performed
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several times during the boot process which significantly complicates the
attack path. This is done through a modification of the Bootloader state
automaton in which the RDP_CHECK state is executed between each other
state, as shown on Figure 26.

Fig. 26. Bootloader state automaton, new implementation

An analysis of the assembly code highlights that bypassing the normal
process flow of the loader by jumping directly into the integrity check
step requires a total of 5 pulses with 4 pulses produced in few CPU
cycles. Furthermore, altering the process flow and jumping to another
function results in a security breach detection and a mass flash erase which
invalidates this attack path. This analysis has been confirmed through
simulations on the WooKey firmware.

Therefore, another approach is adopted. The goal is to downgrade to
RDP level 1, to load a crafted payload in SRAM and to try to perform
malicious operations through it. Actually, the STM32 documentation states
that the flash memory is unreachable when a JTAG probe is connected or
when booting in SRAM if RDP level is above 0. To ensure that the flash
is really fully disconnected, a code which jumps to a given flash memory
address is loaded in SRAM. The execution works well when RDP level
is set to 0 but a hard fault interruption occurs when RDP level is set
to 1. Modifying the VTOR register to relocate the interrupt vector table
in SRAM results in triggering nested hard faults. Considering that the
flash memory is really not accessible, this attack path is hence found not
exploitable.

14.5 Conclusion

This attack shows that both the hardware readout protection mech-
anism and the corresponding software check of WooKey were initially
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vulnerable allowing to dump the firmware. Glitch fault injection method
has the advantage to be a low cost attack, easy to setup for an attacker.
The complexity of this attack lies in the precision required for the fault
injection timing in order to optimize the double pulse success rate. Indeed,
dumping the whole firmware or only some secret keys require to reproduce
this attack multiple times.

Finally, this vulnerability is no longer exploitable on the last version of
the WooKey firmware. The work done to correct this vulnerability shows
that even if the hardware itself is still vulnerable, software solutions exist
to overcome (or at least limit) this weakness.

15 EM fault injection attacks on the Bootloader

Electromagnetic (EM) based fault injections have been experimented
on the WooKey platform, and more specifically against the Bootloader.
This kind of attacks has become affordable and relatively easy to setup,
notably thanks to the ChipSHOUTER platform [2]. However, a first
necessary step to achieve a working fault injection bench is to have an
XYZ table. A cheap yet efficient solution is to use a 3D printer or a CNC
driven with gcode based scripts. The bench is also completed with an
external trigger in order to achieve a better time resolution in the delay
programming, as well as for the pulse width. All these elements, as well
as the target MCU, are driven using Python scripts and four UARTs.

The first step is to characterize the injection coils that are the main
EM pulse source on the MCU surface. All the possible pulse widths are
not achievable, and it is necessary to observe the voltage and the current
generated by the pulses using an oscilloscope plugged to the dedicated
SMAs on the ChipSHOUTER. As a matter of fact, the original coil head
of 1 mm is only able to produce significant pulses with widths between 20
and 40 ns, with a global width of 60 to 100 ns.

An external trigger has been developed in Verilog on an ICE40 FPGA
and running at 240 MHz. Its basic time unit is consequently 4.2 ns. In
order to get a 28-bit counter and achieve programmable delays up to 1
second, a raw adder cannot be used since there is not enough time to
propagate carries along 28 bits in 4.2 ns. The trick consists in using a
28-bit LFSR (Linear Feedback Shit Register), at the expense of more
computations for the initial state depending on the expected number of
cycles. The delay and the pulse width are programmable using an UART
synthesized inside the FPGA, and a 200 ns delay is added after the pulse
in order to avoid the noise generated by the ChipSHOUTER (this can
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create a chain reaction since the pulse could be interpreted as a trigger,
generating new pulses and so on).

In order to understand the pulses effects on the target MCU, tests have
been conducted using a simple unrolled loop with two interlaced counters,
and observing their states after the fault injection. As opposed to voltage
glitches, EM fault injections have many setup parameters to explore: the
coil choice, the coil direction (and for horseshoe coils their angle), the coil
XYZ positions in space, the pulse delay, the injection voltage, the pulse
repeat factor, and the pulse shape when it is controllable.

When fixing some of the parameters, it is possible to perform a cartog-
raphy of the pulse effects depending on the other variable parameters (e.g.
the position of the coil in the XY plan). An example of such a cartography
is provided on Figures 27 and 28. The blue colored zones represent hangs of
the STM32, the purple ones represent reboots, and the yellow/orange/red
capture cases where one to hundreds instructions have been skipped.

Fig. 27. EM fault injection cartography example

Some variations of the setup have been tested during the evaluation
time without finding large zones with enough interesting effects and
repeatability: this yields in a probabilistic process and results.
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Fig. 28. Repeatability study of a fault on a zone example

Then, the tests have been performed on WooKey’s Bootloader code,
and more specifically around the loader_exec_req_integritycheck

function that handles the firmware integrity: a manual source review
shows that the integrity test result is not doubled against fault attacks
(contrary, for example, to meta-data CRC32 check) as we can see on
Listing 10.

if ( check_fw_hash (ctx.fw , part_addr , part_size ) != sectrue )

{

dbg_log (" Error while checking firmware integrity ! Leaving \n");

dbg_flush ();

goto err;

}

Listing 10. Firmware integrity test

It should be however noted on the produced assembly code (see Fig-
ure 29) that error handling immediately follows the tests, hence removing
this test using one fault will not be enough. Faulting the jump to the err

label should however do the trick.
We can observe that it is complex to protect the code against faults that

skip one instruction. The compiled assembly code must be checked, and as
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Fig. 29. Compiled assembly code for loader_exec_req_integritycheck

a matter of fact most of the faults we have obtained usually skip more than
one instruction, or have other effects. In order to perform the tests without
damaging the WooKey platform, we have ported the Bootlader code on a
NUCLEO-F439ZI board with minor modifications to fit to this slightly
different platform. Flash writing functions have also been removed since
they trigger a mass erase whenever a fault is detected. Printed messages
on the UART have also been added in order to follow the Bootlader state,
a LED is turned on just before the targeted integrity check, and the
system clock is kept at 16 MHz (the WooKey platform reconfigures it to
168 MHz). In the integrity check code, the hash function computation is
completely removed to gain time during the tests – since its resulted hash
value would be incorrect and the purpose of the pulse is to skip it anyways.
The compiled code is compared to the one from the WooKey binary: in
order to get the same result a -O0 compilation flag must be used to turn
off optimizations. From loader_exec_req_integritycheck to the result
processing, a hundred of microseconds are necessary (i.e. 1600 cycles at
16 MHz).

A first test campaign is performed with pulses of 400 V and 80 ns
width on some of the yellow-orange zones of the cartography presented on
Figure 28 with random delays between 0 and 100 µs, with a 80 tests per
minute rate. A first observation, rather unexpected, is that we regularly
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see large portions of the firmware dumped on the UART. Since the UART
is disabled on the production WooKey board, this is not a relevant attack
path. Nonetheless, similar results could be obtained when attacking the
USB enumeration as it has been demonstrated by Micah Elizabeth Scott
in PoC‖GTFO [54] on another hardware platform. After 500 attempts,
a first firmware integrity check bypass can be successfully observed as
shown on Listing 11.

