5 Microsoft

Pursuing Durably Safe Systems Software

Matt Miller (@epakskape)
Microsoft Security Response Center (MSRC)

SSTIC 2020
June 34, 2020

This presentation is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS SUMMARY.

This presentation represents my personal opinions
It is intended to provoke thoughtful discussion

It is not intended to broadly represent the views of Microsoft

©

The malleable foundation of modern technology

Systems software provides the core platforms on which other software is built

Personal devices Cloud platforms loT devices

Systems software Systems software Systems software

: Operating system Hypervisors & Network services System libraries System apps

We need systems software to be reliable, performant, and secure

What properties should safe systems software uphold?

Developers must be intentional about
unsafety

Hard to do the unsafe thing

ENACREIIVAUEIRGEEICRisllsle Ml Safety is verifiable by developers and
happens downstream consumers of the software

Productivity is maximized Developers and downstream consumers of

_ the software are maximally productive

Performance, compatibility, and other tenets

Inherently viable must be upheld

Systems software security

Today

[t is too easy to do the unsafe thing today

For systems software[1] at Microsoft, memory safety is the most common vulnerability class

700 100%
90%
600
80%
500 70%
0 n 60%
w 400 L
§>f § 50%
(o] (o]
% 300 R 40%
200 30%
20%
100
10%
0 0%
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Patch Year Patch Year
= Total m Memory safety @ Not memory safety
Vulnerabilities reported & fixed per year is increasing ~70% of vulnerabilities are memory safety year over year
Memory safety is an ~66% of i0S 12 vulnerabilities ~60% of high severity vulnerabilities in Chrome

industry challenge
[2,3,4,5]

~72% of macOS 10.14 vulnerabilities ~90% of Android vulnerabilities

Why is it easy to do the unsafe thing today?

Most systems software is currently written in
unsafe languages such as C and C++

These are great languages, but developers
need to consciously do the safe thing

And it is easy to make a mistake ®

case 'c':
{char feel[25]; Some code | wrote when first
learning C++ in 1995

cout << "Hello, how are you? " << endl;
cin >> feel;

CVE-2019-1345

A portable executable (PE) parsing memory safety vulnerability[6]
found by @j00ru that | introduced into the Windows kernel in 2016

Satety has improved, but vulnerabilities remain

100%

For systems software[1] at Microsoft

90%

80%
Most vulnerabilities are not known to be

exploited in the wild*

70%

60%

50%

% of CVEs

If a vulnerability is exploited, it is most likely to
first be exploited as zero day in a targeted
attack

40%

30%

20%

10%

Broad exploitation has become uncommon

0%
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Patch Year

Customer safety has meaningfully improved

m Exploited within 30 days of security update = Not known to be exploited

Exploiting vulnerabilities has become more expensive

- Alphabet soup of exploit mitigations, sandboxes, and other controls have increased costs

What changed?
Many attackers have pivoted to alternative tactics with better ROI

—> Social engineering (phishing for credential theft, ransomware, etc)

* Acknowledging that we have imperfect visibility

[t's hard to verity that the safe thing happens

How do we know if systems software is free of various vulnerability classes?

We typically do not know today, so we leverage tools[25,26] to help us find vulnerabilities

Typically not automated and/or not broadly enabled by default

Typically no guarantee that an entire vulnerability class does not exist

Findings are valid for a specific point in time — new code may introduce issues

Downstream consumers cannot verify the completeness of these efforts

All of these tools have merit, but they do not satisfy the properties outlined earlier

And what about dependencies?

Software is increasingly dependent on a broad ecosystem of open source developers

No standardized way to know & enforce that dependencies implement specific security controls

Which compiler security features were enabled?

Which static analysis warnings have been eliminated?

Which vulnerability classes are guaranteed to not exist?

Did developers use MFA for commits?

What security controls were enabled in the CI/CD pipeline?

Productivity is not being maximized

Developers expend non-trivial energy Downstream consumers can experience

debugging & fixing memory safety issues vulnerability management costs

Reproducing the issue Performing a risk analysis on vulnerable
dependencies

Determining the root cause

Performing validation of security updates to mitigate

Developing and validating the fix regression risk

Deploying updates with the fix Ingesting security fixes from dependent components

Deploying security updates to affected systems in a
timely fashion

X X

of vulnerabilities # of vulnerabilities

The upstream & downstream costs to productivity can be significant

Systems software security

Pursuing durable safety

What options can we consider?

