Inter-CESTI: Methodological and Technical Feedback on Hardware Devices Evaluations

Symposium sur la Sécurité des Technologies de l'Information et des Communications

ANSSI, Amossys, EDSI, LETI, Lexfo, Oppida, Quarkslab, SERMA. Synacktiv. Thales. Trusted Labs

AGENDA

- Introduction
- Focus on the WooKey platform
- Project start-up
- Attacks
- Conclusion

ABOUT PRODUCT CERTIFICATION

Goal: Provide assurance that the product is secured enough

- Verify that the product does what is intended
- Pentest the product to assess the robustness of security functions
- Use evaluation criteria and methodology

ACTORS INVOLVED IN PRODUCT CERTIFICATION

WHO AM I?

WHO ARE THEY?

ITSEFs: WHO ARE THEY?

HARDWARE ITSEFS

HARDWARE ITSEFS

HARDWARE ITSEFS

Products

SOFTWARE ITSEFS

SOFTWARE ITSEFS

Ned Man

SOFTWARE ITSEFS

Products

Tools

ITSEFs: WHAT ABOUT THESE?

"Hardware devices"

INTRODUCING THE INTER-CESTI

Inter-CESTI:

- common target
- use cheap material
- hardware + <mark>software</mark> attacks

TECHNOLOGY RESEARCH

"Hardware devices"

WHY WOOKEY?

- WooKey platform (presented at SSTIC 2018) fitted perfectly:
 - Open source software and hardware
 - ♠ A lot of security features
 - Numerous external interfaces
 - Knowlegde of the product

HARDWARE ARCHITECTURE

HARDWARE ARCHITECTURE

MODULES AND SERVICES OF WOOKEY

MODULES AND SERVICES OF WOOKEY

MODULES AND SERVICES OF WOOKEY

Methodology details

- Security target
- Cryptographic supplies
- WooKey platforms samples

Open

THALES

T Trusted labs

Way too many assets and security functions

Way too many assets and security functions

IDENTIFIED ATTACKS SCOPE

- ⊕ Software attacks (pre and post-auth)
- ⊕ Pre-auth hardware attacks
- ⊕ Stealthy post-auth hardware attacks
- On the platform and the AUTH and DFU tokens

SELECTION OF ATTACK PATHS

Software

- Static analysis and fuzzing of exposed code
- Analysis of the Bootloader
- MPU policies analysis
- Javacard applets analysis

Hardware

- Side-channel attacks (SCA)
- Fault injection attacks (FIA)
- Eavesdropping/injection on buses
- TEMPEST

SELECTION OF ATTACK PATHS

- Fault injection material to fit in the CSPN constraints

 Eavesdor material to fit in the CSPN constraints

 Use "cheap" material to fit in the CSPN constraints

A COMPREHENSIVE LIST OF ATTACKS

15 different attacks (see article)

All found and performed by ITSEFs

Transparency initiative

- Security target available
- Attacks details in the article:
 - Tools, settings and timings of attacks
 - Reproducible methodology
 - Mitigations

FINDINGS

No direct attack path found

- Only partial attacks
- Seems like stealing once a WooKey will not allow much
- Multiple pilferage attacks needed
 - Practical attacks require physical access and cloning/trapping
 - Time required to perform cloning/trapping

Defense in depth seems useful!

|Overview | libiso7816 glitch | Privilege escalation | Bootloader RDP downgrade | Bootloader firmware rollback | TEMPEST

ATTACKS OVERVIEW (FROM THE ARTICLE)

	Static Code eview	Settlofation	Software Fuzzing	Hardware	MARINESS	Bulleting	Rus ection	Californ	SCA	FIA	TEMPEST
① Javacard applet analysis	Х								Х	Х	
② libiso7816 and libtoken fuzzing			Х								
03 libiso7816 glitch attacks	Х	Х								Х	
04 EwoK privilege escalation		X	Х								
05 MPU configuration review			Х		Х						
06 PetPIN bruteforce attack							Х	Х			
Secure Channel review	Х					Х		Х			
08 ECDSA physical attacks	Х								х		
09 HMAC physical attacks									х		
10 Bootloader RDP2 downgrade	Х									Х	
11 Bootloader EM Faults	Х									Х	
2 Bootloader Anti-rollback bypass	Х									Х	
3 SDIO bus analysis				Х		Х					
SPI bus analysis						Х					
(IS SPI TEMPEST											Х

|Overview | libiso7816 glitch | Privilege escalation | Bootloader RDP downgrade | Bootloader firmware rollback | TEMPEST

ATTACKS OVERVIEW (FROM THE ARTICLE)

	statifyst leview	Settleration	Sorthage	Hardware	MARAJISIS	Bushing	Rusection	Cartack	SCA	FIA	TEMPEST
① Javacard applet analysis	Х								Х	Х	
02 libiso7816 and libtoken fuzzing			Х								
03 libiso7816 glitch attacks	X	X								Х	
04 EwoK privilege escalation		Х	Х								
05 MPU configuration review			Х		Х						
06 PetPIN bruteforce attack							Х	Х			
Secure Channel review	Х					Х		Х			
08 ECDSA physical attacks	Х								Х		
09 HMAC physical attacks									Х		
10 Bootloader RDP2 downgrade	х									Х	
11 Bootloader EM Faults	Х									Х	
2 Bootloader Anti-rollback bypass	х									Х	
SDIO bus analysis				Х		Х					
14 SPI bus analysis						Х					
15 SPI TEMPEST											Х

Attacks with cloning and trapping

Attacks with stealthy spying and stealing

ATTACK LIBISO7816: WHY?