Next state : REQ_INTEGRITYCHECK .

Locking flash write

^[[7 mBooting FLIP in nominal mode

^[[0 mJumping to FW mode : 8020189

Next state : REQ_RDPCHECK

RDP0 , Flash is readable

Next state : REQ_BOOT

Geronimo !

Listing 11. Firmware integrity check bypass UART log

The UART message seems to advocate for a complete function call
bypass rather than an integrity check test bypass. From here, adjusting
the parameters allows to get a 7 % success rate. With more time and
tuning, a better success rate and other fault injection positions might be
obtained.

The conclusions of these experiments is that a firmware integrity check
bypass is possible although being hard to exploit: the attacker must find
a way to inject a corrupted firmware in the internal flash, then have a
successful pulse on a platform running at a ten times frequency clock,
and avoid being detected by the Bootlader to prevent a mass erase. As
a matter of fact, and in order to achieve a better robustness against
faults, the Bootlader code could benefit from more elaborate CFI (Control
Flow-Integrity) checks.

A second EM fault injection attack that has been explored is the
RDP2 to RDP1 downgrade (similar to what has been obtained with
voltage glitches in section 14). In order to be as close as possible to the
experimental voltage glitch setup on the STM32F3 of [32], the NUCLEO-
F439ZI board has been configured in RDP2 and adapted so that a reset
instruction sent to the embedded ST-Link chip triggers a power cut-off,
yielding a Power-On-Reset on the target MCU. Observing the NRST SWD
pin allows to have a synchronization signal as close as possible to this
target. Contrary to the case where we attack a chosen code running on
the MCU (such as WooKey’s Bootlader code), attacking the RDP2 check
is performed “blindly”: there is no debug feature and feedback that allow
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to know whether the fault parameters are more or less successful. Having
only a binary result (RDP2 bypassed or not) is hence more challenging.

Since the article [32] exhibits a successful attack with a 11 µs delay,
we have covered random delays from 0 to 20 µs with a 4 µs resolution
in our test campaigns. The complete MCU surface (100 mm2) have been
covered with random positions and 400 V/80 ns width pulses, using a
custom hand made horseshoe coil, and resulting in 250 tests per minute. In
order to quickly check the success of the attack, we try to connect to the
MCU through JTAG. A first campaign of 150,000 tests has unfortunately
provided no interesting result. Consequently, the explored surface has then
been expanded to 200 mm2, and the coil switched to the 4 mm CCW
one provided with the ChipSHOUTER. The target MCU has sadly died,
becoming unresponsive, during this second campaign of 360,000 tests. This
ended our experiments on the RDP2 to RDP1 downgrade using EM based
fault injections.

16 WooKey’s Bootloader: a formal analysis approach

WooKey’s Bootloader is a critical piece of code that cannot be up-
graded: it must therefore be free of security issues. This includes the
absence of run-time errors (RTE), the respect of functional properties and
the resistance to fault injection attacks (FIA).

Even when the source code is available (white box evaluation), it is
still a challenging task to find vulnerabilities especially in the context of a
time-limited code audit (four days were allocated to this analysis during
the challenge). Therefore, an efficient methodology needs to be applied
leveraging the best of human understanding and automated static analysis.
The purpose of the current section is to provide an insight of applying
such a methodology to the Bootloader.14

16.1 The methodology

Fully automated analysis may work very well to detect undefined
behaviors or some CWE (Common Weakness Enumeration) registered
weaknesses, but the final verdict regarding security remains a (subjective)
human decision. One way to efficiently achieve this difficult task is to
manually browse the code while being assisted by generic tools that can

14. The Bootloader is 10 kloc, but such a methodology can be applied to more
complex projects of hundreds of kloc and more entry points.
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be configured and customized to help checking properties and obtaining
certainty about facts.

A key aspect is time, though, and the evaluator needs to efficiently
obtain results even from a subset of the code. Partial analysis is a conse-
quence of this time constraint, and might also be a necessary approach
when dealing with precise analysis techniques that do not scale well with
the code size. A way to simplify the analysis is to follow the modular
structure of the code base (sometimes with cross-modules analysis paths).

Another consequence of the time constraint is to prevent from manually
annotating the code to express a formal specification (properties, contracts)
to be verified by deductive verification, for example with Frama-C WP [5].

However, a middle approach consists in focusing on the global prop-
erties that have to be verified across multiple functions, avoiding the
complexity of writing contracts for every function. This approach has only
been very lightly applied during the WooKey challenge by specifying very
simple properties based on assertions (more elaborated global properties
can be specified as presented in [53]).

The technique called “value analysis” implemented for example by
Frama-C Eva [15] may prove, without additional annotations, the lack
of erroneous state violating global properties by abstract interpretation.
However, over-approximation may lead to uncertainty: warnings can cor-
respond to real erroneous states or just be false alarms. Disambiguation
can be performed by finding concrete paths that reach the erroneous
state. Finding such paths could be done manually for a very simple code.
Another approach makes use of precise analysis techniques called Dynamic
Symbolic Execution (DSE) [50]: they automatically search path conditions
or a given oracle, i.e. the property to violate. If all the paths existing in
the code can be covered then the search is both sound (no missing state)
and precise (no false alarm): this so called all-path coverage is usually not
achievable in complex code due to path explosion.

Properties can also be violated as a result of paths perturbed by fault
injection (FIA). These paths can be found manually by modifying the
source code to simulate faults, or automatically with a DSE based tool
called Lazart that simulates multiple fault injections with several fault
models as explained in [51].

In the following sections, the evaluator follows a 2-step methodology
that consists in using the Frama-C platform [55] to understand the behavior
of the Bootloader, and define some functional properties to be either
verified or violated by counter-examples also called attack paths.
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16.2 Understanding the behavior of the Bootloader

No precise documentation of the Bootoader is given by the WooKey
project [25, 30]. But the implementation review in the code is always a
valuable source of information, as well as the compiled binary (through
decompilation using Ghidra [6], see section 16.4).

A value analysis with Frama-C Eva always starts by listing the avail-
able entry points of the module to be analyzed (the roots of the callgraph).
The Bootloader has several entry points: the main function and interrup-
tion handlers. This analysis focuses on main launching the Bootloader
automaton in charge of booting the firmware. The perimeter of the partial
analysis is composed of a subset of the implementation (.c files) and all
the required include files (.h). When only the prototype of a function
is provided (the implementation is missing), the Frama-C kernel auto-
matically generates a minimal specification expressed in ACSL. Such a
contract respects the over-approximation (soundness) unless some global
variables are modified by this function. Therefore, the perimeter of a
partial analysis needs to be large enough to include all the side effects
that could have an impact on the analyzed behavior. The analysis usually
begins with a small subset of the implementation and more content is
added if the understanding of the behavior shows that some important
dependencies are missing. Only a subset of the source files located in the
directory loader of the project have been selected to start the analysis,
in particular the file main.c that implements the Bootloader automaton.
The initial state of the Bootloader includes its context (e.g. DFU mode),
the firmware area called SHR, and some registers like the RDP state. The
Bootloader context is assigned with precise values (the initial values),
whereas the fields of SHR and registers are imprecise, i.e. assigned with
the largest interval depending on their type.