Make unsafe code safer

Transition to safer languages

Safer hardware extensions

Durably & verifiably eliminate common
classes of vulnerabilities in unsafe code

Adopt safer languages such as C# and Rust
where it matters

Pursue hardware security features that help
eliminate vulnerability classes

Making unsafe code sater

Finding ways to make C and C++ code durably & verifiably safer is attractive but challenging

100% oo c
Top vulnerability classes in

90%

systems software[1] at Microsoft
(2016 through 2019)

80%

70%

60% | #1 - heap out-of-bounds

50%

% of CVEs

40%

#2 — use after free

30%
20%

10%

0% T [— e —
2006 2007 2008 2009 2010 201 2012 2013 2014 2015 2016 2017 2018 2019
Patch Year

#3 — type confusion

#4 — uninitialized use

m Stack Corruption ® Heap Corruption ® Use After Free ® Type Confusion Uninitialized Use Heap OOB Read m Other

How can we approach eliminating the most common classes of vulnerabilities?

Note: CVEs may have multiple root causes, so they can be counted in multiple categories

Eliminating commmon C/C++ vulnerability classes [1/3]

Vulnerability s : . T o o | Developer
VuInerab|I|tycIass Durable safety solution Enforceability? | Verifiability? friction?

Heap out-of-bounds
read/write

Use gsl::span<T> and do not index

: Stack out-of-bounds :)
Spatial safety read,write raw pointers or perform pointer

arithmetic on raw pointers[7]
Global out-of-bounds
read/write

Always initialize members in
constructors[9]

Heap uninitialized use

Use a memory allocator that
initializes by default

Temporal safety

Always initialize members in
constructors[9]

Stack uninitialized use

Always initialize local variables
before use[8,18]

© ® O O
® © ©® ®
®» ® @ O
© © O O

Eliminating common C/C++ vulnerability classes [2/3]

Vulnerability - : - o o e o | Developer
VuInerabllltycIass Durable safety solution Enforceability? | Verifiability? friction?

Heap use after free

Use RAIl, owner<T>,
unique_ptr<T>, and

Temporal safety shared_ptr<T> instead of raw @ @ @ @

pointers or references to
objects[10, 11, 12]
Stack use after free

Concurrency Memory access race Unknown[13] @ @ @ C
safety condition

Object lifetime and concurrency vulnerabilities are challenging to categorically eliminate

Eliminating common C/C++ vulnerability classes [3/3]

2nd order vulnerability - : - e Lt Developer
? ? ?
Vulnerability class Durable safety solution Completeness? | Enforceability? | Verifiability?
lleaal static down cast Use dynamic cast or similar @ @ @ @
9 runtime verification[14,17]

Type confusion

Union f'e|d type Use std::variant[15] @ @
confusion

Arithmetic errors Integer overflow or Qse s'afe integer manipulation @ @ @ @
underflow libraries[16]

2nd order vulnerability classes can give rise to memory safety vulnerabilities

Observations: making unsafe code safer

Making C and C++ code durably safer is possible
No clear line-of-sight to solutions for all common classes
Some solutions have build-time rules, but most are off by default
Some solutions can have non-trivial developer friction

Enforcing and verifying that solutions are in place is not easy today

Transitioning to safer languages

Safer languages can categorically eliminate most of the common vulnerability classes

Type-safe Type-safe
Memory-safe (with GC) Memory-safe (without GC)
Interoperable with C/C++ Interoperable with C/C++

C# is a wonderful language, but it is not suitable in many systems contexts

C# and Rust eliminate many vulnerability classes

Heap out-of-bounds read/write © ©
Spatial safety Stack out-of-bounds read/write
Global out-of-bounds read/write
Heap uninitialized use
Stack uninitialized use
Temporal safety
Heap use after free
Stack use after free

Concurrency safety Memory access race condition

llegal static down cast
Type confusion

© 6 06 06 06 6 6 O
© 6 606 6 06 66 O

Union field type confusion

©
®)

Arithmetic errors Integer overflow or underflow

Both C# and Rust have an unsafe keyword, but developers must intentionally use it

Proposed systems software language selection flow chart

Can use Prefer C#
managed >

language? (OI’ similar)

e » Prefer Rust

Other languages may be an option too

» Use C++

This flowchart captures a preferential order

» Use C

Observations: transition to safer languages

Safer languages can provide strong durable safety
Reduced cognitive load enables developers to be more productive
Rewriting existing code in a safer language can be high friction
Interop and compatibility with existing code and tools is important

