1sSYNACKTIV

IEDIGITAL SECURITY

Scoop the Windows 10 Pool!

. 05 Juin 2020
Paul Fariello (@paulfariello)
. . Corentin Bayet (@OnlyTheDuck)

Who are we? HE

B Corentin "@OnlyTheDuck” Bayet

B Previous work on Windows kernel heap exploitation.
M Paul Fariello "@paulfariello”

B Previous work on VM escape and exploiting Linux

stuff.
B Both employees @Synacktiv
Em B Offensive security company created in 2012.
==L§X&I\C!J{$§C KTIV B Soon 74 ninjas!

B pentest, reverse engineering, development.
W Paris, Toulouse, Lyon, Rennes

https://twitter.com/OnlyTheDuck
https://github.com/cbayet/Exploit-CVE-2017-6008
https://twitter.com/paulfariello
https://twitter.com/synacktiv

Windows Pool]

B Windows Pool is the Windows Kernel Heap allocator
B Used since Windows 7

B Segment Heap allocator introduced in Windows 10 kernel - 19H1

Goals of the research

M Discover what changed
B What is the impact on specific pool materials?
B What is the impact on an exploitation point of view?

Plan

Windows Pool 101
Exploiting a Heap Overflow

Exploitation

Conclusion

Plan

Windows Pool 101

Pool Allocator - API

* ExAllocatePoolWithTag(

ExFreePoolWithTag(

*x P,

PoolType,
NumberOfBytes,
Tag) ;

Tag) ;

Pool Allocator

B Allocation associated with a tag

B 32-bit value, usually printable
B Mostly used for debug

B Allocation of different memory types

B NonPagedPool (NonPagedPoolNx since Windows 8)
B PagedPool
B SessionPool

B Additionnal features

B Quota
B Alignment

Pool Allocator

PoolType

Paged
NonPaged
NonPagedNX

Session

Pool

DynamicLookaside Alignment

Segment Heap
Quota

LFH VS

Segment Large

Segment Heap

B Introduced in userland with Windows 10
B Used in kernel since Windows 10 - 19H1
B Aims at providing different features depending on allocation size

Segment Heap — Backends

B Allocation delegated to different backend
B Depends on requested size
B Each backend has its own allocation/free mechanism

B Low Fragmentation Heap
B Variable Size

B Segment

B Large

Segment Heap —

Backends

alloc_size

<= 0x200

<= 0x20000

<= 0x7f000

<= 0x7f0000

> 0x7f0000

—

RtlHpLfhContextAllocate

RtlHpVsContextAllocatelnternal

l

RtlHpSegAlloc

|

RtlHpSegAlloc

|

RtiHpLargeAlloc

Segment Heap — LFH

_HEAP_LFH_SUBSEGMENT
—>| 1
+— + ListEntry: _LIST_ENTRY
1
+ FreeHint

4
+ BlockBitmap

Block
Block
Block
Block

Block

Block

LFH

M allocation<=512B

M backed by multiple SubSegments

B chunk grouped by size in buckets
M affinity slots if contention detected
M bitmap of free/used blocks

m (kind of) randomize access

Segment Heap — VS

HEAP V/S_SIIRSFGMENT
_HEAP_VS_SUBSEGMENT

- + ListEntry: _LIST_ENTRY
L+ size:ute
1 + signature: U1S
_HEAP_VS_CHUNK_HEADER
+ UnsafeSize: U16

+ UnsafePrevSize: U16
Allocated chunk

_HEAP_VS_CHUNK_FREE_HEADER
+ UnsafeSize: U16
+ UnsafePrevSize: U16

+Node: _RTL_BALANCED_NODE

Free Chunk

512 B < allocation <= 128 KiB
backed by multiple SubSegment
RB tree maintaining list of free
chunks

Chunk are prefixed with a dedicated
struct _HEAP_VS_CHUNK_HEADER

Contiguous free chunks are
coalesced

Pool Allocator - POOL_HEADER

B Present before each allocated chunk
B Was used by the previous allocator
B Not needed by the Segment Heap, but still present

POOL_HEADER

{
PreviousSize;
PoolIndex; 0x10
BlockSize; ProcessBilled
I
POOlType; previous| Pool | Block | Pool PoolTa
PoolTag; Size | Index | Size | Type 9

0x00

ProcessBilled;

Pool Allocator

PoolType

Paged
NonPaged
NonPagedNX

Session

Pool

DynamicLookaside Alignment

Segment Heap
Quota

LFH VS

Segment Large

DynamicLookaside

M 512B < allocation <= 4064 B
B Dedicated linked list of free chunk
B Prevent usage of backend’s free mechanism