After having launched the value analysis with Eva, the evaluator
checks the results by directly browsing the source code with Frama-C
GUI. A value analysis computes intervals for all the variables (fixed point
computation), and separately propagates several states at each statement
(trace partitioning) in particular to precisely unroll loops (for a bounded
number of iterations). The Bootloader automaton is made of an infinite
loop that dispatches requests to functions that are in charge of the state
transitions, for example checking the integrity of the firmware, and booting
(which is the last transition of the automaton). Syntactic unrolling allows
to duplicate the code for each loop iteration and visualize in Frama-C
GUI the nominal sequence of the Bootloader as represented in Table 4.
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Current state Request Next state

START REQ_INIT INIT

INIT REQ_RDPCHECK RDPCHECK

RDPCHECK REQ_DFUCHECK DFUWAIT

DFUWAIT REQ_RDPCHECK RDPCHECK

RDPCHECK REQ_SELECTBANK SELECTBANK

SELECTBANK REQ_RDPCHECK RDPCHECK

RDPCHECK REQ_CRCCHECK HDRCRC

HDRCRC REQ_RDPCHECK RDPCHECK

RDPCHECK REQ_INTEGRITYCHECK FWINTEGRITY

FWINTEGRITY REQ_RDPCHECK RDPCHECK

RDPCHECK REQ_FLASHLOCK FLASHLOCK

FLASHLOCK REQ_RDPCHECK RDPCHECK

RDPCHECK REQ_BOOT BOOTFW

Table 4. Nominal sequence of the Bootloader as inferred by Frama-C

The redundancy of RDP check transitions (interleaved 6 times in the
nominal sequence) is a countermeasure against an RDP downgrade attack
(see section 14 for more details), checking several times if the RDP level
has not been faulted before booting.

Syntactic unrolling also shows that some erroneous states are detected,
for example if the firmware has been corrupted (integrity check failure).
In some cases, the request REQ_ERROR ends the automaton by triggering a
system reset, and in other cases a SECBREACH triggers a mass erase. As the
Bootloader automaton is very simple, the evaluator can use Frama-C GUI
to make sure (visually) that there is no unexpected sequence of transitions
A more complex automaton would have required to verify properties
about the expected sequences, for example with MetACSL and E-ACSL
combined with DSE [50, 53]. This approach has not been experimented
here.

// Checking the validity of the transition

if (! loader_is_valid_transition (state , req)) {

// Transition REQ_ERROR is decided .

... dead code detected by Eva ...

}

Listing 12. REQ_ERROR dispatching

Some generic properties are checked: absence of some C undefined
behaviors, also called RTE as defined by [15], and accessibility of code
sections (detection of dead code and of potentially reachable code). No
RTE has been detected in the analyzed perimeter, even warnings. Several
dead code sections appear in Frama-C GUI (with a red background).
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The following one is particularly interesting: when an invalid transition is
detected, the request REQ_ERROR should be dispatched by the automaton
ending then in a system reset (see the code on Listing 12).

The value analysis shows that the result returned by the function check-
ing the validity of the transition is never the C boolean FALSE (whose
integer value is 0) but the set {0x55aa55aa, 0xaa55aa55} which contains
secured magic values respectively representing FALSE and TRUE. The pre-
cision level is low enough 15 to over-approximate all the potential states
even invalid transitions (that should not happen without FIA). Therefore,
the dead code section reveals a bug in the way the condition detecting
an invalid transition is tested. This bug is a weakness in the protection
against FIA: invalid transitions are not detected and are normally handled
by the automaton.

The other dead code sections show protections against FIA, i.e. counter-
measures that should not be normally executed. All the countermeasures
are not detected (seen as dead code) because of the lack of precision: the
over-approximation includes states that are caused by fault injection.

16.3 Checking a functional property of the Bootloader

The security function SF12 defined in [26] should prevent the Boot-
loader of a dual-bank WooKey from booting the previous firmware version.
Exploiting a vulnerability in this anti-rollback mechanism would lead to a
full attack path.

Two other security mechanisms are mentioned by [26] when describing
threats: verifying the integrity of the firmware, and checking the RDP level
(STM32 register) before booting. Related vulnerabilities are less interesting
to exploit because in each case a preliminary attack is necessary to obtain
a full path: attacking DFU to load a corrupted firmware (see section 15
for such an attack path with EM faults), and forcing a lower RDP level
(see section 14 for a successful downgrade with a voltage glitch).

The property stating that the booting firmware is not the result of a
rollback can be expressed by checking the value of the booting address
(global variable ctx.next_stage). One assertion is expressed for each case
depending on the DFU mode and Flip/Flop versions (more details are
given in [26]). Cases that should not happen trigger a false assertion. The
code presented on Listing 13 implements the property verification.

15. The precision level is progressively increased during the analysis. With a low
precision, the result is over- approximated. With a higher precision, in particular more
trace partitioning and splitting, the result is the value TRUE which means that no invalid
transition can happen without fault injection.
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if ( flip_shared_vars .fw. fw_sig . version > flop_shared_vars .fw. fw_sig .

version ) {

if (ctx. dfu_mode == sectrue ) assert (ctx. next_stage == DFU1_START );

else if (ctx. dfu_mode == secfalse ) assert (ctx. next_stage ==

FW1_START );

else assert ( false );

} else if ( flip_shared_vars .fw. fw_sig . version <

flop_shared_vars .fw. fw_sig . version ) {

if (ctx. dfu_mode == sectrue ) assert (ctx. next_stage == DFU2_START );

else if (ctx. dfu_mode == secfalse ) assert (ctx. next_stage ==

FW2_START );

else assert ( false );

} else assert ( false );

Listing 13. Anti-rollback property verification

The goal is to find unexpected paths caused by a corrupted initial
state. The symbolic state is composed of the firmware header, the RDP
state, and the loader context. A specific test is written to set the initial
state (concrete and symbolic variables), invoke the automaton, and check
the property (see Listing 14).

// 1) Set the initial state : concrete and symbolic variables

...

// 2) Invoke the automaton

loader_set_state ( LOADER_START );

loader_exec_automaton ( LOADER_REQ_INIT );

// 3) Check the property "no rollback on boot "

...

Listing 14. Anti-rollback property check setup

Some modifications of the source code are needed to make the automa-
ton execution terminate for every path (some stubs are also generated in
particular for hash and CRC computations): infinite loops are removed,
the primitive system_reset simply returns, booting does not call the
specified firmware address but ends the automaton loop, errors also end
the loop.

A DSE analysis with KLEE [9] does not detect paths violating the
property despite an all-path coverage. Assuming that no potentially cor-
rupted data in the initial state has been forgotten (missing symbolic
variables), the analysis proves that the anti-rollback property is verified
in the normal behavior of the Bootloader, i.e. without fault injection.

