
Scoop the Windows 10 pool!

Corentin Bayet and Paul Fariello
corentin.bayet@synacktiv.com

paul.fariello@synacktiv.com

Synacktiv

Abstract. Heap Overflow are a fairly common vulnerability in applica-
tions. Exploiting such vulnerabilities often rely on a deep understanding
of the underlying mechanisms used to manage the heap. Windows 10
recently changed the way it managed its heap in kernel land. This article
aims to present the recent evolution of the heap mechanisms in Windows
NT Kernel and to present new exploitation techniques specific to the
kernel Pool.

1 Introduction

The pool is the heap reserved to the kernel land on Windows systems.
For years, the pool allocator has been very specific and different from
the allocator in user land. This has changed since the 19H1 update of
Windows 10, in March 2019. The well-known and documented Segment

Heap [7] used in user land has been brought to the kernel.
However, some differences remain between the allocator implemented

in the kernel and in user land, since there are still some specific materials
required in kernel land. This paper focuses on the internals that are custom
to the kernel Segment Heap from an exploitation point of view.

The research presented in this paper is tailored to the x64 architecture.
The adjustment needed for different architectures has not been studied.

After a quick reminder of the historic pool internals, the paper will
explain how the Segment Heap is implemented in the kernel, and the
impact it had on the materials specific to the kernel pool. Then, the paper
will present a new attack on the pool internals when exploiting a heap
overflow vulnerability in the kernel pool. Finally, a generic exploit using a
minimal controled heap overflow and allowing a local privilege escalation
from a Low Integrity level to SYSTEM will be presented.

1.1 Pool internals

This paper will not go too deep on the internals of the pool allocator,
since this subject has already been widely covered [5], but for a full under-
standing of the paper, a quick reminder of some internals is nonetheless

2 Scoop the Windows 10 pool!

required. This section will present a few pool internals as they were in
Windows 7 as well as the various mitigations and changes brought to
the pool during the past few years. The internals explained here will
focus on chunks that fit in a single page, which are the most common
allocation in the kernel. The allocations with a size greater than 0xFE0

behave differently and are not the subject covered here.

Allocating memory in the pool The main functions for allocating and
freeing memory in the Windows kernel are respectively ExAllocatePool-

WithTag and ExFreePoolWithTag.

void * ExAllocatePoolWithTag (POOL_TYPE PoolType ,

size_t NumberOfBytes ,

unsigned int Tag);

Fig. 1. ExAllocatePoolWithTag prototype

void ExFreePoolWithTag (void * P, unsigned int Tag);

Fig. 2. ExFreePoolWithTag prototype

The PoolType is a bitfield, with this associated enumeration:

NonPagedPool = 0

PagedPool = 1

NonPagedPoolMustSucceed = 2

DontUseThisType = 3

NonPagedPoolCacheAligned = 4

PagedPoolCacheAligned = 5

NonPagedPoolCacheAlignedMustSucceed = 6

MaxPoolType = 7

PoolQuota = 8

NonPagedPoolSession = 20h

PagedPoolSession = 21h

NonPagedPoolMustSucceedSession = 22h

DontUseThisTypeSession = 23h

NonPagedPoolCacheAlignedSession = 24h

PagedPoolCacheAlignedSession = 25h

NonPagedPoolCacheAlignedMustSSession = 26h

NonPagedPoolNx = 200h

NonPagedPoolNxCacheAligned = 204h

C. Bayet, P. Fariello 3

NonPagedPoolSessionNx = 220h

Several information can be stored in the PoolType:

— the type of the memory used, which can be NonPagedPool,
PagedPool, SessionPool or NonPagedPoolNx;

— if the allocation is critical (bit 1) and must succeed. If the allocation
fails, it triggers a BugCheck;

— if the allocation is aligned on the cache size (bit 2);
— if the allocation is using the PoolQuota mechanism (bit 3);
— others undocumented mechanisms.

The type of memory used is important because it isolates allocations
in different memory ranges. The two main types of memory used are the
PagedPool and NonPagedPool. The MSDN documentation describes it as
following:

”Nonpaged pool is nonpageable system memory. It can be accessed from any IRQL, but
it is a scarce resource and drivers should allocate it only when necessary. Paged pool
is pageable system memory and can only be allocated and accessed at IRQL < DIS-
PATCH_LEVEL.”

As explained in section 1.2, the NonPagedPoolNx has been introduced
in Windows 8 and must be used instead of the NonPagedPool.

The SessionPool is used for session space allocations and is unique
to each user session. It’s mainly used by win32k.

Finally, the tag is a non-zero character literal of one to four characters
(for example, ’Tag1’). It is recommended for kernel developers to use a
unique pool tag by code path to help debuggers and verifiers identify the
code path.

The POOL_HEADER In the pool, all chunks that fit in a single page
begin with a POOL_HEADER structure. This header contains information
required by the allocator, and the tag. When trying to exploit a heap over-
flow vulnerability in the Windows kernel, the first thing to be overwritten
is the POOL_HEADER structure. Two options are available for an attacker:
properly rewrite the POOL_HEADER structure and attack the data of the
next chunk, or directly attack the POOL_HEADER structure.

In both cases, the POOL_HEADER structure will be overwritten, and a
good understanding of each field and how it is used is necessary to be able

4 Scoop the Windows 10 pool!

to exploit this kind of vulnerability. This paper will focus on the attacks
directly aimed at the POOL_HEADER.

struct POOL_HEADER

{

char PreviousSize ;

char PoolIndex ;

char BlockSize ;

char PoolType ;

int PoolTag ;

Ptr64 ProcessBilled ;

};

Fig. 3. Simplified POOL_HEADER structure in Windows 1809

The POOL_HEADER structure, presented in figure 3, has slightly evolved
over time but always kept the same main fields. In Windows 1809, Before
Windows 19H1, all fields were used:

PreviousSize is the size of the previous chunk divided by 16;

PoolIndex is an index in an array of PoolDescriptor;

BlockSize is the size of the current allocation divided by 16;

PoolType is a bitfield containing information on the allocation type;

ProcessBilled is a pointer to the KPROCESS that made the allocation.
It is set only if the PoolQuota Flag is set in the PoolType.

1.2 Attacks and mitigations since Windows 7

Tarjei Mandt and its paper Kernel Pool Exploitation on Windows 7 [5]
is the reference about the attacks targeting the kernel pool. It presented
the entire pool internals and numerous attacks, and some targeting the
POOL_HEADER.

Quota Process Pointer Overwrite Allocation can be
charging the quota against a given process. To do so, the
ExAllocatePoolWithQuotaTag will leverage the ProcessBilled

field of the POOL_HEADER to store a pointer to the _KPROCESS charged
with the allocation.

C. Bayet, P. Fariello 5

An attack described in the paper is the Quota Process Pointer

Overwrite. This attack uses an heap overflow to overwrite the
ProcessBilled pointer of an allocated chunk. When the chunk is freed, if
the PoolType of the chunk contains the PoolQuota flag (0x8), the pointer
is used to dereference a value. Controlling this pointer provides an arbi-
trary dereference primitive, which is enough to elevate privileges from user
land. Figure 4 present this attack.

Fig. 4. Exploitation of a Quota Process Pointer Overwrite

This attack has been mitigated since Windows 8, with the introduction
of the ExpPoolQuotaCookie. This cookie is randomly generated at boot
and is used to protect pointers from being overwritten by an attacker. For
example, it is used to XOR the ProcessBilled field:

ProcessBilled = KPROCESS_PTR ^ ExpPoolQuotaCookie ^ CHUNK_ADDR

When the chunk is freed, the kernel checks that the encoded pointer
is a valid KPROCESS pointer:

process_ptr = (struct _KPROCESS *)(chunk_addr ^ ExpPoolQuotaCookie ^

chunk_addr -> process_billed);

if (process_ptr)

{

if (process_ptr < 0 xFFFF800000000000 || (process_ptr -> Header .

