
This presentation is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS SUMMARY.

Firmware Boot loaders
Operating system

kernels & drivers

Hypervisors &

VMMs

Network services

(HTTP)

System libraries

(cryptography)

System apps

(browsers)

0

100

200

300

400

500

600

700

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

#
 o

f
C

V
E
s

Patch Year

Total

~66% of iOS 12 vulnerabilities

~72% of macOS 10.14 vulnerabilities

~60% of high severity vulnerabilities in Chrome

~90% of Android vulnerabilities

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

%
 o

f
C

V
E
s

Patch Year

Memory safety Not memory safety

~70%

Memory safety is an
industry challenge

[2,3,4,5]

Most systems software is currently written in
unsafe languages such as C and C++

And it is easy to make a mistake

These are great languages, but developers
need to consciously do the safe thing

CVE-2019-1345

A portable executable (PE) parsing memory safety vulnerability[6]

found by @j00ru that I introduced into the Windows kernel in 2016

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

%
 o

f
C

V
E
s

Patch Year

Exploited within 30 days of security update Not known to be exploited

Most vulnerabilities are not known to be

exploited in the wild*

If a vulnerability is exploited, it is most likely to

first be exploited as zero day in a targeted

attack

Broad exploitation has become uncommon

Customer safety has meaningfully improved

Exploiting vulnerabilities has become more expensive

→ Alphabet soup of exploit mitigations, sandboxes, and other controls have increased costs

Many attackers have pivoted to alternative tactics with better ROI

→ Social engineering (phishing for credential theft, ransomware, etc)

For systems software[1] at Microsoft

we leverage tools[25,26] to help us find vulnerabilities

they do not satisfy the properties outlined earlier

The upstream & downstream costs to productivity can be significant

31
21

18 22 25
10 3 10 3 1 3 7 6 11

37
35

38 43
63

25

28

27
27 59

74 106
80

130

10 14

17 21 44

57

15

92

184

183

93
85

102

98

4 4
13

27 19

14

5
12

24

23

36
71 81

81

6 4 7

6
11

6
3

6

9

31

20
93 60 40

1 1 2

4 9

5

4 10

16

39

77

88

57
94

39 33 37
35 51

91
34 87

50

132
151

179
222

216

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

%
 o

f
C

V
E
s

Patch Year

Stack Corruption Heap Corruption Use After Free Type Confusion Uninitialized Use Heap OOB Read Other

#1 – heap out-of-bounds

#2 – use after free

#3 – type confusion

#4 – uninitialized use

Vulnerability

category
Vulnerability class

Spatial safety

Heap out-of-bounds

read/write

Stack out-of-bounds

read/write

Global out-of-bounds

read/write

Use gsl::span<T> and do not index

raw pointers or perform pointer

arithmetic on raw pointers[7]
☺

Durable safety solution Completeness? Enforceability? Verifiability?
Developer

friction?

Temporal safety

Heap uninitialized use

Stack uninitialized use

Always initialize members in

constructors[9] ☺

Use a memory allocator that

initializes by default ☺ ☺

Always initialize members in

constructors[9] ☺

Always initialize local variables

before use[8,18] ☺ ☺

Temporal safety

Heap use after free

Stack use after free

Vulnerability

category
Vulnerability class Durable safety solution Completeness? Enforceability? Verifiability?

Developer

friction?

Use RAII, owner<T>,

unique_ptr<T>, and

shared_ptr<T> instead of raw

pointers or references to

objects[10, 11, 12]

Concurrency

safety

Memory access race

condition
Unknown[13]

Object lifetime and concurrency vulnerabilities are challenging to categorically eliminate

Type confusion

Illegal static down cast

Union field type

confusion

2nd order vulnerability

category
Vulnerability class Durable safety solution Completeness? Enforceability? Verifiability?

Developer

friction?