16.4 Vulnerability of the anti-rollback mechanism to FIA

The anti-rollback mechanism is assumed to be resistant to double
fault injection as shown by the implementation of the function handling
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the request REQ_SELECTBANK: a “sanity check against fault on rollback”
(as commented in the code) is performed three times. The evaluator
has to ensure that the protection provided by this countermeasure is
secure enough, i.e. if a single or even a double fault cannot bypass the
countermeasure and force a rollback.

Lazart 16 [51] offers several fault models, and the ability to efficiently
inject multiple faults. In the current version of Lazart, the most useful
model for our usage is “test inversion” as it is applied automatically
(without manual configuration) and systematically to every conditional
branching in the source code. So once a target function (entry point)
has been identified and tested with DSE (to ensure that the functional
behavior is correct), then an analysis can be immediately launched without
the need to configure the way faults are injected.

The same test as in section 16.3 has been used for the analysis. But the
symbolic initial state has been made fully concrete (no symbolic variable)
to decrease the complexity of the analysis. Therefore, two test cases are
needed, one called “Flip to Flop” trying to force a Flop instead of the
expected Flip boot, and the opposite one “Flop to Flip”.

The C instruction switch may be compiled in different ways, leading
to different vulnerabilities (and different number of faults) when the fault
model “test inversion” is applied by Lazart. The Bootloader binary has
been decompiled with Ghidra [6] to obtain a C representation of each
switch that is composed of the equivalent branching instructions.

Two paths with a single fault are detected by Lazart for the case
“Flip to Flop”. These paths exploit in a similar way a vulnerability in
the function handling the request REQ_SELECTBANK, that first checks if
both banks are bootable, and if not, systematically boots on Flop if it is
bootable. Therefore, a single fault is enough to negate the first test and
then simply branch to the Flop boot. In the first test, two conditions can
be negated (Flip bootable or Flop bootable), hence making two attack
paths as shown on Listing 15.

// Fault injection to negate one of the following branching :

if ( flip_shared_vars .fw. bootable == FW_BOOTABLE &&

flop_shared_vars .fw. bootable == FW_BOOTABLE ) {

...

}

// And to continue below , booting Flop :

/* only FLOP can be started */

if ( flop_shared_vars .fw. bootable == FW_BOOTABLE ) {

16. Provided by Verimag through the CLAPS project (funded thanks to the French
ANR “Programme d’Investissement d’Avenir IRT Nanoelec” ANR-10-AIRT-05).
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...

Listing 15. “Flip to Flop” attack paths

Regarding the test case “Flop to Flip”, a path with a single fault ex-
ploits a vulnerability of the function handling the request REQ_FLASHLOCK,
that only checks once if the bank to boot is Flip. Therefore, a single fault
is enough to force Flip (see Listing 16).

if (ctx. boot_flip == sectrue ) { // Fault injection to force this

condition

...

Listing 16. “Flop to Flip” attack paths

A last element to be noticed regarding these attack paths on anti-
rollback is that they can be tested without triggering the flash mass erase
emergency state that the Bootloader executes when it detects non nominal
behaviors. As we can see on the automaton represented in Figure 21,
FLASH_LOCK state execution leads to the ERROR state (contrary to other
states such as FW_INTEGRITY whose failures lead to SECBREACH and mass
erase). This explains why FIA against the anti-rollback mechanism seem
more successful than faults against integrity check (section 15) or Readout
Protection anti-downgrade (section 14).

An exploitation of the case “Flip to Flop” has been attempted with a
power glitch attack as presented in the next section.

16.5 Experimental setup for fault injection

Power glitches through USB The PC or the USB cable may glitch
the target, allowing stealthy fault attack compared to LASER or electro-
magnetic attack. It could be a voltage glitch on the Vbus of the USB bus
either with positive or negative glitch. Even if there is a voltage regulator
between the USB cable and the STM32, that voltage glitch could allow
code rerouting on the MCU.

However, tests have shown that the WooKey target seems protected
against voltage glitch through USB. Indeed, the electronic architecture
with a diode and decoupling capacitors next to the MCU tends to inhibit
the effects of the glitches. Moreover, the MCU is directly connected to the
Vbus through a GPIO in order to probe the Vbus voltage. This connection
leads to destroy the MCU during large voltage glitches.
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Direct power glitches The authors of [32] show that glitching with
arbitrary waveform is more effective than traditional glitching (using pulse
setup or MOSFET). However, the setup to perform arbitrary waveform is
more expensive (around 100 e versus 2 e for MOSFET) and more com-
plex to implement. Furthermore, recent attacks with traditional glitching
setup [21] show that it is still very effective against unprotected target.
Therefore, to comply with a low level attacker, the glitcher is implemented
using a MOSFET driver (MAX17602) and a MOSFET (IRF3205) which
will short-circuit the Vcap pin to ground during glitching.

The Nucleo-F439ZI will be the target as the MCU is the same as the
one on the WooKey board. On the two capacitors connected to Vcap1 and
Vcap2, one is removed and the other one is replace by a 130 nF capacitor.
The glitcher is directly connected to the Vcaps pin. The MOSFET’s drain
is connected to Vcap and the source is connected to GND. The delay and
the pulse width are controlled by a second Nucleo board.

16.6 Exploitation of the anti-rollback mechanism vulnerability

The vulnerability identified in section 16.4 is targeted using the direct
power glitch setup. By sweeping the glitch width against some dummy code,
it can be found that the optimal glitch width to corrupt the processing of
the circuit is around 150 ns. Such a glitch is illustrated on Figure 30.

Then, the glitch is swept over the boot process in order to find the
correct timing to exploit the vulnerability. In order to reduce the jitter,
the oscilloscope (rigol DS1054Z) is used to synchronize on the power
consumption of the target. The right timing to perform the attack is
80 µs after the re-synchronization. This timing is shown on Figure 31.
Applying a power glitch at this particular time slot of the boot process
allows to force the Flop boot instead of the regular Flip one. It shows that
the anti-rollback mechanism vulnerability is exploitable with an achieved
success rate of 0.4 % (17 successful attempts over 4,000 trials).

16.7 Conclusion

In this section, a full exploitation was performed from code analysis
to a real attack using power glitches on the STM32 circuit. The exploited
vulnerabilities could have been discovered in black box testing, i.e. with-
out code analysis. However, as the source code of WooKey is available,
experimenting the ability of the exposed code analysis methodology to
detect non-obvious vulnerabilities in an exhaustive way is complementary
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Fig. 30. Applied glitch.
Magenta: glitcher’s command
Yellow: power consumption.

Fig. 31. Corrupted boot process.
Yellow: power consumption. Ma-
genta: glitch command. The
re-synchronization is performed
on the negative spikes as shown by the
trigger’s marker.

with a black box approach that may reveal surprising vulnerabilities, but
that usually requires too much time to cover every possible attack paths.

17 SDIO interface analysis

The WooKey device requires an SD card to be able to store the
encrypted user data. Since it is an external interface, a malicious SD card
(or a device able to emulate an SD card) might be used to trigger and
exploit vulnerabilities. Exploiting them leverages partial attack paths:
other security mechanisms must be bypassed to recover the assets (e.g.
memory segregation). Two kinds of vulnerabilities could be triggered:

— Application layer vulnerabilities (when plain text application data
are handled by WooKey tasks).