Type & 0x7F) != 3)

KeBugCheckEx ([...])

[...]

}

Without knowing the address of the chunk nor the value of the
ExpPoolQuotaCookie, it is impossible to provide a valid pointer, and
to obtain an arbitrary dereference. It is however still possible to prop-
erly rewrite the POOL_HEADER and do a full data attack by not setting
the PoolQuota flag in the PoolType. For more information on the Quota

6 Scoop the Windows 10 pool!

Process Pointer Overwrite attack, it has been covered in a conference
at Nuit du Hack XV [1].

NonPagedPoolNx With Windows 8, a new kind of pool mem-
ory type has been introduced: NonPagedPoolNx. It works exactly like
NonPagedPool, except that the memory pages are not executable any-
more, mitigating all exploits using this kind of memory to store shellcodes.

The allocations that were previously done in the NonPagedPool are
now using the NonPagedPoolNx, but the NonPagedPool type was kept for
compatibility reasons with the third-party drivers. Even today in Windows
10, a lot of third-party drivers are still using the executable NonPagedPool.

The various mitigations introduced overtime made the POOL_HEADER

not interesting to attack using a heap overflow. Nowadays, it is simpler
to properly rewrite the POOL_HEADER and attack the data of the next
chunk. However, the introduction of the Segment Heap in the pool has
changed how the POOL_HEADER is used, and this paper shows how it can
be attacked again to exploit a heap overflow in the kernel pool.

2 The Pool Allocator with the Segment Heap

2.1 Segment Heap internals

The Segment Heap is used in kernel land since Windows 10 19H1 and
is quite similar to the Segment Heap used in user land. This section aims
to present the main features of the Segment Heap and to focus on the
differences with the one used in user land. A very detailed explanation of
the internals of the user land Segment Heap is available in [7].

Just as for the one used in user land, the Segment Heap aims at
providing different features depending on the size of the allocations. To
do so, four so-called backends are defined.

— Low Fragmentation Heap (abbr LFH): RtlHpLfhContextAllocate

— Variable Size (abbr VS): RtlHpVsContextAllocateInternal

— Segment Alloc (abbr Seg): RtlHpSegAlloc

— Large Alloc: RtlHpLargeAlloc

The mapping between the requested allocation size and the chosen
backend is shown in figure 5.

The three first backends, Seg, VS and LFH, are associated with
a context, respectively: _HEAP_SEG_CONTEXT, _HEAP_VS_CONTEXT and
_HEAP_LFH_CONTEXT. Backend contexts are stored in the _SEGMENT_HEAP

structure.

C. Bayet, P. Fariello 7

Fig. 5. Mapping between Allocation size and backend

1: kd > dt nt! _SEGMENT_HEAP

+0 x000 EnvHandle : RTL_HP_ENV_HANDLE

+0 x010 Signature : Uint4B

+0 x014 GlobalFlags : Uint4B

+0 x018 Interceptor : Uint4B

+0 x01c ProcessHeapListIndex : Uint2B

+0 x01e AllocatedFromMetadata : Pos 0, 1 Bit

+0 x020 CommitLimitData : _RTL_HEAP_MEMORY_LIMIT_DATA

+0 x020 ReservedMustBeZero1 : Uint8B

+0 x028 UserContext : Ptr64 Void

+0 x030 ReservedMustBeZero2 : Uint8B

+0 x038 Spare : Ptr64 Void

+0 x040 LargeMetadataLock : Uint8B

+0 x048 LargeAllocMetadata : _RTL_RB_TREE

+0 x058 LargeReservedPages : Uint8B

+0 x060 LargeCommittedPages : Uint8B

+0 x068 StackTraceInitVar : _RTL_RUN_ONCE

+0 x080 MemStats : _HEAP_RUNTIME_MEMORY_STATS

+0 x0d8 GlobalLockCount : Uint2B

+0 x0dc GlobalLockOwner : Uint4B

+0 x0e0 ContextExtendLock : Uint8B

+0 x0e8 AllocatedBase : Ptr64 UChar

+0 x0f0 UncommittedBase : Ptr64 UChar

+0 x0f8 ReservedLimit : Ptr64 UChar

+0 x100 SegContexts : [2] _HEAP_SEG_CONTEXT

+0 x280 VsContext : _HEAP_VS_CONTEXT

+0 x340 LfhContext : _HEAP_LFH_CONTEXT

5 such structures exist, corresponding to different _POOL_TYPE values:

— NonPaged pools (bit 0 unset)
— NonPagedNx pool (bit 0 unset and bit 9 set)
— Paged pools (bit 0 set)
— PagedSession pool (bit 5 and 1 set)

A fifth _SEGMENT_HEAP is allocated but the authors could not find
its purpose. The 3 firsts _SEGMENT_HEAP, corresponding to NonPaged,
NonPagedNx and Paged pools, are stored in the HEAP_POOL_NODES. As

8 Scoop the Windows 10 pool!

for PagedPoolSession the corresponding _SEGMENT_HEAP is stored in the
current thread. The figure 6 summarizes the five _SEGMENT_HEAP.

Fig. 6. Segment backend internal structures

Although the user land Segment Heap uses only one Segment

Allocation context for allocations between 128 KiB and 508 KiB, in
kernel land the Segment Heap uses 2 Segment Allocation contexts. The
second one is used for allocations between 508 KiB and 7 GiB.

Segment Backend

The segment backend is used to allocate memory chunks of size between
128 KiB and 7 GiB. It is also used behind the scene, to allocate memory
for VS and LFH backends.

The Segment Backend context is stored in a structure called
_HEAP_SEG_CONTEXT.

1: kd > dt nt! _HEAP_SEG_CONTEXT

+0 x000 SegmentMask : Uint8B

+0 x008 UnitShift : UChar

+0 x009 PagesPerUnitShift : UChar

+0 x00a FirstDescriptorIndex : UChar

+0 x00b CachedCommitSoftShift : UChar

+0 x00c CachedCommitHighShift : UChar

+0 x00d Flags : <anonymous -tag >

+0 x010 MaxAllocationSize : Uint4B

+0 x014 OlpStatsOffset : Int2B

+0 x016 MemStatsOffset : Int2B

+0 x018 LfhContext : Ptr64 Void

C. Bayet, P. Fariello 9

Fig. 7. Segment backend internal structures

+0 x020 VsContext : Ptr64 Void

+0 x028 EnvHandle : RTL_HP_ENV_HANDLE

+0 x038 Heap : Ptr64 Void

+0 x040 SegmentLock : Uint8B

+0 x048 SegmentListHead : _LIST_ENTRY

+0 x058 SegmentCount : Uint8B

+0 x060 FreePageRanges : _RTL_RB_TREE

+0 x070 FreeSegmentListLock : Uint8B

+0 x078 FreeSegmentList : [2] _SINGLE_LIST_ENTRY

The Segment Backend allocates memory by chunk of variable sizes
called segments. Each segment is composed of multiple allocatable pages.

Segments are stored within a linked list stored in SegmentListHead.
Segments are headed with a _HEAP_PAGE_SEGMENT followed by 256
_HEAP_PAGE_RANGE_DESCRIPTOR structures.

