

How to perform long term monitoring of careless threat actors

Daniel Lunghi (<u>@thehellu</u>) June 03, 2020 - SSTIC conference, (Cyber) Rennes, France

Outline

- Introduction
- Malware analysis and classification
- Pivoting on the samples
- Pivoting on the infrastructure
- Telemetry and links with known threat actors
- Bonus
- Conclusion

Introduction

Introduction

- This talk focuses on the methodology of long term threat actor monitoring
- Examples are based on a Trend Micro investigation published on February 18, 2020

Operation DRBControl - Uncovering a Cyberespionage Campaign Targeting Gambling Companies in Southeast Asia

- Goals:
 - Establish Tactics, Technics and Procedures (TTP) of a threat actor
 - Help incident response/detection
 - Get as much context as possible

Introduction

 Investigation started on July 2019, after <u>Talent-Jump</u> <u>technologies</u> brought interesting samples to us

• The samples were found in a gambling company in Philippines

• No obvious link to a known threat actor

- Goals:
 - Extract IOCs (domain names, IP addresses, file names, registry keys...)
 - List the malware features
 - Find the malware family, if known
- How:
 - Pick your favorite disassembler
 - Classification: Yara, TLSH, search engines...

- Initial triaging result:
 - 4 different families, of which 3 are unknown
 - Only known family was found in October 2019

• Let's focus on "Type 1" malware, but the methodology is the same for other families

Malware is packed and uses DLL side-loading

- Malware is written using C++, it support plugins, class names can be extracted from RTTI information and are selfexplanatory
 - CHPKeylog
 - CHPScreen
 - CHPAvi
 - CHPCmd
 - CHPExplorer
 - CHPRegedit
 - Complete list on our paper

• Samples contain a version number

Version number	Compilation date
1.0	May 2019
8.0	July 2019
9.0	August 2019

• Shows fast development pace of the threat actor

- "Easy" pivoting : unique strings
 - Query on search engine (sandbox results)
 - "content" modifier on VirusTotal or similar malware repositories
 - Yara rules for more complex queries
 - RetroHunt for past malwares
- \Rightarrow Fail, malware is packed

- Algorithm for network communication encryption uses a substitution table of 256 bytes
- 256 bytes hardcoded in a specific order
- Yara rule written, alerting added and RetroHunt launched
- \Rightarrow New samples found, all relevant

- On March 23th, an alert matching this substitution table is raised
- The related sample is not a malware
- \Rightarrow The Yara rule is prone to false positives

• We found source code posted on February 27, 2015 on CodeProject.com matching the assembly code

Packet encryption/decryption function

See more: C++

```
Good day to you all!
I have a quick question for the pro-coders around here:
I have a function to encrypt/decrypt my packets in my online game using defined keys.4
Here are the keys, generated random:
```

Rate this:

Hide Expand w Copy Code

Don't discard possibility of code reuse, even with few matching samples
© 2020 Trend Micro Inc.

- Metadata in different file formats is also useful
 - VERSIONINFO structure from the PE format contains information on filename, description, version, etc
 - Documents contain metadata (title, author name, ...)
- In this particular investigation, we could find several related samples by leveraging metadata
 - 2 malware samples had "HaoZipUpdate" as original filename
 - 4 malicious documents had "Dell_20170514745" as author

• Legitimate HaoZipUpdate was patched

loc_403AF7:		; CODE XREF: sub_403AB6+37↑j		loc 4034E7:		· CODE XREE: sub 403∆B6+37↑i
56	push	esi	56	100_100/071	push	esi
8B 35 20 D0 40 00	mov	esi, ds:LoadLibraryA	8B 35 20 D0 40	00	mov	esi, ds:LoadLibrarvA
57	push	edi	57		push	edi
68 64 ED 40 00	push	offset aComctl32Dll ; "COMCTL32.DLL"	68 64 ED 40 00		push	offset aKernel32Dll 0 ; "kerneL32.DLL"
C7 45 BC 08 00 00 00	mov	[ebp+7D0h+var_814], 8	C7 45 BC 08 00	00 00	mov	[ebp+7D0h+var 814], 8
C7 45 C0 FF 00 00 00	mov	[ebp+7D0h+var_810], 0FFh	C7 45 C0 FF 00	00 00	mov	[ebp+7D0h+var_810], 0FFh
FF D6	call	esi ; LoadLibraryA	FF D6		call	esi ; LoadLibraryA
8B 3D 60 D0 40 00	mov	edi, ds:GetProcAddress	8B 3D 60 D0 40	00	mov	edi, ds:GetProcAddress
68 74 ED 40 00	push	<pre>offset aInitcommoncont ; "InitCommonControlsEx"</pre>	57		push	edi
50	push	eax ; hModule	90	1	nop	
89 45 C8	mov	[ebp+7D0h+var_808], eax	90	1	nop	
FF D7	call	edi ; GetProcAddress	90	1	nop	
3B C3	cmp	eax, ebx	90	1	nop	
74 06	jz	short loc_403B2F	50		push	eax
8D 4D BC	lea	ecx, [ebp+7D0h+var_814]	89 45 68		mov	[ebp+/D0n+var_808], eax
51	push	ecx	E8 18 8D 00 00		call	resolvFunctions_LoadShellcode
FF DØ	call	eax	90 AD PC		10p	acy [abou700b.wap \$14]
			51 ST		nuch	
loc_403B2F:		; CODE XREF: sub_403AB6+71↑j	EE DO		call	
68 8C ED 40 00	push	offset aUser32D11 ; "User32.d11"	68 8C ED 40 00		nush	offset allser32011 : "User32.d11"
FF D6	call	esi ; LoadLibraryA	FF D6		call	esi : LoadLibraryA
68 98 ED 40 00	push	offset aMessageboxw ; "MessageBoxW"	68 98 ED 40 00		nush	offset aMessageboxw : "MessageBoxW"
50	push	eax ; hModule	50		push	eax : hModule
89 45 C4	mov	[ebp+7D0h+hLibModule], eax	89 45 C4		mov	[ebp+7D0h+hLibModule], eax
FF D7	call	edi ; GetProcAddress	FF D7		call	edi ; GetProcAddress