— SD protocol vulnerabilities (in the case of mishandled SD functions,
or a weak state-machine).

The purpose of the current section is to assess the exposure to such
attacks, and evaluate the complexity to put in place a malicious SD device.

17.1 State of the art of SD attacks

The Secure Digital protocol [20] is not often reviewed from a security
standpoint, despite its complexity. Attacks targeting the host are even less
studied. Dana Geist and Thom Does (University of Amsterdam) published
a report in 2016 on this topic [57]. This project is mainly intended to
attack computers using advanced features of SD Cards. This highlights
the complexity of implementing a fake SDIO device.
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Nonetheless, there are no public tools to fuzz or to interact with an
SD card reader (i.e. targeting the host).

17.2 SD card content analysis

Some devices are writing metadata into the memories. In such cases,
it is interesting to identify if there are some mishandled parameters. No
specific tools are required for exploitation.

This activity has been performed by analyzing an empty SD card
after being used by WooKey. Nevertheless, no obvious structure has been
identified, and this has been confirmed by looking into the WooKey project
source code (no extra data is written into the SD card apart from the
encrypted user data). The exposure to malicious SD content is hence
minimal.

17.3 SD protocol analysis

The SD card communication protocol is defined by the SD Association,
and simplified versions of the specifications are available at [20]. The
physical layer of SDIO is composed of the following signals:

— A clock signal, CLK.
— A Command signal, CMD, which is bidirectional (command and

response on the same signal).
— 1, 2, 4 or 8 data signals D0 to D7. Common SD cards use up to 4

lines. The data lines are bidirectional (read and write data on the
same signal).

All SD cards should respond to 3.3 V logic, but newer SD cards might
allow logic down to 1.8 V to improve the speed and consumption. The
communication levels, the clock speed and the bus width are negotiated
during the communication.

The card is acting as a slave that only responds to host commands (up
to 126 commands can be implemented, including application command
ACMD). The commands and responses frames are 48 bits long and contain
32 bits of effective data, except for the response R2 that is 136 bits long
(120 bits of data). Additionally, some commands do not expect a response
and some commands trigger a read or a write from the data lines. Some
SD cards also support commands to be queued. Newer versions of SD
specifications also define some advanced features, for media streaming, for
connectivity (Wi-Fi, Bluetooth, GPS, etc.), or for security (authentication,
encryption).
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However, embedded systems such as WooKey do not implement every
functionality offered by the SD protocol. Consequently, sniffing the data
is a good starting point to identify what is indeed implemented.

SDIO Sniffing The first step consists in determining the maximum
clock rate and expected capture duration. This can be done by using
an oscilloscope on the clock and command lines. As specified by the
SD protocol, the communication starts with a 400 kHz clock (321 kHz
measured). The communication speed then increases to 50 MHz.

The first thing that needs to be highlighted is that the communication
only starts when the user has been authenticated (UserPIN valid) and
the WooKey is plugged in to a computer (SCSI_CMD_READ_CAPACITY

sent to USB). This puts the attacks targeting the SD card in the post-
authentication category or entrapment category. Such attacks can be
however stealthy if the malicious SD device looks alike the genuine one.

Sniffing requires to capture with a sampling rate of at least 250 MHz
(to get accurately the clock edge) for around 15 seconds, which prohibits
the usage of an oscilloscope due to the memory length against the usage
of a logic analyzer. There are two kinds of logic analyzers:

— Buffered logic analyzers, which provide fast sampling rate. However,
buffers sizes are often limited to several megabytes (advanced
logic analyzers provide compression to help spaced events to be
captured).

— Streamed logic analyzers, which provide continuously the samples to
the computer (almost no memory limitation), but with a moderate
sampling rate (communication is the bottleneck).

Since the clock line is always active (even when there is no communica-
tion), the usage of a buffered logic analyzer does not fit the requirements
as the compression would not be efficient. A Saleae Logic Pro 16 [17] has
been chosen because:

— It allows capturing in streaming mode at 500 MS/s, allowing con-
tinuous capture of several gigabytes to terabytes.

— It allows developing custom decoding protocols, with a great com-
munity.

At 50 MHz, probing SDIO is not trivial: the input impedance of the
Saleae Logic is still very low (about 350 Ω); and WooKey does not drive
enough current, which introduces some bit errors. Moreover, some coupling
effects might occur between signals, increasing the risk of induced errors.
The bit-error impacts on data lines are highly amplified when ciphering
occurs, and the computer accessing the USB MSC (SCSI mass storage)
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protocol reacts randomly while attempting to parse the partitions headers
as shown on Figure 32.

Fig. 32. Linux dmesg error while sniffing SDIO

To be slightly less intrusive, some extra pull-up resistors have been
placed on signals and the wires were shortened and shielded. This allows
capturing both clock and command line without any error, but the data
lines still cannot be captured properly. It is still enough for a first analysis
of issued commands.

Another solution would be to woks with low capacitance probes, like
active probes (expensive). This would be mandatory for dealing with
higher logic speed (but in such case, the sample rate of the Saleae Logic

would probably be the bottleneck).

SDIO decoding An open-source SDIO analyzer software has been de-
veloped for the Saleae Logic by airbus-seclab: SDMMC-Analyzer [18].
This project has mainly been developed for eMMC analysis, and does
not handle well the SD card protocol (particularly, eMMC commands
and responses are slightly different). Using it reveals some unknown and
misinterpreted commands/responses. Consequently, this SDIO Analyzer
has been heavily modified to fit the needs of decoding SD protocols (see
Figure 33).

The capture highlights a very minimalist SDIO implementation: the
host waits for the card to be ready, then increases the clock speed to
50 MHz before having identified the card (Card_Identification_Data
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Fig. 33. SDIO capture with the Saleae and customized sdmmc-analyzer plugin

and Card_Specific_Data requests). The card is then selected and stays in
the “trans” state, waiting for read/write transfers upon computer request.

Moreover, it is interesting to notice that, despite the card answers
that the maximum speed for data line is 25 Mbits/s per line (reaching
50 MBytes/s using the 4 lines), the clock is kept at 50 MHz. This means
that some mandatory parameters in the card answers are not taken into
account; and this could partially explain the communication issue when
probing the data lines (the communication is already out of specifications).
By crosschecking with the source code, the responses handled by WooKey
are summarized in Table 5.

Except for few error flags checking, the source code analysis reveals
that the only field that is effectively handled by WooKey is the card
capacity (which is computed from the Card_Specific_Data because it
is requested by the computer to initialize the SCSI transfers and it is
displayed on the WooKey screen).

Finally, there was no request (such as extended Card_Specific_Data

request or advanced features usage) that would require the data lines in
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Type Content WooKey handling

R1 Card Status
Current state only checked against trans to
raise error

R2 Card Identification Data Not handled
R3 Card Specific Data Only capacity is handled and used by WooKey

R4 Operation Condition Register
Only Card capacity status and Card ready
flags checks

R5
Relative Card Address
Card status bits

Error flag check

R6 Card Interface Condition Error flag check

Table 5. SD responses supported by WooKey

the response. The data lines are only used to provide data between the
computer and the SD card (WooKey streams the encrypted data through
DMA requests, without any particular handling). This means that the only
interesting handled fields are the ones related to card capacity, in the
Card_Specific_Data. Depending on the version, it can be a single 22
bits integer or a pair of integers (12 bits + 3 bits).