1: kd > dt nt! _HEAP_PAGE_SEGMENT

+0 x000 ListEntry : _LIST_ENTRY

+0 x010 Signature : Uint8B

+0 x018 SegmentCommitState : Ptr64 _HEAP_SEGMENT_MGR_COMMIT_STATE

+0 x020 UnusedWatermark : UChar

+0 x000 DescArray : [256] _HEAP_PAGE_RANGE_DESCRIPTOR

1: kd > dt nt! _HEAP_PAGE_RANGE_DESCRIPTOR

+0 x000 TreeNode : _RTL_BALANCED_NODE

+0 x000 TreeSignature : Uint4B

+0 x004 UnusedBytes : Uint4B

+0 x008 ExtraPresent : Pos 0, 1 Bit

+0 x008 Spare0 : Pos 1, 15 Bits

10 Scoop the Windows 10 pool!

+0 x018 RangeFlags : UChar

+0 x019 CommittedPageCount : UChar

+0 x01a Spare : Uint2B

+0 x01c Key : _HEAP_DESCRIPTOR_KEY

+0 x01c Align : [3] UChar

+0 x01f UnitOffset : UChar

+0 x01f UnitSize : UChar

In order to provide fast lookup for free page ranges, a Red-Black tree
is also maintained in _HEAP_SEG_CONTEXT.

Each _HEAP_PAGE_SEGMENT has a signature computed as follow:

Signature = Segment ^ SegContext ^ RtlpHpHeapGlobals ^ 0

xA2E64EADA2E64EAD ;

This signature is used to retrieve the owning _HEAP_SEG_CONTEXT and
the corresponding _SEGMENT_HEAP from any allocated memory chunk.

Figure 7 summarizes the internal structures used in the segment
backend.

The original segment can easily be computed from any address by
masking it with the SegmentMask stored in the _HEAP_SEG_CONTEXT.
SegmentMask is valued 0xfffffffffff00000.

Segment = Addr & SegContext -> SegmentMask ;

The corresponding PageRange can easily be computed from any address
by using the UnitShift from the _HEAP_SEG_CONTEXT. UnitShift is set
to 12.

PageRange = Segment + sizeof (_HEAP_PAGE_RANGE_DESCRIPTOR) * (Addr

- Segment) >> SegContext -> UnitShift ;

When the Segment Backend is used by one of the other backend,
the fields RangeFlags of the _HEAP_PAGE_RANGE_DESCRIPTOR are used to
store which backend requested the allocation.

Variable Size Backend

Variable Size backend allocate chunk of sizes between 512 B and
128 KiB. It aims at providing easy reuse of free chunk.

The Variable Size Backend context is stored in a structure called
_HEAP_VS_CONTEXT.

0: kd > dt nt! _HEAP_VS_CONTEXT

+0 x000 Lock : Uint8B

+0 x008 LockType : _RTLP_HP_LOCK_TYPE

+0 x010 FreeChunkTree : _RTL_RB_TREE

C. Bayet, P. Fariello 11

Fig. 8. Variable Size backend internal structures

+0 x020 SubsegmentList : _LIST_ENTRY

+0 x030 TotalCommittedUnits : Uint8B

+0 x038 FreeCommittedUnits : Uint8B

+0 x040 DelayFreeContext : _HEAP_VS_DELAY_FREE_CONTEXT

+0 x080 BackendCtx : Ptr64 Void

+0 x088 Callbacks : _HEAP_SUBALLOCATOR_CALLBACKS

+0 x0b0 Config : _RTL_HP_VS_CONFIG

+0 x0b4 Flags : Uint4B

Free chunks are stored in a Red-Black tree called FreeChunkTree.
When an allocation is requested, the Red-Black tree is used to find any
free chunk of the exact size or the first free chunk bigger than the requested
size.

The freed chunk are headed with a dedicated struct called
_HEAP_VS_CHUNK_FREE_HEADER.

0: kd > dt nt! _HEAP_VS_CHUNK_FREE_HEADER

+0 x000 Header : _HEAP_VS_CHUNK_HEADER

+0 x000 OverlapsHeader : Uint8B

+0 x008 Node : _RTL_BALANCED_NODE

Once a free chunk is found, it is split to the right size with a call to
RtlpHpVsChunkSplit.

The allocated chunk are all headed with a dedicated struct called
_HEAP_VS_CHUNK_HEADER.

0: kd > dt nt! _HEAP_VS_CHUNK_HEADER

+0 x000 Sizes : _HEAP_VS_CHUNK_HEADER_SIZE

+0 x008 EncodedSegmentPageOffset : Pos 0, 8 Bits

+0 x008 UnusedBytes : Pos 8, 1 Bit

12 Scoop the Windows 10 pool!

+0 x008 SkipDuringWalk : Pos 9, 1 Bit

+0 x008 Spare : Pos 10, 22 Bits

+0 x008 AllocatedChunkBits : Uint4B

0: kd > dt nt! _HEAP_VS_CHUNK_HEADER_SIZE

+0 x000 MemoryCost : Pos 0, 16 Bits

+0 x000 UnsafeSize : Pos 16, 16 Bits

+0 x004 UnsafePrevSize : Pos 0, 16 Bits

+0 x004 Allocated : Pos 16, 8 Bits

+0 x000 KeyUShort : Uint2B

+0 x000 KeyULong : Uint4B

+0 x000 HeaderBits : Uint8B

All fields inside this header are xored with RtlpHpHeapGlobals and
the address of the chunk.

Chunk -> Sizes = Chunk -> Sizes ^ Chunk ^ RtlpHpHeapGlobals ;

Internally, VS allocator uses the Segment allocator.
It is used in RtlpHpVsSubsegmentCreate through the
_HEAP_SUBALLOCATOR_CALLBACKS field of the _HEAP_VS_CONTEXT.
The suballocator callbacks are all xored with the addresses of the VS

context and of RtlpHpHeapGlobals.

callbacks . Allocate = RtlpHpSegVsAllocate ;

callbacks . Free = RtlpHpSegLfhVsFree ;

callbacks . Commit = RtlpHpSegLfhVsCommit ;

callbacks . Decommit = RtlpHpSegLfhVsDecommit ;

callbacks . ExtendContext = NULL ;

If no chunk, big enough, is present in the FreeChunkTree a new
Subsegment, whose size range from 64 KiB to 256 KiB, is allocated and
inserted in the SubsegmentList. It is headed with _HEAP_VS_SUBSEGMENT

structure. All the remaining space is used as a free chunk and inserted in
the FreeChunkTree.

0: kd > dt nt! _HEAP_VS_SUBSEGMENT

+0 x000 ListEntry : _LIST_ENTRY

+0 x010 CommitBitmap : Uint8B

+0 x018 CommitLock : Uint8B

+0 x020 Size : Uint2B

+0 x022 Signature : Pos 0, 15 Bits

+0 x022 FullCommit : Pos 15, 1 Bit

Figure 8 summarize the memory organisation of the VS Backend.
When a VS chunk is freed, if it’s smaller than 1 KiB and the VS

backend as been configured correctly (bit 4 of Config.Flags set to 1)
it is temporarily stored in a list inside the DelayFreeContext. Once the
DelayFreeContext is filled with 32 chunks they are all really freed at
once. The DelayFreeContext is never used for direct allocation.

C. Bayet, P. Fariello 13

When a VS chunk is really freed, if it is contiguous with
2 other freed chunks, all 3 will be merged together with a
call to RtlpHpVsChunkCoalesce. Then it will be inserted into the
FreeChunkTree.

Low Fragmentation Heap Backend

Low Fragmentation Heap is a backend dedicated to small allocations
from 1 B to 512 B.

The LFH Backend context is stored in a structure called
_HEAP_LFH_CONTEXT.

0: kd > dt nt! _HEAP_LFH_CONTEXT

+0 x000 BackendCtx : Ptr64 Void

+0 x008 Callbacks : _HEAP_SUBALLOCATOR_CALLBACKS

+0 x030 AffinityModArray : Ptr64 UChar

+0 x038 MaxAffinity : UChar

+0 x039 LockType : UChar

+0 x03a MemStatsOffset : Int2B

+0 x03c Config : _RTL_HP_LFH_CONFIG

+0 x040 BucketStats : _HEAP_LFH_SUBSEGMENT_STATS

+0 x048 SubsegmentCreationLock : Uint8B

+0 x080 Buckets : [129] Ptr64 _HEAP_LFH_BUCKET

The main feature of the LFH backend is to use buckets of different
sizes to avoid fragmentation.