Opportunities exist to innovate in safer languages (Verona) [24]

Safer hardware extensions

Systems software can leverage CPU architecture extensions to eliminate classes of vulnerabilities

Memory Tagging

These features can durably eliminate some vulnerability classes & may also make exploitation more difficult

Armv8.5 Memory Tagging Extension (MTE) basics[19] MTE's impact on various vulnerability classes[20]

16-byte aligned memory regions have a 4-bit Deterministic protection for
memory” tag « Adjacent out-of-bounds access

Pointers have a 4-bit "address” tag in reserved virtual

Probabilistic protection for
address bits P

« Non-adjacent out-of-bounds access
: » Use after free
When pointers are accessed, the tags are compared

, L Situational protection for
If they don't match, an exception is raised o
* Uninitialized use

@x@@@@14‘ 00c08400

Enforceability? Verifiability? Developer friction?

Observations: memory tagging

Can help discover many different types of vulnerabilities at scale
Durably eliminates a common vulnerability class (adjacent out-of-bounds)
Probabilistically mitigates many vulnerability classes, but with low entropy

Probabilistic protection may not be effective in all cases due to side channels

Durability of probabilistic protection is an open question

CHERI

Capability Hardware Enhanced RISC Instructions[21,28]

Unforgeable capabilities enable fine-grained memory access control[22] CHERI's impact on various classes of vulnerabilities

I },g_ Deterministic protection for
88g
] bounds compressef relative to address o Out—Of—bOu nds memory access
perms otype bounds

Ayqedes
¥q-821

Non-deterministic protection for
« Temporal safety (work in progress[23])

64-bit address

Vi
full-precision address

Figure 2.1: 128-bit CHERI Concentrate capability representation: 64-bit address and metadata
in addressable memory and 1-bit tag out of band.

Enforceability? Verifiability? Developer friction?

Observations: CHERI

Durably eliminates most spatial safety vulnerabilities
The inability to forge capabilities may make exploitation more difficult
Most existing C and C++ code is expected to be compatible with CHERI

Non-trivial cost to support the OS platform for the CHERI architecture

Which paths should we pursue?

Why not all of them? ©

Prefer safer languages Adopt safer C++ Explore ISA extensions
such as C# and Rust practices and security that could help address
where possible features where possible safety gaps in C and C++

Enforce and verify the correct use of these security controls

These approaches can help us work toward achieving the properties we outlined earlier

+ Hard to do the unsafe thing

«/ Easy to verify that the safe thing happens
+ Productivity is maximized

+ Inherently viable

But what about the broad software supply chain?

How might we pervasively achieve our desired properties?

Enforcing satety for the broader software supply chain

Approaches like Software Bill of Materials (SBOM) could help enforce transitive software security controls[27]

Write or
ingest Submit PR
code

S
48]
0
=
%)
-
=
)
0

Each phase can apply gates & measures on software security

Measures Gates

Compile-time security features enabled in the code
Safety-relevant compile-time warnings present in the code
Authentication method used for commits (e.g. MFA)
Attested health state of devices (dev, build, deployment)
Versions of dependencies consumed

Prohibit the use of unsafe code without approval
Require that vulnerability class X, Y, Z not exist
Require the use of MFA for commits

Require devices used in supply chain be healthy
No known vulnerable dependencies are allowed

Wrapping up
Systems software forms the foundation of modern technology
Durable safety for systems software is imperative for society

How much progress can we make toward this in the next 5-10 years?

'm looking forward to seeing what we can achieve together ©

A huge THANK YOU to everyone at Microsoft & across the industry
who is working to durably improve systems software security

—= Microsoft

© 2020 Microsoft. All rights reserved. Microsoft, Windows and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft
Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of
this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

References

[1] Vulnerabilities in Microsoft Windows, Office, Internet Explorer and Edge with a security impact of Remote Code Execution (RCE), Elevation of Privilege (EOP), or Information Disclosure (ID)

[2] Introduction to Memory Unsafety for VPs of Engineering. https://alexgaynor.net/2019/aug/12/introduction-to-memory-unsafety-for-vps-of-engineering/

[3] Memory Unsafety in Apple's Operating Systems. https://langui.sh/2019/07/23/apple-memory-safety/

[4] GWP-ASan: Sampling heap memory error detection in-the-wild. https://security.googleblog.com/2019/11/gwp-asan-sampling-heap-memory-error.htm!