Goal: Get the Platform Secrets, then clone and trap to get the Master Key

LIBISO7816: TOWARDS A HYBRID ATTACK

■ Software: code analysis and fuzzing didn't reveal any vulnerability

Filename	Function Coverage	Line Coverage	Region Coverage
<pre>fuzzing_javacard/libecc/src/nn/nn_config.h</pre>	0.00% (0/1)	0.00% (0/5)	0.00% (0/3)
fuzzing_javacard/libecc/src/utils/utils.h	0.00% (0/1)	0.00% (0/6)	0.00% (0/1)
fuzzing_javacard/src/aes_glue.c	85.71% (6/7)	46.26% (105/227)	34.01% (50/147)
fuzzing_javacard/src/aes_soft_unmasked.c	66.67% (8/12)	54.41% (142/261)	58.23% (46/79)
fuzzing_javacard/src/fuzzing.c	100.00% (6/6)	100.00% (58/58)	100.00% (12/12)
fuzzing_javacard/src/hmac.c	100.00% (4/4)	74.07% (100/135)	77.42% (48/62)
fuzzing_javacard/src/libtoken.h	0.00% (0/2)	0.00% (0/19)	0.00% (0/2)
fuzzing_javacard/src/platform_glue.c	66.67% (10/15)	60.42% (29/48)	66.67% (10/15)
fuzzing_javacard/src/smartcard.c	50.00% (7/14)	34.35% (181/527)	40.91% (126/308)
fuzzing_javacard/src/smartcard_iso7816.c	82.00% (41/50)	79.64% (1604/2014)	82.01% (939/1145)
fuzzing_javacard/src/token.c	80.95% (17/21)	75.00% (759/1012)	79.46% (468/589)
fuzzing_javacard/src/token_dfu.c	100.00% (2/2)	90.70% (39/43)	88.89% (16/18)
Totals	74.81% (101/135)	69.28% (3017/4355)	72.03% (1715/2381)

■ Hardware: ITSEF successfully exploited power glitches

LIBISO7816 GLITCH EXPLOITATION

Vulnerability:

- A glitch during a masking instruction allows a buffer overflow
 - + Stack canaries misconfiguration
 - ⇒ Code execution in the SMART task

```
int SC_get_ATR (SC_ATR * atr) {
  [...]
  /* Get the historical bytes */
  atr->h_num = atr->t0 & 0x0f;
  for (i = 0; i < atr->h_num; i++) {
    if (SC_getc_timeout(&(atr->h[i]), WT_wait_time)) {
       goto err;
    }
    checksum ^= atr->h[i];
  }
  [...]
Fake
token
```

Demonstration of a hybrid attack

LIBISO7816: FROM CLONING TO TRAPPING

BwoK privilege escalation

- Fuzzing syscalls revealed kernel privilege escalation
 - ▶ Error in parsing the parameter of one syscall ⇒ Deactivation of MPU

- Coupled with @libiso7816 glitch attack:
 - ⇒attacker can modify the firmware in place
 - ⇒trapping a closed platform is possible

BOOTLOADER: RDP DOWNGRADE

Goal: Get the Platform Secrets, then clone and trap to get the Master Key

Vulnerabilities:

- One FIA on the STM32 for the RDP level downgrade
- One FIA on WooKey Bootloader to bypass the RDP level verification

Bootloader RDP2 downgrade

FIRMWARE ROLLBACK

Goal: Exploit vulnerable firmware using version downgrade

FIRMWARE ROLLBACK

About: formal methods used for vulnerability analysis

- Software:
 - Frama-C used on Bootloader source code, but no vulnerability (RunTime Errors) found!

- Hardware:
 - Lazart, which simulates FIA found exploitable path in firmware version check
 - Exploited using a voltage glitch

TEMPEST

Goal: Get user PIN using EM leaks, then steal the platform and token

TEMPEST

- SPI bus between screen and PCB shows TEMPEST leaks
- More a characterization than a full attack

CONCLUSION

Inter-CESTI feedback

- Challenging for all entities
- Attacks efficiently performed by all ITSEFs (beyond their specialization)
- Results encourage the creation of a Hardware Device CSPN domain

Attacks feedback

- Cheap physical attacks quite easily achievable
- Hybrid attack paths and approaches are efficient
- Using accessible equipment with CSPN in mind

This equipment will never scale for more hardware secured products (HSM, banking cards, etc.)

CONCLUSION

Inter-CESTI feedback

- Challenging for all entities
- Attacks efficiently performed by all ITSEFs (beyond their specialization)
- Results encourage the creation of a Hardware Device CSPN domain

Attacks feedback

- Cheap physical attacks quite easily achievable
- Hybrid attack paths and approaches are efficient
- Using accessible equipment with CSPN in mind

WooKey project feedback

- Very interesting technical discussions
- New commits on WooKey's github: https://github.com/wookey-project

Inter-CESTI:

Questions?

ANSSI, Amossys, EDSI, LETI, Lexfo, Oppida, Quarkslab, SERMA. Svnacktiv, Thales, Trusted Labs