Bucket Allocation Size Bucket granularity

1 – 64 1 B – 1008 B 16 B
65 – 80 1009 B – 2032 B 64 B
81 – 96 2033 B – 4080 B 128 B
97 – 112 4081 B – 8176 B 256 B
113 – 128 8177 B – 16 368 B 512 B

Each bucket is composed of SubSegments allocated by the
segment allocator. The segment allocator is used through the
_HEAP_SUBALLOCATOR_CALLBACKS field of the _HEAP_LFH_CONTEXT. The
suballocator callbacks are all xored with the addresses of the LFH context
and of RtlpHpHeapGlobals.

callbacks . Allocate = RtlpHpSegLfhAllocate ;

callbacks . Free = RtlpHpSegLfhVsFree ;

callbacks . Commit = RtlpHpSegLfhVsCommit ;

callbacks . Decommit = RtlpHpSegLfhVsDecommit ;

callbacks . ExtendContext = RtlpHpSegLfhExtendContext ;

LFH subsegment are headed with a _HEAP_LFH_SUBSEGMENT structure.

14 Scoop the Windows 10 pool!

0: kd > dt nt! _HEAP_LFH_SUBSEGMENT

+0 x000 ListEntry : _LIST_ENTRY

+0 x010 Owner : Ptr64 _HEAP_LFH_SUBSEGMENT_OWNER

+0 x010 DelayFree : _HEAP_LFH_SUBSEGMENT_DELAY_FREE

+0 x018 CommitLock : Uint8B

+0 x020 FreeCount : Uint2B

+0 x022 BlockCount : Uint2B

+0 x020 InterlockedShort : Int2B

+0 x020 InterlockedLong : Int4B

+0 x024 FreeHint : Uint2B

+0 x026 Location : UChar

+0 x027 WitheldBlockCount : UChar

+0 x028 BlockOffsets : _HEAP_LFH_SUBSEGMENT_ENCODED_OFFSETS

+0 x02c CommitUnitShift : UChar

+0 x02d CommitUnitCount : UChar

+0 x02e CommitStateOffset : Uint2B

+0 x030 BlockBitmap : [1] Uint8B

Each subsegment is then split into different LFH blocks with corre-
sponding bucket size.

In order to know which bucket are used, a bitmap is maintained in
each SubSegment header.

Fig. 9. Low Fragmentation Heap backend internal structures

When an allocation is requested, the LFH allocator will first look for
the FreeHint field of the _HEAP_LFH_SUBSEGMENT structure in order to

C. Bayet, P. Fariello 15

find the offset of the last freed block in the subsegment. Then it will scan
the BlockBitmap, by group of 32 blocks, looking for a free block. This
scan is randomized thanks to the RtlpLowFragHeapRandomData table.

Depending on the contention on a given bucket, a mechanism can be
enable to ease allocation by dedicating SubSegment to each CPU. This
mechanism is called Affinity Slot.

Figure 9 present the main architecture of the LFH backend.

Dynamic Lookaside

Freed chunk of size between 0x200 and 0xF80 bytes can be temporarily
stored in a lookaside list in order to provide fast allocation. While they are
in the lookaside these chunks wont go through their respective backend
free mechanism.

Lookaside are represented by the _RTL_DYNAMIC_LOOKASIDE structure
and are stored in the UserContext field of the _SEGMENT_HEAP.

0: kd > dt nt! _RTL_DYNAMIC_LOOKASIDE

+0 x000 EnabledBucketBitmap : Uint8B

+0 x008 BucketCount : Uint4B

+0 x00c ActiveBucketCount : Uint4B

+0 x040 Buckets : [64] _RTL_LOOKASIDE

Each freed block is stored in a _RTL_LOOKASIDE corresponding to its
size (as expressed in the POOL_HEADER). Size correspondance follows the
same pattern as for Bucket in LFH.

0: kd > dt nt! _RTL_LOOKASIDE

+0 x000 ListHead : _SLIST_HEADER

+0 x010 Depth : Uint2B

+0 x012 MaximumDepth : Uint2B

+0 x014 TotalAllocates : Uint4B

+0 x018 AllocateMisses : Uint4B

+0 x01c TotalFrees : Uint4B

+0 x020 FreeMisses : Uint4B

+0 x024 LastTotalAllocates : Uint4B

+0 x028 LastAllocateMisses : Uint4B

+0 x02c LastTotalFrees : Uint4B

Free List Allocation Size Bucket granularity

1 – 32 512 B – 1024 B 16 B
33 – 48 1025 B – 2048 B 64 B
49 – 64 2049 B – 3967 B 128 B

Only a subset of the available buckets are enabled at the same time
(field ActiveBucketCount of _RTL_DYNAMIC_LOOKASIDE). Each time an
allocation is requested, metrics of the corresponding lookaside are updated.

16 Scoop the Windows 10 pool!

Every 3 scan of the Balance Set Manager, the dynamic lookaside
are rebalanced. The most used since last rebalance are enabled. The
size of each lookaside depends on its usage but it can’t be more than
MaximumDepth or less than 4. While the number of new allocation is less
than 25 the depth is reduced by 10. Otherwhile, the depth is reduced by
1 if the miss ratio is lower than 0.5%, else it is grown with the following
formula.

Depth =
MissRatio(MaximumDepth − Depth)

2
+ 5

2.2 POOL_HEADER

As presented in section 1.1 the POOL_HEADER structure was heading
all allocated chunks in the kernel land heap allocator predating Windows
10 19H1. All fields were used, back then. With the update of the kernel
land heap allocator most of the fields of the POOL_HEADER are useless, yet
small allocated memory are still headed with it.

The POOL_HEADER definition is recalled in figure 10.

struct POOL_HEADER

{

char PreviousSize ;

char PoolIndex ;

char BlockSize ;

char PoolType ;

int PoolTag ;

Ptr64 ProcessBilled ;

};

Fig. 10. POOL_HEADER definition

The only fields set by the allocator are the following:

PoolHeader -> PoolTag = PoolTag ;

PoolHeader -> BlockSize = BucketBlockSize >> 4;

PoolHeader -> PreviousSize = 0;

PoolHeader -> PoolType = changedPoolType & 0x6D | 2;

Here is a summary of the purpose of each of the POOL_HEADER fields
since Windows 19H1.

PreviousSize Unused and kept to 0.

C. Bayet, P. Fariello 17

PoolIndex Unused.

BlockSize Size of the chunk. Only used to eventually store the chunk
in the Dynamic Lookaside list (see 2.1).

PoolType Usage did not change; used to keep the requested
POOL_TYPE.

PoolTag Usage did not change; used to keep the PoolTag.

ProcessBilled Usage did not change; used to keep track of which
process required the allocation, if the PoolType is PoolQuota (bit
3). The value is computed as follow:

ProcessBilled = chunk_addr ^ ExpPoolQuotaCookie ^

KPROCESS ;

CacheAligned

When calling ExAllocatePoolWithTag, if the PoolType has the
CacheAligned bit set (bit 2), returned memory is aligned on the cache
line size. The cache line size value is CPU dependent, but is typically
0x40.

First the allocator will grow the allocation size of ExpCacheLineSize:

if (PoolType & 4)

{

request_alloc_size += ExpCacheLineSize ;

if (request_alloc_size > 0 xFE0)

{

request_alloc_size -= ExpCacheLineSize ;

PoolType = PoolType & 0xFB;

}

}

If the new allocation size cannot fit in a single page, then the
CacheAligned bit will be ignored.

Then, the allocated chunk must respect three conditions :

— the final allocation address must be aligned on ExpCacheLineSize;
— the chunk must have a POOL_HEADER at the very beginning of the

chunk;
— the chunk must have a POOL_HEADER at the address of allocation

minus sizeof(POOL_HEADER).

