
Scoop the Windows 10 Pool!

05 Juin 2020

Paul Fariello (@paulfariello)

Corentin Bayet (@OnlyTheDuck)



Who are we?

Corentin ”@OnlyTheDuck” Bayet

Previous work on Windows kernel heap exploitation.

Paul Fariello ”@paulfariello”

Previous work on VM escape and exploiting Linux

stuff.

Both employees @Synacktiv

Offensive security company created in 2012.

Soon 74 ninjas!

pentest, reverse engineering, development.

Paris, Toulouse, Lyon, Rennes

https://twitter.com/OnlyTheDuck
https://github.com/cbayet/Exploit-CVE-2017-6008
https://twitter.com/paulfariello
https://twitter.com/synacktiv


2/54

Windows Pool

Windows Pool is the Windows Kernel Heap allocator

Used since Windows 7

Segment Heap allocator introduced in Windows 10 kernel - 19H1

Goals of the research

Discover what changed

What is the impact on specific pool materials?

What is the impact on an exploitation point of view?



3/54

Plan

1 Windows Pool 101

2 Exploiting a Heap Overflow

3 Exploitation

4 Conclusion



Plan

1 Windows Pool 101

2 Exploiting a Heap Overflow

3 Exploitation

4 Conclusion



4/54

Pool Allocator - API

void * ExAllocatePoolWithTag(POOL_TYPE PoolType,
size_t NumberOfBytes ,
unsigned int Tag);

void ExFreePoolWithTag(void * P, unsigned int Tag);



5/54

Pool Allocator

Allocation associated with a tag

32-bit value, usually printable

Mostly used for debug

Allocation of different memory types

NonPagedPool (NonPagedPoolNx since Windows 8)

PagedPool

SessionPool

Additionnal features

Quota

Alignment



6/54

Pool Allocator



7/54

Segment Heap

Introduced in userland with Windows 10

Used in kernel since Windows 10 - 19H1

Aims at providing different features depending on allocation size



8/54

Segment Heap – Backends

Allocation delegated to different backend

Depends on requested size

Each backend has its own allocation/free mechanism

Low Fragmentation Heap

Variable Size

Segment

Large



9/54

Segment Heap – Backends



10/54

Segment Heap – LFH

LFH

allocation <= 512B

backed by multiple SubSegments
chunk grouped by size in buckets
affinity slots if contention detected

bitmap of free/used blocks

(kind of) randomize access



11/54

Segment Heap – VS

VS

512B < allocation <= 128KiB

backed by multiple SubSegment
RB tree maintaining list of free

chunks

Chunk are prefixed with a dedicated

struct _HEAP_VS_CHUNK_HEADER
Contiguous free chunks are

coalesced



12/54

Pool Allocator - POOL_HEADER

Present before each allocated chunk

Was used by the previous allocator

Not needed by the Segment Heap, but still present

struct POOL_HEADER
{

char PreviousSize;
char PoolIndex;
char BlockSize;
char PoolType;
int PoolTag;
Ptr64 ProcessBilled;

};



13/54

Pool Allocator



14/54

DynamicLookaside

512B < allocation <= 4064B

Dedicated linked list of free chunk

Prevent usage of backend’s free mechanism

Grouped by size

Size recovered from POOL_HEADER
Enabled only if size is heavily used (Balance Set Manager)



15/54

Pool Allocator - PoolQuota

Mechanism to monitor heap usage

Enabled with PoolQuota bit in PoolType (bit 3)
Pointer to EPROCESS stored in ProcessBilled of POOL_HEADER

A counter is incremented when an allocation occurs

... and decremented when a free occurs



16/54

Pool Allocator - PoolQuota



17/54

Quota Process Pointer Overwrite attack

Quota Process Pointer Overwrite is an attack leveraging a heap overflow

Described by @kernelpool in 2011

Overwrite the POOL_HEADER of the next allocation
Make ProcessBilled point to a fake EPROCESS
Provides arbitrary decrement primitive

Might be enough to elevate privileges to SYSTEM

https://media.blackhat.com/bh-dc-11/Mandt/BlackHat_DC_2011_Mandt_kernelpool-wp.pdf


18/54

Quota Process Pointer Overwrite attack



19/54

Quota Process Pointer Overwrite Mitigation

Mitigated since Windows 8

ProcessBilled pointer xored with a randomly generated Cookie

ProcessBilled = addrof(EPROCESS) ⊕ addrof(Chunk)
⊕ ExpPoolQuotaCookie
Cannot be forged without a strong leak / read primitive

Previous work on this at Nuit du Hack XV.

https://github.com/cbayet/Exploit-CVE-2017-6008


20/54

Alignment mechanism

Request memory aligned on CPU cache line

Set CacheAligned bit in POOL_TYPE (bit 2)

But chunk must respect two conditions:

POOL_HEADER present at the very start of the chunk
POOL_HEADER present 0x10 bytes before the returned pointer

Might endup with two POOL_HEADER in the chunk
PreviousSize of second POOL_HEADER = offset to first POOL_HEADER



21/54

Alignment mechanism



22/54

Returned memory

A chunk can be shaped with various headers

Depends on

used backend

requested POOL_TYPE



23/54

Returned memory



Plan

1 Windows Pool 101

2 Exploiting a Heap Overflow

3 Exploitation

4 Conclusion



24/54

Exploiting a Pool Overflow after Windows 10 19H1

When having a big and controlled heap overflow primitive, probably better to
do a full data attack

Overwrite the POOL_HEADER with values that won’t make crash

Ensure PoolQuota bit is not set in PoolType
Target next chunk content

Fix VS header

But overflow of 4 bytes on POOL_HEADER of the next chunk is enough
Aligned Chunk Confusion



25/54

Aligned Chunk Freeing Mechanism

When freeing an aligned chunk, the allocator needs to find the real address of

the start of the chunk.