B Grouped by size
B Size recovered from POOL_HEADER
M Enabled only if size is heavily used (Balance Set Manager)

Pool Allocator - PoolQuota

B Mechanism to monitor heap usage
B Enabled with PoolQuota bit in PoolType (bit 3)

M Pointer to EPROCESS stored in ProcessBilled of POOL_HEADER

B A counter is incremented when an allocation occurs
B ... and decremented when a free occurs

Pool Allocator - PoolQuota

0x20

0x10 _EPROCESS

ProcessBilled ¥
+QuotaBlock: EPROCESS_QUOTA_BLOCK* —* _EPROCESS QUOTA BLOCK

Previous| Pool | Block | Pool
size |Index | Size | Type
0x00

PoolTag

Quota Process Pointer Overwrite attack

B Quota Process Pointer Overwrite is an attack leveraging a heap overflow

Bl Described by @kernelpool in 2011
B Overwrite the POOL_HEADER of the next allocation

B Make ProcessBilled point to a fake EPROCESS
B Provides arbitrary decrement primitive
B Might be enough to elevate privileges to SYSTEM

https://media.blackhat.com/bh-dc-11/Mandt/BlackHat_DC_2011_Mandt_kernelpool-wp.pdf

Quota Process Pointer Overwrite attack

0x30
Overwritten
0x20 _EPROCESS
PracessBilled E—
+ QuotaBlock: EPROCESS QUOTA BLOCK* ——» _EPROCESS_QUOTA_BLOCK
Pr B
Index | Siz i
0x10
Wulnerable

0x00

Quota Process Pointer Overwrite Mitigation

B Mitigated since Windows 8
B ProcessBilled pointer xored with a randomly generated Cookie

B ProcessBilled = addrof (EPROCESS) @& addrof (Chunk)
© ExpPoolQuotaCookie

B Cannot be forged without a strong leak / read primitive
B Previous work on this at Nuit du Hack XV.

https://github.com/cbayet/Exploit-CVE-2017-6008

Alignment mechanism

B Request memory aligned on CPU cache line
B Set CacheAligned bit in POOL_TYPE (bit 2)
B But chunk must respect two conditions:
B POOL_HEADER present at the very start of the chunk
B POOL_HEADER present 0x10 bytes before the returned pointer

B Might endup with two POOL_HEADER in the chunk

B PreviousSize of second POOL_HEADER = offset to first POOL_HEADER

Alignment mechanism

returned memory

Cache line aligment

ProcessBilled

previous| Pool | Block | Pool
Size | |Index | Size | Type

PoolTag

Alignement

AlignedPoolHeader
0x10
ProcessBilled

Previous| Pool | Block | Pool

Size | Index | Size | Type Bacleg

0x00

Returned memory

B A chunk can be shaped with various headers

B Depends on

B used backend
B requested POOL_TYPE

Returned memory

alloc_size

YES alloc_size YeES alloc_size
>0x20000 > 0x710000
NO NO NO
v v v
RHpLC RHpVsC

}

_HEAP_VS_CHUNK_HEADER

RiHpLargeAloc

alloc_size

NO

pool_type &

NO
CacheAligned

> POOL_HEADER 4>©

Alignment

POOL_HEADER

Plan

Exploiting a Heap Overflow

Exploiting a Pool Overflow after Windows 10 19H1

B When having a big and controlled heap overflow primitive, probably better to
do a full data attack
B Overwrite the POOL_HEADER with values that won't make crash
B Ensure PoolQuota bit is not set in PoolType
B Target next chunk content
B Fix VS header

B But overflow of 4 bytes on POOL_HEADER of the next chunk is enough
B Aligned Chunk Confusion

Aligned Chunk Freeing Mechanism N

B When freeing an aligned chunk, the allocator needs to find the real address of
the start of the chunk.