So if the allocation address is not properly aligned, the chunk might
have two headers.

18 Scoop the Windows 10 pool!

Fig. 11. Layout of cache aligned memory

The first POOL_HEADER will be at the begining of the chunk,
as usual, while the second will be aligned on ExpCacheLineSize -
sizeof(POOL_HEADER), making the final allocation address aligned on
ExpCacheLineSize. The CacheAligned bit is removed from the first
POOL_HEADER, and the second POOL_HEADER is filled with the following
values:

PreviousSize Used to store the offset between the two headers.

PoolIndex Unused.

BlockSize Size of the allocated bucket in first POOL_HEADER, reduced
size in the second one.

PoolType As usual, but the CacheAligned bit is set.

PoolTag As usual, same on both POOL_HEADER.

ProcessBilled Unused.

Additionaly, a pointer, that we named AlignedPoolHeader, might
be stored after the first POOL_HEADER, if there is enough space in the
alignement padding. It points on the second POOL_HEADER, and is xored
with the ExpPoolQuotaCookie.

The figure 11 summarizes the layout of the two POOL_HEADER used in
case of cache alignment.

2.3 Summary

Since Windows 19H1 and the Segment Heap introduction, some in-
formations that were stored into the POOL_HEADER of each chunk aren’t
required anymore. However, others like the Pooltype, the Pooltag, or
the ability to use the CacheAligned and the PoolQuota mechanism are
still needed.

C. Bayet, P. Fariello 19

This is why every allocations under 0xFE0 are still preceded with at
least one POOL_HEADER. The usage of the fields of the POOL_HEADER since
Windows 19H1 is described in section 2.2. The figure 12 represents a chunk
allocated using the LFH backend, thus only preceded with a POOL_HEADER.

Fig. 12. Returned memory for a LFH chunk

As explained in 2.1, depending on the backend, memory may be headed
by some specific header. For example, a chunk of size 0x280 would use
the VS backend, thus would be preceded by a _HEAP_VS_CHUNK_HEADER

of size 0x10. The figure 13 represents a chunk allocated using the VS
segment, thus preceded with a a VS header and a POOL_HEADER.

Fig. 13. Returned memory for a VS chunk

Finally, if the allocation is requested to be aligned on the cache line,
the chunk might contain two POOL_HEADER. The second one will have
the CacheAligned bit set, and will be use to retrieve the first one, and
the address of the actual allocation. The figure 14 represents a chunk
allocated using the LFH, and requested to be aligned on the cache size,
thus preceded with two POOL_HEADER.

The figure 15 summarizes the decision tree used when an allocation is
made.

From the exploitation perspective, two conclusions can be drawn. First,
the new usage of the POOL_HEADER will ease the exploitation: since most of
the fields are unused, less care should be taken while overriding them. The

20 Scoop the Windows 10 pool!

Fig. 14. Returned memory for a LFH chunk aligned on the cache size

other outcome might be to leverage the new usage of the POOL_HEADER to
find new exploitation techniques.

3 Attacking the POOL_HEADER

If a heap overflow vulnerability allows a really good control on writ-
ten data and its size, the simplest solution is probably to rewrite the
POOL_HEADER and directly attack the data of the next chunk. The only
thing to do is to make sure the PoolQuota bit is not set in the PoolType,
to avoid an integrity check on the ProcessBilled field when the corrupted
chunk is freed.

However, this section will provide some attacks that can be done with
a heap overflow of a few bytes only, by targeting the POOL_HEADER.

3.1 Targeting the BlockSize

From Heap Overflow to bigger Heap Overflow

As explained in section 2.1, the BlockSize field is used in the free
mechanism to store some chunks in the Dynamic Lookaside.

An attacker might use a heap overflow to change the value of the
BlockSize field to a bigger one, larger than 0x200. If the corrupted chunk
is freed, the controlled BlockSize will be used to store the chunk in a
lookaside of the wrong size. The next allocation of this size might use a
too small allocation to store all the required data, triggering another heap
overflow.

By using spraying techniques and specific objects, an attacker might
turn a 3-byte heap overflow into a heap overflow up to 0xFD0 bytes,
depending on the vulnerable chunk size. It also allows the attacker to
chose the object that is overflowing, and perhaps have more control on
the overflow conditions.

C. Bayet, P. Fariello 21

Fig. 15. Decision flow of the Segment Heap allocator

3.2 Targeting the PoolType

Most of the time, the information stored in the PoolType is just
informative; it was given at the allocation time and is stored in the
PoolType, but will not be used in the free mechanism.

For example, changing the type of memory stored in the PoolType

will not actually change the type of memory used by the allocation. It
is not possible to turn a NonPagedPoolNx memory into a NonPagedPool

just by changing this bit.

But this is not true for the PoolQuota and the CacheAligned bits.
Setting the PoolQuota bit will trigger the use of the ProcessBilled

pointer in the POOL_HEADER to dereference the quota upon freeing. As
presented in 1.2, the attacks on the ProcessBilled pointer have been
mitigated.

22 Scoop the Windows 10 pool!

So the only bit that remain is the CacheAligned bit.

Aligned Chunk Confusion

As seen in section 2.2, if an allocation is requested with the
CacheAligned bit set in the PoolType, the layout of the chunk is dif-
ferent.

When the allocator is freeing such an allocation, it will try to find the
original chunk address to free the chunk at the correct address. It will use
the PreviousSize field of the aligned POOL_HEADER. The allocator does a
simple substraction to compute the original chunk address:

if (AlignedHeader -> PoolType & 4)

{

OriginalHeader = (QWORD) AlignedHeader - AlignedHeader ->

PreviousSize * 0x10;

OriginalHeader -> PoolType |= 4;

}

Before the Segment Heap was introduced in the kernel, there were
several checks after this operation.

— The allocator checked if the original chunk had the MustSucceed

bit set in the PoolType.
— The offset between the two headers was recomputed using the

ExpCacheLineSize, and was verified to be the same than the
actual offset between the two headers.

— The allocator checked if the BlockSize of the aligned header
was equal to the BlockSize of the original header plus the
PreviousSize of the aligned header.

— The allocator checked if the pointer stored at OriginalHeader

+ sizeof(POOL_HEADER) is equal to the address of the aligned
header xored with the ExpPoolQuotaCookie.

Since Windows 10 19H1, with the pool allocator using the Segment

Heap, all these checks are gone. The xored pointer is still present after
the original header, but it’s never checked by the free mechanism. The
authors suppose that some of the checks have been removed by error. It
is likely that some checks will be re-enabled in future releases, but the
prebuild of Windows 10 20H1 show no such patch.

For now, the lack of checks allows an attacker to use the PoolType

as an attack vector. An attacker might use a heap overflow to set the
CacheAligned bit of the PoolType of the next chunk, and to fully control
the PreviousSize field. When the chunk is freed, the free mechanism
uses the controlled PreviousSize to find the original chunk, and free it.

C. Bayet, P. Fariello 23

Because the PreviousSize field is stored on one byte, the attacker can
free any address aligned on 0x10 up to 0xFF * 0x10 = 0xFF0 before the
original chunk address.

The final part of this paper aims to demonstrate a generic exploit
using the techniques presented here. It presents generic objects that are
interesting to control in a pool overflow or a Use-After-Free situation, and
multiple objects and techniques to reuse a free allocation with controlled
data.

4 Generic Exploitation

4.1 Required conditions

This section aims to present techniques to exploit a vulnerability in
order to elevate privileges on a Windows system. It is supposed that the
attacker is at Low Integrity level.

The ultimate purpose is to develop the most generic exploit possi-
ble, that could be used on different types of memory, PagedPool and
NonPagedPoolNx, with different sizes of chunk and with any heap overflow
vulnerability that provides the following required conditions.