[5] Queue the Hardening Enhancements. https://security.googleblog.com/2019/05/queue-hardening-enhancements.html

[6] Issue 1909: Windows Kernel out-of-bounds read in nt!MiParselmageloadConfig while parsing malformed PE file. https://bugs.chromium.org/p/project-zero/issues/detail?id=1909

[7] C++ Core Guidelines Bounds safety profile. https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines. md#probounds-bounds-safety-profile

[8] C++ Core Guideline ES.20: always initialize an object. https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines. md#Res-always

[9] C++ Core Guidelines type.6: always initialize a member variable. https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#SS-type

[10] C++ Core Guidelines Pro.lifetime: lifetime safety profile. https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines. md#SS-lifetime

[11] C++ Core Guidelines R: resource management. https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#r-resource-management

[12] ES.65: Don't dereference an invalid pointer. https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines. md#Res-deref

[13] C++ Core Guidelines CP: concurrency and parallelism. https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#cp-concurrency-and-parallelism

[14] C++ Core Guidelines C.146: Use dynamic_cast where class hierarchy navigation is unavoidable. https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rh-
dynamic cast

[15] C++ Core Guidelines C.181: Avoid "naked" union s. https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Ru-naked

[16] C++ Core Guidelines ES.100 - ES.107: expressions and statements related to arithmetic rules. https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-expr

[17] Control Flow Integrity Design Documentation. https://clang.llvm.org/docs/ControlFlowintegrityDesign.html

[18] Killing Uninitialized Memory: Protecting the OS Without Destroying Performance. https://github.com/microsoft/MSRC-Security-
Research/blob/master/presentations/2019 09 CppCon/CppCon2019%20-%20Killing%20Uninitialized%20Memory.pdf

[19] Armv8.5-A Memory Tagging Extension. https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm Memory Tagging Extension Whitepaper.pdf

https://alexgaynor.net/2019/aug/12/introduction-to-memory-unsafety-for-vps-of-engineering/
https://langui.sh/2019/07/23/apple-memory-safety/
https://security.googleblog.com/2019/11/gwp-asan-sampling-heap-memory-error.html
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1909
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#probounds-bounds-safety-profile
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-always
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#SS-type
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#SS-lifetime
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#r-resource-management
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-deref
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#cp-concurrency-and-parallelism
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rh-dynamic_cast
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Ru-naked
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-expr
https://clang.llvm.org/docs/ControlFlowIntegrityDesign.html
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_09_CppCon/CppCon2019 - Killing Uninitialized Memory.pdf
https://developer.arm.com/-/media/Arm Developer Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf

References

[20] Security analysis of memory tagging. https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%200f%20memory%20tagging.pdf

[21] Capability Hardware Enhanced RISC Instructions (CHERI). https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
[22] An Introduction to CHERI. https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-941.pdf

[23] Addressing Temporal Memory Safety. https://www.cst.cam.ac.uk/blog/tmj32/addressing-temporal-memory-safety

[24] Verona. https://qgithub.com/microsoft/verona

[25] Mitigating vulnerabilities in endpoint network stacks. https://www.microsoft.com/security/blog/2020/05/04/mitigating-vulnerabilities-endpoint-network-stacks/

[26] Keeping Windows secure. hitps://www.youtube.com/watch?v=NIfZG2wTPZU

[27] Collaborating to Improve Open Source Security: How the Ecosystem Is Stepping Up. https://www.rsaconference.com/usa/agenda/collaborating-to-improve-open-source-security-how-the-
ecosystem-is-stepping-up

[28] Digital Security by Design: Capability Hardware Enhanced RISC Instructions Architecture and Software Model. https://vimeo.com/376177222

https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security analysis of memory tagging.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-941.pdf
https://www.cst.cam.ac.uk/blog/tmj32/addressing-temporal-memory-safety
https://github.com/microsoft/verona
https://www.microsoft.com/security/blog/2020/05/04/mitigating-vulnerabilities-endpoint-network-stacks/
https://www.youtube.com/watch?v=NlfZG2wTPZU
https://www.rsaconference.com/usa/agenda/collaborating-to-improve-open-source-security-how-the-ecosystem-is-stepping-up
https://vimeo.com/376177222