- Mutexes might be used for correlation
 - SFX archive dropping Trochilus malware named "diskshawin.exe" uses mutexes with unique names ("cc5d64b344700e403e2sse", "cc5d6b4700e403e2sse" and "cc5d6b4700032eSS")
 - A BbsRAT sample named "diskwinshadow.exe" found in a public sandbox report also uses these mutexes
 - That BbsRAT sample has "bot.googlerenewals.net" as C&C, which is listed in a <u>report</u> from ClearSky on Winnti threat actor

- Passive DNS : database of historical links between IP addresses and domain names
- Some threat actors reuse their servers or domain names for multiple campaigns
- Needs to be handled with caution, it is prone to false positives and false negatives

• IP addresses history for domain name update.mircosoftdefender.com as seen on PassiveTotal

Resolve	Location	Network	ASN	First	Last
45.32.13.143	JP	45.32.8.0/21	20473	2020-03-31	2020-04-21
43.228.126.172	SG	43.228.126.0/24	133905	2019-07-19	2020-03-20

 Truncated list of domain names history for IP address 43.228.126.172 as seen on PassiveTotal

- Some threat actors register their domain names in bulk
- ⇒ Creation Date timestamp for those domains is close
- mircosoftdefender.com created on 2018-08-09 at 08:40:27
- By filtering on registrar and name server, we find 3 additional domains created on same date between 08:40 and 08:41
 - dinohonevice.com

- Many more techniques
 - TLS certificate tracking
 - Correlation through metadata (web server version, hosting provider, HTTP headers ...)
 - Search of domain names/IP addresses on public sandboxes results
 - HTTP static content tracking

Pivoting

• All those techniques needs to be reiterated when new IOCs are found

Telemetry and further links

Telemetry

• As an AV, we have telemetry from our customers (if enabled)

- Spear-phishing emails sent on May 2019
 - Different company, also in South-East Asia
 - Also in gambling/betting industry

- ⇒ Confirmation of the targeted industry and location

Links with known threat actors

- Links with Winnti
 - Shared mutexes, which means probably code sharing for a dropper
 - We noticed a binary being downloaded from an IP address by the threat actor: Passive DNS for that IP address showed domains related to Winnti
- Links with EmissaryPanda/LuckyMouse
 - We found a sample from the HyperBro family, which is used exclusively by this threat actor

• Type 1 malware has a secondary C&C channel

31

 To read and write to the repository, the malware uses a hardcoded API key

- "bin.asc" is a new malware family using Dropbox as C&C (analysis is available in our paper)
- 142 different directories, of which 129 contain a "bin.asc" file
- ~50 post-exploitation tools found in the repository
 - Mimikatz, Quarks PwDump
 - Nbtscan
 - Privilege escalation tools
 - UAC bypass

1 Cas

Command	Number of occurrences	
netstat -ano	24	
tasklist	19	
systeminfo	19	
query user	18	
ipconfig /all	16	
whoami	15	
reg query "HKEY_CURRENT_USER\Software\ Microsoft\Terminal Server Client\Default"	12	
dir wlbsctrl.dll	11	
type <i>log.txt</i>	10	
set	10	

- On March 2020, we noticed a new campaign using Type 1 malware family
- After extracting Dropbox API key, we noticed permissions had been modified
- Token was not allowed to list directories
- ⇒ Threat actor reacted to our publication

Conclusion

Conclusion

- Started from ~20 samples of 4 different malware families, 5 domain names and 3 IP addresses
- After the investigation:
 - 8 different malware families
 - 19 domain names, 9 IP addresses
 - Tens of different samples
 - Infection vector found

- List of post exploitation tools
- Victimology confirmed
- Links with two known threat actors

Conclusion

- Threat intelligence enrich knowledge of a threat actor
- It needs access to big amount of data
- It requires diverse skills
- Each security vendor has its own perspective of the attack
- \Rightarrow Collaboration is welcome

Acknowledgements

- Cédric Pernet and Kenney Lu, my dear colleagues
- Our boss Ziv for giving us enough time to dig
- Researchers at Talent-Jump technologies for sharing samples
- Bernard Pivot

UR),

Threats detected and blocked globally by Trend Micro in 2018. **Created with real data by artist Daniel Beauchamp.**