Use dynamic cast or similar

runtime verification[14,17] ☺

Use std::variant[15] ☺

Arithmetic errors
Integer overflow or

underflow

Use safe integer manipulation

libraries[16] ☺

2nd order vulnerability classes can give rise to memory safety vulnerabilities

Observations: making unsafe code safer

C# is a wonderful language, but it is not suitable in many systems contexts

Vulnerability category Vulnerability class C# Completeness Rust Completeness

Spatial safety

Heap out-of-bounds read/write ☺ ☺

Stack out-of-bounds read/write ☺ ☺

Global out-of-bounds read/write ☺ ☺

Temporal safety

Heap uninitialized use ☺ ☺

Stack uninitialized use ☺ ☺

Heap use after free ☺ ☺

Stack use after free ☺ ☺

Concurrency safety Memory access race condition ☺

Type confusion

Illegal static down cast ☺ ☺

Union field type confusion ☺ ☺

Arithmetic errors Integer overflow or underflow ☺

unsafe

Observations: transition to safer languages

Completeness? Enforceability? Verifiability? Developer friction?

 ☺ ☺

3

Observations: memory tagging

Unforgeable capabilities enable fine-grained memory access control[22]

Completeness? Enforceability? Verifiability? Developer friction?

 ☺

Observations: CHERI

✔ Hard to do the unsafe thing
✔ Easy to verify that the safe thing happens
✔ Productivity is maximized
✔ Inherently viable

transitive

A huge THANK YOU to everyone at Microsoft & across the industry

who is working to durably improve systems software security

https://alexgaynor.net/2019/aug/12/introduction-to-memory-unsafety-for-vps-of-engineering/

https://langui.sh/2019/07/23/apple-memory-safety/

https://security.googleblog.com/2019/11/gwp-asan-sampling-heap-memory-error.html

https://security.googleblog.com/2019/05/queue-hardening-enhancements.html

https://bugs.chromium.org/p/project-zero/issues/detail?id=1909

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#probounds-bounds-safety-profile

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-always

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#SS-type

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#SS-lifetime

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#r-resource-management

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-deref

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#cp-concurrency-and-parallelism

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rh-
dynamic_cast

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Ru-naked

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-expr

https://clang.llvm.org/docs/ControlFlowIntegrityDesign.html

https://github.com/microsoft/MSRC-Security-
Research/blob/master/presentations/2019_09_CppCon/CppCon2019%20-%20Killing%20Uninitialized%20Memory.pdf

https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf

https://alexgaynor.net/2019/aug/12/introduction-to-memory-unsafety-for-vps-of-engineering/
https://langui.sh/2019/07/23/apple-memory-safety/
https://security.googleblog.com/2019/11/gwp-asan-sampling-heap-memory-error.html
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1909
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#probounds-bounds-safety-profile
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-always
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#SS-type
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#SS-lifetime
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#r-resource-management
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-deref
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#cp-concurrency-and-parallelism
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rh-dynamic_cast
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Ru-naked
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-expr
https://clang.llvm.org/docs/ControlFlowIntegrityDesign.html
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_09_CppCon/CppCon2019 - Killing Uninitialized Memory.pdf
https://developer.arm.com/-/media/Arm Developer Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf

https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20memory%20tagging.pdf

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-941.pdf

https://www.cst.cam.ac.uk/blog/tmj32/addressing-temporal-memory-safety

https://github.com/microsoft/verona

https://www.microsoft.com/security/blog/2020/05/04/mitigating-vulnerabilities-endpoint-network-stacks/

https://www.youtube.com/watch?v=NlfZG2wTPZU

https://www.rsaconference.com/usa/agenda/collaborating-to-improve-open-source-security-how-the-
ecosystem-is-stepping-up

https://vimeo.com/376177222

https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security analysis of memory tagging.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-941.pdf
https://www.cst.cam.ac.uk/blog/tmj32/addressing-temporal-memory-safety
https://github.com/microsoft/verona
https://www.microsoft.com/security/blog/2020/05/04/mitigating-vulnerabilities-endpoint-network-stacks/
https://www.youtube.com/watch?v=NlfZG2wTPZU
https://www.rsaconference.com/usa/agenda/collaborating-to-improve-open-source-security-how-the-ecosystem-is-stepping-up
https://vimeo.com/376177222