— When targeting the BlockSize, the vulnerability needs to provide
the ability to rewrite the 3rd byte of the next chunk’s POOL_HEADER

with a controlled value.
— When targeting the PoolType, the vulnerability needs to provide

the ability to rewrite the 1st and 4th byte of the next chunk’s
POOL_HEADER with controlled values.

— In all cases, it is required to control the allocation and deallocation
of the vulnerable object, in order to maximize the spraying success.

4.2 Exploitation strategies

The chosen exploitation strategy uses the ability to attack the
PoolType and PreviousSize fields of the next chunk’s POOL_HEADER. The
chunk that is vulnerable to the heap overflow will be called the "vulnerable
chunk", the chunk placed after will be called the "overwritten chunk".

As describe in section 3.2, by controlling the PoolType and the
PreviousSize fields of the next chunk’s POOL_HEADER, an attacker can
change where the overwritten chunk will actually be freed. This primitive
can be exploited in several ways.

24 Scoop the Windows 10 pool!

This can allow to turn the pool overflow in a Use-After-Free situation,
when the attacker set the PreviousSize field at exactly the size of the
vulnerable chunk. Thus, upon requesting the freeing of the overwritten
chunk, the vulnerable chunk will be freed instead, and put in a Use-After-
Free situation. Figure 16 present this technique.

Fig. 16. Exploitation using vulnerable chunk Use-After-Free

However, another technique was chosen. The primitive can also be used
to trigger the free of the overwritten chunk in the middle of the vulnerable
chunk. It is possible to forge a fake POOL_HEADER in the vulnerable chunk
(or in a chunk that replaces it), and use the PoolType attack to redirect
the free on this chunk. This would allow to create a fake chunk in the
middle of a legit chunk, and be in a really good overflowing situation. This
chunk corresponding will be called "ghost chunk".

The ghost chunk is overriding at least two chunks, the vulnerable
chunk, and the overwritten chunk. Figure 17 present this technique.

Fig. 17. Chosen exploitation technique

This last technique seems more exploitable than the Use-After-Free,
because it puts the attacker in a better situation to control the content of
an arbitrary object.

The vulnerable chunk can then be reallocated with an object that
allows arbitrary data control. That allows an attacker to partially control
the object allocated in the ghost chunk.

An interesting object has to be found in order to be placed in the
ghost chunk. In order to have the most generic exploit possible, the object
should have the following requirements:

C. Bayet, P. Fariello 25

— provides an arbitrary read/write primitive if fully or partially
controlled;

— ability to control its allocation and deallocation;
— have a variable size of minimum 0x210 in order to be allocated

in the ghost chunk from the corresponding lookaside, but be the
smallest possible (to avoid trashing too much of the heap when
allocating it).

Since the vulnerable chunk can be placed in both PagedPool and
NonPagedPoolNx, two objects of this kind are needed, one allocated in the
PagedPool, and the other allocated in the NonPagedPoolNx.

This kind of object is not common, and the authors did not find this
kind of perfect object. That’s why an exploitation strategy was developed
using an object that only provides an arbitrary read primitive. The attacker
is still able to control the POOL_HEADER of the ghost chunk. This means the
Quota Pointer Process Overwrite attack can be used to get an arbitrary
decrementation primitive. The ExpPoolQuotaCookie and the address of
the ghost chunk can be recovered using the arbitary read primitive.

The developed exploit is using this last technique. By leveraging heap
massaging and objects interesting to overflow, a 4 byte controlled overflow
can be turn into an Elevation of Privilege, from Low Integrity Level to
SYSTEM.

4.3 Targeted objects

Paged Pool Afther the creation of a pipe, a user has the ability to add
attributes to the pipe. The attributes are a key-value pair, and are stored
into a linked list. The PipeAttribute 1 object is allocated in the PagedPool,
and is defined in the kernel by the structure in Figure 18.

struct PipeAttribute {

LIST_ENTRY list ;

char * AttributeName ;

uint64_t AttributeValueSize ;

char * AttributeValue ;

char data [0];

};

Fig. 18. Structure of a PipeAttribute

1. The structure is not public and has bee named after reverse-engineering

26 Scoop the Windows 10 pool!

The size of the allocation and the data is fully controlled by an
attacker. The AttributeName and AttributeValue are pointers pointing
on different offset of the data field.

A pipe attribute can be created on a pipe using the NtFsControlFile
syscall, and the 0x11003C control code, as shown in Figure 19.

HANDLE read_pipe ;

HANDLE write_pipe ;

char attribute [] = " attribute_name \00 attribute_value "

char output [0 x100];

CreatePipe (read_pipe , write_pipe , NULL , bufsize);

NtFsControlFile (write_pipe ,

NULL ,

NULL ,

NULL ,

&status ,

0 x11003C ,

attribute ,

sizeof (attribute),

output ,

sizeof (output)

);

Fig. 19. Creation of a pipe attribute

The attribute’s value can then be read using the 0x110038 control
code. The AttributeValue pointer and the AttributeValueSize will be
used to read the attribute’s value and return it to the user. The attributes
value can be changed, but this will trigger the deallocation of the previous
PipeAttribute and the allocation of a new one.

It means that if an attacker can control the AttributeValue and
AttributeValueSize fields of the PipeAttribute, it can read arbitrary
data in kernel, but cannot arbitrary write. This object is also perfect to
put arbitrary data in the kernel. It means it can be used to realloc the
vulnerable chunk and control the ghost chunk content.

NonPagedPoolNx The ability to use WriteFile into a pipe is a known
technique to spray the NonPagedPoolNx. When writing into a pipe, the
function NpAddDataQueueEntry creates the structure defined in Fig-
ure 20.

C. Bayet, P. Fariello 27

struct PipeQueueEntry

{

LIST_ENTRY list ;

IRP * linkedIRP ;

__int64 SecurityClientContext ;

int isDataInKernel ;

int remaining_bytes__ ;

int DataSize ;

int field_2C ;

char data [1];

};

Fig. 20. Pipe Queue Entry structure

The data and size of the PipeQueueEntry 2 is user controlled, since
the data is directly stored behind the structure.

When using the entry in the function NpReadDataQueue, the kernel
will walk the entry list, and use each entry to retrieve the data.

if (PipeQueueEntry -> isDataAllocated == 1)

data_ptr = (PipeQueueEntry -> linkedIRP -> SystemBuffer);

else

data_ptr = PipeQueueEntry -> data ;

[...]

memmove ((void *)(dst_buf + dst_len - cur_read_offset), & data_ptr [

PipeQueueEntry -> DataSize - cur_entry_offset], copy_size);

Fig. 21. Use of a pipe queue entry

If the isDataInKernel field equals 1, the data is not stored directly
behind the structure, but the pointer is stored in an IRP, pointed by
linkedIRP. If an attacker can fully control this structure, he might
set isDataInKernel to 1, and make point linkedIRP in userland. The
SystemBuffer field (offset 0x18) of the linkedIRP in userland is then
used to read the data from the entry. This provides an arbitrary read
primitive. This object is also perfect to put arbitrary data in the kernel.
It means it can be used to realloc the vulnerable chunk and control the
ghost chunk content.

2. The structure is not public and has bee named after reverse-engineering

28 Scoop the Windows 10 pool!

4.4 Spraying

This section describes techniques to spray the kernel heap in order to
get the wanted memory layout.

In order to obtain the required memory layout presented in section 4.2,
some heap spraying has to be done. Heap spraying depends on the size of
the vulnerable chunk since it will end up in different allocation backend.

In order to ease the spray it can be useful to ensure the corresponding
lookaside are empty. Allocating more than 256 chunks of the right size
will ensure that.