B Uses the PreviousSize field of the second POOL_HEADER to retrieve the start
of the chunk

OriginalHdr = AlignedHdr - (AlignedHdr->PreviousSize * 0x10)

B The values stored in the OriginalHeader are then used to free the chunk

Aligned Chunk Freeing Mechanism

B Mechanism exists since introduction of Pool allocator

B But before introduction of Segment Heap, there were multiple checks when
freeing an aligned chunk :
B The offset between the two headers were recomputed and checked
B The BlockSize of the second header was recomputed and checked
B The AlignedPoolHeader pointer was checked to match the address of the
aligned header

Aligned Chunk Freeing Mechanism

& NonPagedPoolCacheAligned) // // is chunk cache aligned
{

9
__int8)*{_WORD * ->previous_size;

- [V66 / OxFFFFFFEFFFFFFFFOuiéd];

/ OXFFFFFFFFEFFFFFFOUi64] .pool_type & NonPagedPoolMustSucceed))

~>previous_size;
= 0x10i64 * (ur

(1o
KeBugCheckEx

[v66 / OXFFFFFFFFFFFFFFFOUi6d],
i ~>prev:
(ULONG_}
(ExpC:

ious_size,
)
achoLineSize - 1) & (OXFFFFFFFO - (D

+ sy 1=
nt8) * (_WORD *)a “>block_size,
RD)& ~>block_size + (unsigned __inté) .
KeBugCheckEx (
0xC2u,
~>previous_size,
+TveE)
> 1u
~ ExpPoolQuetaCookie) != *(_ [1] . previous_size)
int *)& —>previous_size,
(unsig int6e) ~ ExpPoolguotaCookia);
¥

ER #) ((char *)

= ! - Vi
n;
)

Aligned Chunk Freeing Mechanism

B Since Segment Heap introduction, all checks are gone

if (®{_BYTE *){ - 0xD) & NonPagedPoolCacheAligned)// is chunk cache aligned
{

== (unsigned __int8)* (_WORD *)& —->previous_size;
->pool_type |= HonPagedPoolCacheAligned;

Aligned Chunk Confusion

0x50
Qvenwritten

B Overwrite PreviousSize and
PoolType of next chunk to change it
into a CacheAligned chunk

ProcessBilled

M Trigger free of overwritten chunk, e
dex | Size | Type 0
but actually frees controlled
POOL_HEADER o0 _—
M Leverage DynamicLookaside to prove Pt | Bk | P

0x10

reuse the created chunk

Vulnerable

0x00

Plan

Exploitation

Notice HE

Goals

B Demonstrate exploitation technique
B Not vulnerability

B Demo driver with dedicated fake vulnerability

Aligned Chunk Confusion Exploitation

Goals

B Leverage Aligned Chunk Confusion to elevate privilege
B Develop a generic exploitation technique

B That can work in PagedPool or NonPagedPoolNx
B That is independent of the size of the vulnerable chunk

Overflow primitive constraints

M Overflow 1st and 4th byte of following POOL_HEADER
B Control allocation and free of vulnerable chunk

Exploitation strategy

Leverage Aligned Chunk Confusion

Create a ghost chunk

El Allocate an object in the ghost chunk

Overwrite this object to obtain read/write primitives

EADER

Ghost chunk

Chunk Vulnerable chunk Overwritten chunk

HEADER
HEADER

\ 4

Finding an object — Requirements

Need objects that can be sprayed and that are interesting to control.

Object properties

B Controlled allocation and free, to be sprayable
B Provides arbitrary read or write if fully user controlled
M Variable size, to be generic to any heap overflow

Object residence

B One in PagedPool

B One in NonPagedPoolNx

Targeted object — PagedPool

PipeAttribute

[| L|nked tO a Plpe PipeAttribute {
M User controlled insertion and attribute_list;
deletion * AttributeName;
AttributeValueSize;
B Controlled size + AttributeValue;
B Provide arbitrary read data[0];

B Easy way to write data in kernel };

Exploitation strategy - updated ol

Overwrite next POOL_HEADER

Create a ghost chunk

Use PipeAttribute to get a leak and an arbitrary read

Use Quota Process Pointer Overwrite to get SYSTEM privileges

Following example is only about PagedPool. But the same applies to NonPagedPoolNx with a different object.

Shaping

Vulnerable chunk Overwritten chunk

HEADER

HEADER

Creating the ghost chunk

N

w
=

ool | Vulnerable chunk - Overwritten chunk

i ader

Creating the ghost chunk

N

w

Header |PPEATTR | (ode, B Overwritten chunk

Creating the ghost chunk

Pool

Header Ghost Chunk (free)

Overwritten chunk
(free)

z
Pool | pioE ATTR | Atribute Name and Value | 2
Header —

OVERWRITE
HEADER

Getting a leak

- Pipe Attribute Value

Header | PIPE_ATTR

Pool
Header | PIPE_ATTR i & OUVCTUWTIICSTT CITUT TN
> T

AnributAame and Value

1.
NtfsControlFile()
Set new attribute

Getting a leak

Lgaolz:,d o Pipe Attribute Value
Header | PIPE_ATTR
Pool
Header | PIPE_ATTR T UVCTUVTTICSTT CITUTTR