SDIO Fuzzing The previous analysis was performed with SDIO fuzzing
in mind. Fuzzing a SDIO host is very different from fuzzing a SDIO card,
since the fuzzer does not control the communication channel. The only
thing that is possible is to respond to messages.

Moreover, the response frame format (including the frame length)
depends on the state machine, which is fully controlled by the host. In
other words, it is not possible to respond with an unexpected message
type. Fuzzing the SDIO consists in fuzzing the content of responses in a
way that produces unexpected results.

The initial idea was to place an FPGA in man-in-the-middle position,
which only modifies a specific response (triggered from a command). This
allows to avoid re-implementing a complex SDIO stack into an FPGA, and
only focus on specific fields to be modified. Developing an SDIO fuzzer is
interesting for SD interface analysis, targeting for instance:

— The card state machine (given in R1 responses).
— The case of multiple card responses to the ALL_SEND_CID command.
— The bus speed and width with non-standard values.
— Triggering unexpected error flags.

Such a fuzzer might have to deal with communication constraints (inter-
facing is challenging due to impedances, voltage level change, clock phases,
and bidirectional signals).
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Finally, and since WooKey does not handle many SDIO data, the
effort for developing an SDIO fuzzer is not justified here (and would be
highly over-dimensioned for the purpose). Instead, it has been decided to
cover SDIO through a tainted code analysis, focusing on the card capacity
parameters.

Tainted code review By computing minimum and maximum values
for the card capacity fields and analyzing the propagation of the results
through the PIN application (to display the card size in GBytes) and USB

application (requested parameter during SCSI initialization), no overflow
has been found. The values are stored in an uint64_t when necessary,
and displaying the pair of 4 digits does not overflow the oversized printed
buffers.

17.4 Conclusion

According to the fact that the attack surface on WooKey SDIO interface
is minimal (only available after user authentication, with a minimal SDIO
stack implementation, and without handling plain text data from the SD
card); and that the tainted code analysis does not reveal particular issues
while handling the integer parameters, WooKey SDIO interface seems to
offer a good level of security.

18 Analysis of the SPI communication with the display

18.1 Attack path

WooKey uses a token for authenticating the user of the USB thumb
drive. Because the token is protected with a PIN code, the theft of both
the token and the device does not allow an attacker to decrypt the content.

The threat model for WooKey takes into account an attacker trying
to steal the PIN code using a fake device, so a legitimate user must
first enter a PetPIN and then validate a PetName before entering the
UserPIN [25,30,31]. The risk of an attacker using a hardware tap on the
SPI bus to steal the PIN is considered residual [31] since it requires a
physical access on the device to insert the tap, and then stealing the token
to extract the master key to decrypt the data.

However, using the electromagnetic emission from the SPI bus might be
another possible attack vector to steal the UserPIN, and does not require
a direct physical access to the device. In its current design, WooKey uses
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a main board for the STM32 and a daughter board for the touchscreen.
They are linked together with an unshielded ribbon cable transmitting
synchronous serial data using SPI.

In this section, we will focus on a proof-of-concept of a hardware tap to
steal the UserPIN as a first step to develop the tools needed to extract the
different PIN codes. We only discuss the feasibility of extracting sufficiently
accurate data from the electromagnetic emissions to recover both PIN
codes since this attack was not performed. The information provided here
are to be taken as complementary to the TEMPEST characterization
described in 19.

18.2 State of the art

The retrieval of information transmitted on serial lines through elec-
tromagnetic emissions has been explored for some time now [56]. Key-
boards using both PS/2 and USB interfaces have been studied in depth
to show that it is possible to retrieve the keystrokes in a practical envi-
ronment [59,61,62].

18.3 Practical attack

The SPI bus was tapped by directly soldering on the ribbon cable
connector (see Figure 34). A CY7C68013A from Cypress was used to act
as a logic analyzer, since it can collect 4 channels at 12 MHz. A minimum
of 12 Mega samples per second are necessary since the SPI clock is set to
6 MHz for the screen. The following signals were acquired: Clock (SCLK),
Chip Select (CS), Master In Slave Out (MISO) and Master Out Slave In
(MOSI).

The data are recovered by waiting for the CS line to be asserted low,
and then sampling the current bit on MISO and MOSI for every rising edge
of the SCLK line. For the proof-of-concept, PulseView [13] was used to
record the signals and then the result was exported to raw binary and
parsed with a tiny C code for performance reasons. Finally, a Python
script, using the Python Imaging Library [14], was used to recover the
images displayed on the screen. Three commands need to be interpreted:

— Column_Address_Set (0x2A)
— Page_Address_Set (0x2B)
— Memory_Write (0x2C)
The column and page commands take two 16 bits arguments for

the starting and ending column or row. The next memory write will
then be inside the frame described by the column and page address
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Fig. 34. Soldering for SPI bus sniffing

set commands. The write command takes a variable number of 3 bytes
arguments describing the current pixel in RGB format with 6 bits words for
each color component. It has to be noted that the number of pixels written
can be less than the frame size. By looking for a potential command in
the sent buffer, or using timing information, it is possible to detect the
end of the write command.

In order to help with parsing, all possible commands sent by WooKey
to the screen have been added to the parser with their number of
arguments: Display_OFF, Power_Control_1 and 2, VCOM_Control_1

and 2, Memory_Access_Control, Vertical_Scrolling_Address_Start,
Sleep_Out and Display_ON.

18.4 Results

The recovery of the images displayed on the screen is straight-forward
and shown on Figure 35: since we are directly soldered on the SPI bus
with a sampling rate satisfying the Nyquist–Shannon sampling theorem,
no information is lost.

18.5 Real world feasibility

In a scenario where the signal would be acquired from electromagnetic
emissions, some bytes will be corrupted and the CS line will not be
available to tell us when the bus is actually active. Since the commands
to send images are sent in burst with near-constant timing between the
bytes, depending on where we are in the sequence, it is possible to use this
information to synchronize the decoding of commands and their arguments.
The timing reflects the function call for commands and operands in the
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Fig. 35. Capturing ’1234’ sequence entered on the pinpad

C implementations of the screen driver. The sequence to display a new
image (tile) is as follows:

— Column_Set followed by Page_Set, all bytes separated by 10 to
12 µs

— a Memory_Write command directly follows by 10 to 12 µs
— the first pixel red component follows after a 10 to 12 µs gap
— pixel components are separated by 580 to 920 ns

This observation should help to segregate between the command part
and the actual image written to the screen. While the timing for the red
component is slightly higher than for the green and blue ones, the change
in color cannot be detected using only the timing information because the
SPI line is much slower than the difference in timing while looking up a
new color in the palette for RLE (Run-Length Encoded, see [16]) images.
Also, when the drawing of a new tile directly follows the previous one,
the same timing of 10 to 12 µs is observed before the new Column_Set

command. This should help to identify the menu style specific to the
drawing of the pinpad and the refreshing of a tile after a touch on the
screen.