If the vulnerable chunk is smaller than 0x200 it will be located in the
LFH backend. Then, spraying is to be done with chunks of the exact same
size, modulo the corresponding bucket granularity, to ensure they all are
allocated from the same bucket. As presented in section 2.1, when an
allocation is requested, the LFH backend will scan the BlockBitmap by
group of at most 32 blocks, and randomly choose a free block. Allocating
more than 32 chunk right before and after the allocation of the vulnerable
chunk should help defeat the randomization.

If the vulnerable chunk is bigger than 0x200 but smaller than 0x10000
it will end up in the Variable Size backend. Then spraying is to be done
with size equals to the size of the vulnerable chunk. Bigger chunk could
be split and thus fail the spray. First, allocate thousands of chunk of the
chosen size in order to ensure, first, that the FreeChunkTree is emptied of
all chunks bigger than the chosen size, then that the allocator will allocate
a new VS subsegment of 0x10000 bytes and put it in the FreeChunkTree.
Then allocate another thousands of chunk that will endup in the new big
free chunk and thus be contiguous. Then free one third of the last allocated
chunk in order to fill the FreeChunkTree. Freing only one third will ensure
that no chunk will be coalesced. Then let the vulnerable chunk be allocated.
Finaly, the freed chunk can be reallocated in order to maximize spray
chances.

Since the full exploitation technique requires to free and reallocate
both the vulnerable chunk and the ghost chunk, it can be really interesting
to enable the corresponding dynamic lookaside to ease the free chunk
recover. To do so, an easy solution is to allocate thousands of chunk of the
corresponding size, wait 2 seconds, allocate another thousands of chunk
and wait 1 second. Thus we can ensure the Balance Set Manager has
rebalanced the corresponding lookaside. Allocating thousands of chunk
ensure that the lookaside will be in the top used lookaside and thus will
be enabled and it also ensure that it will have enough room in it.

C. Bayet, P. Fariello 29

4.5 Exploitation

Demonstration setup To demonstrate the following exploit, a fake
vulnerability has been created.

A Windows kernel driver was developed, that exposes several IOCTL
that allows to:

— Allocate a chunk with a controlled size in the PagedPool
— Triggers a controlled memcpy in this chunk that allows a fully

controlled pool overflow
— Free the allocated chunk
This is of course just for demonstration and provides more control

that is actually needed for the exploit to work.
This setup allows an attacker to:
— Control the size of the vulnerable chunk. This is not mandatory,

but it’s preferable, since the exploit is easier with controlled sizes.
— Control the allocation and deallocation of the vulnerable chunk.
— Overwrite the 4 first bytes of the POOL_HEADER of the next chunk

with a controlled value
Also, the vulnerable chunk is allocated in the PagedPool. This is

important since the type of the pool might change the objects used in the
exploits, and then have a big impact on the exploitation itself. However,
the exploit targeting the NonPagedPoolNx is very similar, and only use
PipeQueueEntry for spraying and getting an arbitrary read instead of the
PipeAttribute.

For this example, the chosen size of the vulnerable chunk will be 0x180.
The discussion about the size of the vulnerable chunk and its impact on
the exploit is discussed in the section 4.6.

Creating the ghost chunk The first step here is to massage the heap
in order to place a controlled object after the vulnerable chunk.

The object in the overwritten chunk might be anything, the only
requirement is to control when it is freed. To simplify the exploit, it’s
better to chose an object that can be sprayed, see section 4.2.

The vulnerability can now be triggered, the POOL_HEADER of the over-
written chunk is replaced with the following values:

PreviousSize : 0x15. This size will be multiplied by 0x10. 0x180 -
0x150 = 0x30, the offset of the fake POOL_HEADER in the vulnerable
chunk.

PoolIndex : 0, or any value, this is not used.

BlockSize : 0. or any value, this is not used.

30 Scoop the Windows 10 pool!

PoolType : PoolType | 4. The CacheAligned bit is set.

Fig. 22. Triggering the overflow

A fake POOL_HEADER must be placed in the vulnerable chunk at a
known offset. This is done by freeing the vulnerable object and reallocate
the chunk with a PipeAttribute object.

For the demonstration, the offset of the fake POOL_HEADER in the
vulnerable chunk will be 0x30. The fake POOL_HEADER is in the following
form:

PreviousSize : 0, or any value, this is not used.

PoolIndex : 0, or any value, this is not used.

BlockSize : 0x21. This size will be multiplied by 0x10, and will be
the size of the freed chunk.

PoolType : PoolType. The CacheAligned and PoolQuota bits are
NOT set.

The chosen BlockSize is not random, it’s the size of the chunk that
will actually be freed. Since the goal is to reuse this allocation afterwards,
it’s required to pick a size that is easy to reuse. Since all size under 0x200
are in the LFH, such sizes must be avoided. The smallest size that is not
the LFH, is an allocation of 0x200, which is a chunk of size 0x210. A
size of 0x210 use the VS allocation, and is eligible to use the Dynamic

Lookaside lists described in section 2.1.
The Dynamic Lookaside list for the size 0x210 can be enabled by

spraying and freeing chunks of 0x210 bytes.
The overwritten chunk can now be freed, and this will trigger the

cache alignement. Instead of freeing the chunk at the address of the
overwritten chunk, it will free the chunk at OverwrittenChunkAddress

- (0x15 * 0x10), which is also VulnerableChunkAddress + 0x30. The
POOL_HEADER used for the free is the fake POOL_HEADER, and instead of
freeing the vulnerable chunk, the kernel frees a chunk of size 0x210, and
place it on the top of the Dynamic Lookaside. This is shown by figure 23.

Unfortunately, the PoolType of the fake POOL_HEADER has no impact
whether the freed chunk is placed in the PagedPool or NonPagedPoolNx.

C. Bayet, P. Fariello 31

Fig. 23. Freeing the overwritten chunk

The Dynamic Lookaside list is picked using the segment of the allocation,
which is derived from the address of the chunk. It means that if the
vulnerable chunk is in the Paged Pool, this ghost chunk will also be placed
in the Paged Pool’s lookaside list.

The overwritten chunk is now in "lost" state; the kernel thinks it’s
freed, and all reference on the chunk has been dropped. It won’t be used
anymore.

Leaking the content of the ghost chunk The ghost chunk can now be
reallocated with also a PipeAttribute object. The PipeAttribute structure
overwrites the value of the attribute placed in the vulnerable chunk. By
reading the value of this pipe attribute, the data can be read, and the
content of the PipeAttribute of the ghost chunk is leaked. The address of
the ghost chunk, and thus of the vulnerable chunk is now known. This
step is presented in figure 24.

Getting an arbitrary read The vulnerable chunk can be freed another
time and reallocated with an other PipeAttribute. This time, the data
of the PipeAttribute will overwrite the PipeAttribute of the ghost chunk.
Thus, the PipeAttribute of the ghost chunk can be fully controlled. A new
PipeAttribute is injected in the linked list, which is located in userland.
This step is presented in figure 25.

Now, by requesting the read of the attribute on the ghost’s PipeAt-
tribute, the kernel will use the PipeAttribute that is in userland and thus
fully controlled. As seens before, by controlling the AttributeValue pointer
and the AttributeValueSize, this provides an arbitrary read primitive. The
figure 26 represents an arbitrary read.

32 Scoop the Windows 10 pool!

Fig. 24. Leak the ghost chunk PipeAttribute

Fig. 25. Rewrite the ghost chunk PipeAttribute

Using the first pointer leak and the arbitrary read, a pointer on npfs’s
text section can be retrieved. By reading the import table, a pointer on the
ntoskrnl’s text section can be read, which provides the base of the kernel.
From there, the attacker can read the value of the ExpPoolQuotaCookie,
and retrieve the address of the EPROCESS structure for the exploit
process, and the address of its TOKEN.

Getting an arbitrary decrementation First, a fake EPROCESS struc-
ture is crafted in kernel land using a PipeQueueEntry 3 and its address is
retrieved using the arbitrary read.