Uses the PreviousSize field of the second POOL_HEADER to retrieve the start

of the chunk

OriginalHdr = AlignedHdr - (AlignedHdr ->PreviousSize * 0x10)

The values stored in the OriginalHeader are then used to free the chunk



26/54

Aligned Chunk Freeing Mechanism

Mechanism exists since introduction of Pool allocator

But before introduction of Segment Heap, there were multiple checks when
freeing an aligned chunk :

The offset between the two headers were recomputed and checked

The BlockSize of the second header was recomputed and checked

The AlignedPoolHeader pointer was checked to match the address of the

aligned header



27/54

Aligned Chunk Freeing Mechanism



28/54

Aligned Chunk Freeing Mechanism

Since Segment Heap introduction, all checks are gone



29/54

Aligned Chunk Confusion

Overwrite PreviousSize and

PoolType of next chunk to change it

into a CacheAligned chunk

Trigger free of overwritten chunk,

but actually frees controlled

POOL_HEADER
Leverage DynamicLookaside to

reuse the created chunk



Plan

1 Windows Pool 101

2 Exploiting a Heap Overflow

3 Exploitation

4 Conclusion



30/54

Notice

Goals

Demonstrate exploitation technique

Not vulnerability

Setup

Demo driver with dedicated fake vulnerability



31/54

Aligned Chunk Confusion Exploitation

Goals

Leverage Aligned Chunk Confusion to elevate privilege

Develop a generic exploitation technique

That can work in PagedPool or NonPagedPoolNx

That is independent of the size of the vulnerable chunk

Overflow primitive constraints

Overflow 1st and 4th byte of following POOL_HEADER
Control allocation and free of vulnerable chunk



32/54

Exploitation strategy

1 Leverage Aligned Chunk Confusion

2 Create a ghost chunk

3 Allocate an object in the ghost chunk

4 Overwrite this object to obtain read/write primitives



33/54

Finding an object – Requirements

Need objects that can be sprayed and that are interesting to control.

Object properties

Controlled allocation and free, to be sprayable

Provides arbitrary read or write if fully user controlled

Variable size, to be generic to any heap overflow

Object residence

One in PagedPool

One in NonPagedPoolNx



34/54

Targeted object – PagedPool

PipeAttribute

Linked to a Pipe
User controlled insertion and

deletion

Controlled size

Provide arbitrary read

Easy way to write data in kernel

struct PipeAttribute {
LIST_ENTRY attribute_list;
char * AttributeName;
uint64_t AttributeValueSize;
char * AttributeValue;
char data[0];

};



35/54

Exploitation strategy - updated

1 Overwrite next POOL_HEADER
2 Create a ghost chunk

3 Use PipeAttribute to get a leak and an arbitrary read

4 Use Quota Process Pointer Overwrite to get SYSTEM privileges

Note

Following example is only about PagedPool. But the same applies to NonPagedPoolNx with a different object.



36/54

Shaping



37/54

Creating the ghost chunk



38/54

Creating the ghost chunk



39/54

Creating the ghost chunk



40/54

Getting a leak



41/54

Getting a leak



42/54

Getting an arbitrary read



43/54

Getting an arbitrary read



44/54

Getting an arbitrary read



45/54

Getting an arbitrary read



46/54

Exploitation - Arbitrary read

We got an arbitrary read and a heap leak

We can use it this to retrieve some values

Value of ExpPoolQuotaCookie
Address of self EPROCESS
Address of self TOKEN

And use a Quota Process Pointer Overwrite to get an arbitrary decrement !



47/54

Getting an arbitrary decrement



48/54

Getting an arbitrary decrement



49/54

Getting an arbitrary decrement



50/54

Exploitation - Use the arbitrary decrement

Use the arbitrary decrement twice by reallocating an refreeing the ghost
chunk

Decrement TOKEN.Prileges.Enabled
Decrement TOKEN.Prileges.Present

Provides SeDebugPrivilege to our process

Debug a SYSTEM process and inject a shellcode



51/54

DEMO



52/54

Exploitation - Discussion

Could use the same exploitation technique to achieve different outcomes

(code execution, etc.)

Not perfectly stable, spraying could be improved

Tested on one version of Windows 10 only

Offsets of ntoskrnl hardcoded, that can be easily fixed using the arbitrary read

https://github.com/synacktiv/Windows-kernel-SegmentHeap-Aligned-Chunk-

Confusion



Plan

1 Windows Pool 101

2 Exploiting a Heap Overflow

3 Exploitation

4 Conclusion



53/54

Conclusion

Segment Heap brings lots of changes to the Pool

Some mitigations have been removed allowing for a novel exploitation

technique

Our exploitation technique works with any heap overflow providing:

overwrite first and fourth bytes of POOL_HEADER
control allocation and deallocation of the vulnerable chunk

The exploit we developed is generic:

Works in both PagedPool and NonPagedPoolNx

Works for any vulnerable size



MERCI DE VOTRE ATTENTION

AVEZ-VOUS
DES QUESTIONS?


	Windows Pool 101
	Exploiting a Heap Overflow
	Exploitation
	Conclusion