19 TEMPEST attack on WooKey’s screen

19.1 Presentation

The TEMPEST code name captures various security specifications from
NSA and NATO about radio, electronic, acoustic or vibrating emanations
from an information system. These are considered as data leakage from the
system since they are not intentionally produced and are a side effect of the
system’s operation: one can see them roughly as long-range side-channel
leakages. In France, ANSSI edited in 2014 a document explaining how to
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mitigate TEMPEST attacks in secured building and installations [27]. The
TEMPEST effects may be leveraged as side-channel attacks to partially
or totally retrieve secrets from a system.

The efficiency of TEMPEST attacks is not a myth. They supposedly
started during the first World War on telephone wires and were actively
used during the second World War [42]. Since then, many declassified
documents confirm the widespread use of such attacks at state level [43].

In 2015, a laboratory from Tel Aviv University disclosed a vulnerability
in GnuPG. They successfully extracted keys from the surrounding field
emanating from a regular laptop [38]. In 2017 a cybersecurity team from
Fox-IT was able to recover an AES-256 encryption key using common
hardware at a distance between 1 m and 30 cm [37]. More recently, so
called “screaming channels” [33] make use of classical SCA techniques
(template attacks) to achieve key recovery on an AES-128 leaking through
the radio front-end of a Nordic Semiconductor nRF52832 at a range of
10 m using 1,500 traces.

Another example application is to extract information from an electro-
magnetic leakage of a display link. Electromagnetic emanations may occur
and, in specific conditions and with appropriate equipment, they can be
captured. Easily accessible tools allow anybody to setup a TEMPEST
attack: one of the most convincing examples is the TempestSDR [46]
framework which targets HDMI cables. Thanks to the work of Martin
Marinov who released TempestSDR in 2014, anyone with less than 100 e of
equipment can build his own TEMPEST installation. TempestSDR offers
the ability to capture and intercept on-the-fly the signal emitted from the
cable, is compatible with affordable hardware, and runs on Window and
Linux. An article and a presentation at SSTIC 2018 [52] (in french) detail
how to work with TempestSDR on DVI or HDMI cables.

Critical devices which manipulate confidential data and require a high
security level need to be tested and have mitigations against TEMPEST.
In the context of the Inter-CESTI challenge, it has been decided to test
the robustness of the WooKey platform against these attacks.

19.2 Preliminary work

Before focusing on WooKey, the evaluator validated the setup on a
known setting: the TEMPEST attack was reproduced to intercept the
image displayed on a screen through an HDMI cable. The setup is the
following:

— Radio receiver: USRP N210 (≈ 2,000 e)
— Receiving board: WBX 50-2200 MHz (≈ 500 e)
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— Antenna: supplied antenna

Fig. 36. HDMI Spectrogram

The HDMI 2.1 is bond to a large band with a maximum of 340 MHz.
With a setting at 400 MHz, GNU Radio [7] has been used to observe the
signal and validate the frequency. On Figure 36, we can observe the switch
occurring on the screen between a dark image and a bright one, done
by hand using Alt+Tab. The waterfall spectogram displays those waves
emitted at different frequencies depending on the data passing through
the wire. We can now tune TempestSDR on the matched frequency of
400 MHz. Figure 37 shows the screen on the right partially restored on
the left one.

Fig. 37. TempestSDR in action
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Although the evaluation center is not expert in such attacks, the ex-
periment has been reproduced in a couple of days and with fairly standard
equipment. This step had several purposes: first gaining hands-on expe-
rience with the hardware and software components used for TEMPEST
attacks and validate our setup. With the setup out of the way, it is possible
to focus on attacking the WooKey board itself.

19.3 Application to WooKey

In the context of the WooKey project, even though close-range
side-channel attacks are considered meaningful only during the pre-
authentication phase, TEMPEST attacks are also of interest during the
user authentication as they can be long-range and hence be performed
stealthily. A partial attack could be conducted by intercepting the radio
emissions from the WooKey platform.

The purpose of the following experiments is to retrieve the PetPIN
and UserPIN codes of the user at the moment they are entered on the
touch screen. The captured trace can be processed later to decode the
information. This would allow to recover the PetPIN and UserPIN, then
to complete the attack the attacker would need to steal the device from
the victim to extract the confidential data.

Fig. 38. Schematics of the SoC-Screen connection

WooKey is composed of two boards, one is the main SoC and the other
the TFT screen and its controller. The link between the main SoC and the
screen board is done by a 16 pins cable. The WooKey’s source code was
analyzed to understand the configuration of the hardware components:

— driver-ili9341: ILI9341 TFT screen userspace driver
— driver-ad7843: AD7843 touchscreen userspace driver

These two drivers use functions of the userspace SPI driver
driver-stm32f4xx-spi.

SPI (Serial Peripheral Interface) is a standard and pretty basic serial
communication interface. It uses 4 wires, clock, input/output and slave
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selection between devices. The Figure 38 allows to identify the SPI pins
on the cable between both boards. WooKey schematics (Figure 39) also
show that the touchscreen controller is connected to the SPI wires.

Fig. 39. SPI zoom on the screen board schematics

In order to conduct a TEMPEST attack on WooKey, the attacker will
have to listen the data exchanged on this cable at a rate of 6 MHz (from
the source code on Listing 17).

uint8_t tft_init ( void )

{

...

#if CONFIG_WOOKEY_V1

spi1_init ( SPI_BAUDRATE_6MHZ );

# elif defined ( CONFIG_WOOKEY_V2 ) || defined ( CONFIG_WOOKEY_V3 )

spi2_init ( SPI_BAUDRATE_6MHZ );

...

Listing 17. SPI bus frequency in WooKey source code

To work with this rather low frequency (compared to HDMI), the
equipment has to be adapted:

— Radio receiver: USRP N210 (≈ 2,000 e)
— Board: LFRX DC-50 MHz (≈ 100 e)
— Antenna: ANT500 (≈ 30 e)
All the following experiments were conducted using GNU Radio Com-

panion. The antenna ANT500 has a minimal frequency of 75 MHz, it is
thus not appropriate to receive 6 MHz. The wavelength of a wave is λ = v

f

where v is the speed of light and f the frequency of the wave. Indeed, to
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Fig. 40. Setup for TEMPEST attack on WooKey

obtain the length of a proper antenna the speed of light must be divided
by the frequency:

300, 000, 000 m/s

6, 000, 000 Hz
= 50 m

This size can be cut off by a divider, so it is possible to find a regular size
antenna which is still acceptable for our requirements (although it might
be less accurate).

Fig. 41. Inactive WooKey spectrogram

On Figure 41, the first observation can be made when WooKey is
powered on and its screen displays the PIN selection interface. The spec-
trogram is a waterfall plot that shows here a range of frequencies and
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Fig. 42. WooKey initialization spectrogram

Fig. 43. WooKey usage spectrogram
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is able to show multiple signals on a period of time. The figure here
displays a history of 2 seconds. In this case, nothing happened, only usual
perturbations (white noise).