3. See section 4.2

C. Bayet, P. Fariello 33

Fig. 26. Use the injected PipeAttribute to arbitrary read

Then, the exploit can one more time free and reallocate the vulnerable
chunk, to change the content of the ghost chunk and its POOL_HEADER.

The POOL_HEADER of the ghost chunk is overwritten with the following
values:

PreviousSize : 0, or any value, this is not used.

PoolIndex : 0, or any value, this is not used.

BlockSize : 0x21. This size will be multiplied by 0x10.

PoolType : 8. The PoolQuota bit IS set.

PoolQuota : ExpPoolQuotaCookie XOR FakeEprocessAddress

XOR GhostChunkAddress

Upon freeing the ghost chunk, the kernel will try to dereference the
Quota counter of the related EPROCESS. It will use the fake EPROCESS
structure to find the pointer to the value to dereference.

This provides an arbitrary decrement primitive. The value of the
decrementation is the BlockSize in the PoolHeader, so it’s aligned on
0x10 and between 0 and 0xff0.

From arbitrary decrementation to SYSTEM In 2012, Ce-
sar Cerrudo [3] described a technique to elevate its privileges by
setting the field Privileges.Enabled of the TOKEN structure.
The Privileges.Enabled field is holding the privileges enabled for
this process. By default, a token in Low Integrity Level has a
Privileges.Enabled set to the value 0x0000000000800000, which only

34 Scoop the Windows 10 pool!

gives the SeChangeNotifyPrivilege. By substracting one on this bitfield, it
becomes 0x000000000007ffff, which enables a lot more privileges.

The SeDebugPrivilege is enabled by setting the bit 20 on this bitfield.
The SeDebugPrivilege allows a process to debug any process on the system,
thus gives the ability to inject any code in a privileged process.

The exploit explained in [1] presented a Quota Pointer Process Over-
write that would use the arbitrary decrementation to set the SeDebug-
Privilege on its process. The figure 27 present this technique.

Fig. 27. Exploitation using arbitrary decrement to gain SYSTEM privilege

However, since Windows 10 v1607, the kernel now also checks the value
of the Privileges.Present field of the Token. The Privileges.Present

field of the token is the list of privileges that CAN be enabled for this
token, by using the AdjustTokenPrivileges API. So the actual privileges
of the TOKEN is now the bitfield resulting of Privileges.Present &

Privileges.Enabled.

By default, a token in Low Integrity Level has a Privileges.Present

set to 0x602880000. Because 0x602880000 & (1«20) == 0, setting the
SeDebugPrivilege in the Privileges.Enabled is not enough to obtain
the SeDebugPrivilege.

An idea could be to decrement the Privileges.Present bitfield, in
order to get the SeDebugPrivilege in the Privileges.Present bitfield.
Then, the attacker can use the AdjustTokenPrivileges API to enable
the SeDebugPrivilege. However, the SepAdjustPrivileges function makes

C. Bayet, P. Fariello 35

additional checks, and depending on the integrity of the TOKEN, a
process cannot enable any privileges, even if the wanted privilege is in
the Privileges.Present bitfield. For the High Integrity Level, a process
can enable any privileges that is in the Privileges.Present bitfield. For
the Medium Integrity Level, a process can only enable privileges that are
in the Privileges.Present AND in the bitfield 0x1120160684. For the
Low Integrity Level, a process can only enable privileges that are in the
Privileges.Present AND in the bitfield 0x202800000.

This means that this technique to get SYSTEM from a single arbitrary
decrementation is dead.

However, it can perfectly be done in two arbitrary decrementation, by
decrementing first Privileges.Enabled, and then Privileges.Present.

The ghost chunk can be reallocated and its POOL_HEADER overwritten
a second time, to get a second arbitrary decrementation.

Once the SeDebugPrivilege is obtained, the exploit can open any
SYSTEM process, and injects a shellcode insided that pops a shell as
SYSTEM.

4.6 Discussion on the presented exploit

The code of the exploit presented is available at [2], along with the
vulnerable driver. This exploit is only a Proof Of Concept and can always
be improved.

4.7 Discussion on the size of the vulnerable object

Depending on the size of the vulnerable object, the exploit might have
different requirements.

The exploit presented above only works for vulnerable chunk of size
0x130 minimum. This is because of the size of the ghost chunk, which
must be at least 0x210. With a vulnerable chunk with a size under 0x130,
the allocation of the ghost chunk will overwrite the chunk behind the
overwritten chunk, and would trigger a crash when freed. This is fixable,
but left as an exercise for the reader.

There is a few differences between a vulnerable object in the LFH
(chunks under 0x200), and a vulnerable object in the VS segment (chunks
> 0x200). Mainly, a VS chunk has an additional header in front of the
chunk. It means that to be able to control the POOL_HEADER of the next
chunk in the VS segment, a heap overflow of at least 0x14 bytes is
required. It also means that when the overwritten chunk will be freed its
_HEAP_VS_CHUNK_HEADER must have been fixed. Additionnaly, care must

36 Scoop the Windows 10 pool!

be taken to not free the 2 chunks sprayed right after the overwritten
chunk because the free mechanism of VS might read the VS header of the
overwritten chunk in an attempt to merge 3 free chunks.

Finally, the heap massaging in LFH and in VS are quite different, as
explained in section 4.4.

5 Conclusion

This paper described the state of the pool internals since Windows
10 19H1 update. The Segment Heap has been brought to the kernel, and
it does not need chunk metadata to properly work. However, the old
POOL_HEADER that was at the top of each chunk is still present, but used
differently.

We demonstrated some attacks that can be done using a heap overflow
in the Windows kernel, by attacking the internals specific to the pool.

The demonstrated exploit can be adapted to any vulnerability that
provide a minimal heap overflow, and allows a local privilege escalation
from a Low Integrity level to SYSTEM.

References

1. Corentin Bayet. Exploit of CVE-2017-6008 with Quota Process Pointer
Overwrite attack. https://github.com/cbayet/Exploit-CVE-2017-6008/blob/

master/Windows10PoolParty.pdf, 2017.

2. Corentin Bayet and Paul Fariello. PoC exploiting Aligned Chunk Confusion on
Windows kernel Segment Heap. https://github.com/synacktiv/Windows-kernel-

SegmentHeap-Aligned-Chunk-Confusion, 2020.

3. Cesar Cerrudo. Tricks to easily elevate its privileges. https://media.blackhat.com/

bh-us-12/Briefings/Cerrudo/BH_US_12_Cerrudo_Windows_Kernel_WP.pdf, 2012.

4. Matt Conover and w00w00 Security Development. w00w00 on Heap Overflows.
http://www.w00w00.org/files/articles/heaptut.txt, 1999.

5. Tarjei Mandt. Kernel Pool Exploitation on Windows 7. Blackhat DC, 2011.

6. Haroon Meer. Memory Corruption Attacks The (almost) Complete History. Blackhat

USA, 2010.

7. Mark Vincent Yason. Windows 10 Segment Heap Internals. Blackhat US, 2016.

https://github.com/cbayet/Exploit-CVE-2017-6008/blob/master/Windows10PoolParty.pdf
https://github.com/cbayet/Exploit-CVE-2017-6008/blob/master/Windows10PoolParty.pdf
https://github.com/synacktiv/Windows-kernel-SegmentHeap-Aligned-Chunk-Confusion
https://github.com/synacktiv/Windows-kernel-SegmentHeap-Aligned-Chunk-Confusion
https://media.blackhat.com/bh-us-12/Briefings/Cerrudo/BH_US_12_Cerrudo_Windows_Kernel_WP.pdf
https://media.blackhat.com/bh-us-12/Briefings/Cerrudo/BH_US_12_Cerrudo_Windows_Kernel_WP.pdf
http://www.w00w00.org/files/articles/heaptut.txt

	Scoop the Windows 10 pool!
	C. Bayet, P. Fariello