<L
S w
=

ArtrbutAame and Value

2 1
NtfsControlFile() NtfsControlFile()
Read attribute value Set new attribute

Getting an arbitrary read

Leaked

Pool Leaked
Header PIPE_ATTR
Pool
Header Freed

OVER

HEA

Attribute Name and Value

JVTITUWIILTITT GIHTUT I

Free the Pipe Attribute

Getting an arbitrary read

overwritten| overwritien

Pool PIPE_ATTR Attribute Name and Value
Header

Pool
Header PIPE_ATTR Attrbute Name and Value UVETUWITTISTT GITUTTK

i
u

HEA

Allocate a new Pipe Attribute
Overwrite the ghost chunk content with controlled data

Getting an arbitrary read

LIST_ENTRY pName V;IZU: pValue Attribute Name and Value

Inject a PipeAttribute in the attribute list in userland

User-Land

Kernel-Land

Pool
Header

next prev

Pool

PIPE_ATTR | Attribute Name and Value
Header =

OVEHR

HEA

Pipe Attribute Value

UVTITVITLTTT CITUTTAN

Getting an arbitrary read

Point to
arbitrary location

Value

LIST_ENTRY pName ' © pvalue Written Data

User-Land

Kernel-Land

Read attribute value
3, Pool | prev| ... 3 3
. | Header Pipe Attribute Value
Pool
Header | PIPE_ATTR | Atribute Name and Value | e

HEA

>

Exploitation - Arbitrary read ol

B We got an arbitrary read and a heap leak
B We can use it this to retrieve some values

B Value of ExpPoolQuotaCookie
B Address of self EPROCESS
B Address of self TOKEN

B And use aQuota Process Pointer Overwrite to getan arbitrary decrement!

Getting an arbitrary decrement

L(;%I:)(Td et Attribute Name and Value
Header | PIPE_ATTR
Pool
Header Freed i a UVCTVWITLLTTT CITUTT
5 T

Free the Pipe Attribute

Getting an arbitrary decrement

Controlled
_EPROCESS

Arbitrary pointer

pverwritten| Gverwritten
Pool PIPE_ATTR
Header

Pool

PIPE_ATTR | Attribute Name and Value
Header = In

HEA

Attribute Name and Value

UVETWITUETT CITUTTR

Allocate a new Pipe Attribute
Overwrite the POOL_HEADER
of the ghost chunk content with controlled data

\ 4

Getting an arbitrary decrement

Controlled Arb
EPROCESS bitrary
= Decrement
Arbitrary pointer
Pool | pipg ATTR
Header
Pool | bipe ATTR | Atribute N d Val
Header -/ ribute Name ans alue ﬁ m
8T

TOKEN
Y| Piivileges.Enabled
Pipe Attribute Value

OVCTVITOCTT CITUTTIN

Free the Ghost chunk
Trigger an arbitrary decrrement

\ 4

Exploitation - Use the arbitrary decrement

B Use the arbitrary decrement twice by reallocating an refreeing the ghost
chunk
B Decrement TOKEN.Prileges.Enabled
B Decrement TOKEN.Prileges.Present

B Provides SeDebugPrivilege to our process
B Debug a SYSTEM process and inject a shellcode

DEMO

Exploitation - Discussion]

B Could use the same exploitation technique to achieve different outcomes
(code execution, etc.)

B Not perfectly stable, spraying could be improved
B Tested on one version of Windows 10 only

B Offsets of ntoskrnl hardcoded, that can be easily fixed using the arbitrary read

https://github.com/synacktiv/Windows-kernel-SegmentHeap-Aligned-Chunk-
Confusion

Plan

Conclusion

Conclusion

B Segment Heap brings lots of changes to the Pool

B Some mitigations have been removed allowing for a novel exploitation
technique

B Our exploitation technique works with any heap overflow providing:

B overwrite first and fourth bytes of POOL_HEADER
B control allocation and deallocation of the vulnerable chunk

B The exploit we developed is generic:

B Works in both PagedPool and NonPagedPoolNx
B Works for any vulnerable size

AVEZ-VOUS
DES QUESTIONS?

MERCI DE VOTRE ATTENTION
| ESEIY
DIGITALSECURITY

	Windows Pool 101
	Exploiting a Heap Overflow
	Exploitation
	Conclusion