On Figure 42 the spectrogram shows emanations produced while the
WooKey boots up. When the evaluator enters a PIN code on the screen
and then presses the OK button, the screen is totally refreshed. Before
that, each press on a numbered key slightly changes its color for a short
time. These emanations are visible on the spectrogram on Figure 43 (to
obtain this the selected frequency is 5 MHz). It should be noted that
this signal is repeated approximately every 1 KHz. Figure 44 displays the
variation of this frequency over time.

Fig. 44. Frequency variation over time

In the context of the Inter-CESTI challenge, the overall workload
allocated to the TEMPEST attack was four days. In this short time frame,
it was possible to demonstrate that the hardware components used by the
WooKey platform leak information in the form of EM emissions. These
emissions could potentially be captured by an attacker in order to recover
the victim’s PetPIN and UserPIN, which are both sensitive assets of the
WooKey product. Several tools, open source or not, are publicly available
and the required hardware is affordable. An analyst with modest expertise
will be able to setup and capture these signals.

However, to complete the attack, the adversary would need to analyze
the captured signal and ideally reconstruct SPI frames. The TEMPEST
study described in the current section should be completed with the
elements extracted from section 18 dedicated to the SPI communication
details. There are no public tools available for such analysis, and developing
a framework for long-range SPI decoding with noise requires time and
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expertise, yielding in the conclusion that the TEMPEST attack path is
residual in the context of the WooKey product. Although the vulnerability
is present, its exploitation would require an attack potential (i.e. time,
means and knowledge) beyond what is considered acceptable for the
product.

20 Conclusion

In this article, we have provided a methodological and technical feed-
back on the inter-CESTI challenge regrouping an overview of various
software, hardware and hybrid attacks conducted by the 10 ITSEFs li-
censed for the french CSPN scheme. The WooKey project (the evaluation
target) provided a white box evaluation context thanks to its open-source
and open-hardware aspects: this allows advanced instrumentation tech-
niques, leveraging various attack paths optimizations on par with the
limited time frame constraints of the inter-CESTI challenge.

The results of the challenge exhibit that the three kinds of attacks
(software, hardware, hybrid) can be efficiently performed by the 10 ITSEFs
beyond the specialization of each one. Interesting attack paths that in-
volve software exploits, cryptographic weaknesses, side-channels and fault
injections have been notably found and exploited. As a matter of fact,
physical attacks have proven to be quite easily achievable using cheap and
accessible equipment (such as the ChipWhisperer, the ChipSHOUTER,
FPGA, etc.), demystifying the fact that such attacks require very advanced
adversaries with substantial means outside the CSPN scope.

First of all, this supports the fact that “Hardware devices with boxes”
alike targets must be studied and evaluated with all these attack paths in
mind (i.e. included in the threat model) to cover all the relevant security
aspects. Secondly, the results of the challenge also clearly encourage the
creation of a “Hardware Device” in the CSPN scheme: this is under
scrutiny within CCN, ANSSI’s Certification Body, with the inter-CESTI
feedback in mind.

Finally, the outcomes of the challenge have also been a great source
of betterment for the WooKey project. For the sake of transparency
and security improvement, all the attack paths and enhancement advice
provided by (and discussed with) the ITSEFs have been integrated in
recent commits.
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A ECDSA

The Elliptic Curve Digital Signature Algorithm (ECDSA) is a signature
scheme. It has been standardized in [23].

Input: private key d, an encoded integer m ∈ [0, t− 1] representing a message
Output: Signature (r, s)

1: k
R

←− {1, . . . , t− 1}
2: Q← [k]G
3: r ← xQ mod t

4: if r = 0 then

5: go to line 1
6: kinv ← k−1 mod t

7: s← kinv(dr + m) mod t

8: if s = 0 then

9: go to line 1
10: return (r, s)

Algorithm 1. ECDSA Signature

B Main loop of the ECSM

This code comes from the file ♣r❥❴♣t❴♠♦♥t②✳❝.

/∗ Main loop o f Double and Add Always ∗/
while ( mlen > 0) {

int rbit_next ;

--mlen ;

/∗ r b i t i s r [ i +1] , and rb i t_nex t i s r [ i ] ∗/
rbit_next = nn_getbit (&r, mlen );

/∗ mbit i s m[ i ] ∗/
mbit = nn_getbit (m, mlen );

/∗ Double : T[ r [ i +1]] = ECDBL(T[ r [ i +1] ]) ∗/
prj_pt_dbl_monty (&T[ rbit ], &T[ rbit ]);

/∗ Add : T[1−r [ i +1]] = ECADD(T[ r [ i +1] ] ,T[ 2 ] ) ∗/
prj_pt_add_monty (&T[1- rbit ], &T[ rbit ], &T [2]);

/∗ T[ r [ i ] ] = T[ d [ i ] ^ r [ i +1]]
∗ NOTE: we use the low l e v e l nn_copy fu nc t io n here to avoid
∗ any p o s s i b l e l ea ka ge on operands with prj_pt_copy
∗/

nn_copy (&(T[ rbit_next ].X. fp_val ), &(T[ mbit ^ rbit ].X. fp_val ));

nn_copy (&(T[ rbit_next ].Y. fp_val ), &(T[ mbit ^ rbit ].Y. fp_val ));

nn_copy (&(T[ rbit_next ].Z. fp_val ), &(T[ mbit ^ rbit ].Z. fp_val ));

/∗ Update r b i t ∗/
rbit = rbit_next ;

}
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C SCA on WooKey’s HMAC-SHA256 details

The method used for performing the CPA could suggest that an error on a lower
byte will make the attack on next byte unfeasible. Indeed, for instance, if Wt[0] best
guess is not the correct value, the carry propagation on T1[1] as on T2[1] and T3[1]

will not be correct. Our tests showed that the influence of the carry between two bytes
of the same round is relatively low. The attack succeeded on Wt[1] whereas Wt[0] had
been changed with bad values on purpose: the amount of traces to retrieve Wt[1] would
be a little bit higher than for Wt[0] but not so much. However if only one byte is wrong
at one round, it is completely impossible to find any byte of Wt at the next round. This
information could be used to go back to the previous round and find the correct value.
With this methodology we consider for each byte only its contribution. The three other
ones are considered as noise even if lower bytes are already successfully retrieved. We
have tried a second methodology where we consider not only the HW of current byte
but also the HW of previous ones. So for Wt[1], the HW was computed on 16 bits;
for Wt[2], the HW was done on 24 bits and finally for Wt[3], it was done on 32 bits.
For Wt[1] and Wt[2], the correlation for correct key was higher than with previous
methodology but the correlation for other keys are also higher. For Wt[3], the correct
key was not the one with the best correlation. We have two hypothesis which could
explain this behavior. The first one is that the HW model doesn’t completely fit the
leakage of the chip. The second one is that the distribution shape of the HW on 8, 16,
24 or 32 bits is not the same. Considering only one byte, the probability to be on a low
or high HW value is not negligible. On 32 bits, when we attack Wt[3], the HW is more
often on the center of the distribution which doesn’t make it trivial to distinguish the
values. This assumption could be explored with simulations to see if it is real or not.
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