
Process level network security monitoring &

enforcement with eBPF

Guillaume Fournier
guillaume.fournier@datadoghq.com

Datadog

Abstract. As application security engineers, we are always looking for
new ways of securing our services and reducing their privileges to what
they absolutely need. When it comes to networking, cutting egress to
the world and reducing internal access on a per service basis have always
been two of the top priorities. However, as cloud computing services and
container-orchestration systems (like Kubernetes) spread, static IP based
solutions are becoming obsolete. The goal of this paper is to show how
a new generation of security tools based on eBPF could help solve this
problem.

1 Introduction

eBPF [8,14] is a fairly new technology that has gained a lot of momen-
tum over the past few years in the world of host monitoring [10]. Evolved
from BPF — which was originally designed to speed up packet filtering
for tools like tcpdump — eBPF allows observability into the depths of the
kernel. This new feature introduces the exciting possibility of using eBPF
for security purposes.

With the spread of container orchestration technologies like Kuber-
netes [5], deploying microservices has never been easier. Although Ku-
bernetes introduced a DevOps 1 breakthrough, it also introduced a new
security concern: services that used to be hosted on isolated machines, can
now run side by side in containers, sharing the same kernel and other host
level resources. This means that any host level access control will have
a hard time differentiating one service from another without any control
at the Kubernetes level. Network access control in a cloud provider like
Amazon Web Services (AWS) is a great example of this limitation, as
security groups (the most granular network access control in AWS) [11]
can only be applied at the host level.

1. DevOps is a set of practices that combines software development and information-
technology operations which aims to shorten the systems development life cycle and
provide continuous delivery with high software quality.

2 Process level network security monitoring

This paper provides a solution to this limitation and focuses on using
eBPF to perform process level network security monitoring and enforce-
ment. Although multiple tools already leverage eBPF to monitor and
enforce networking rules (such as Cilium [1] in Kubernetes), most of
them only apply those rules at the interface level. By introducing a more
fine-grained solution, malicious network activity can be mapped back to
specific processes. This drastically improves investigation efforts, refines
enforcement accuracy to avoid unnecessary downtime, and paves the way
to a faster incident response time.

2 Challenges of reducing network access and existing

solutions

Reducing network access means limiting two resources: network egress
and network ingress. In most cases, cutting egress refers to blocking
external network connectivity, hoping to stop an attacker from pushing
data to pastebin.com for example. On the other hand, cutting ingress
usually refers to the ability to reject an incoming packet from entities that
should not be allowed to communicate with a specific host.

In this section, our goal is to show that traditional tools based on
IP ranges or DNS proxying have limitations that ultimately make them
obsolete in modern environments. We will use a simple application that is
based on multiple microservices and running on Kubernetes to illustrate
our point.

2.1 Challenges of cutting egress using IP based technologies

One of the very first pitfalls that application security engineers will
encounter while trying to cut egress to the world is to try to whitelist the
IP ranges of the external services required by their internal services to
run. Most cloud hosted services have dynamic IPs, and trying to whitelist
those IPs would essentially mean whitelisting the entire cloud provider.
For example, the list of all of the IP ranges used by AWS contains more
than 300 entries [3]. If you wanted to grant access to reddit.com, you
would have to whitelist most of them. In other words, this is not the way
to do it.

You could also try to determine how often the IP addresses of those
external services are updated, and then propagate those changes in your
infrastructure. But then you would face another unsolvable problem: how
do you deal with the downtime between the time when the IPs are updated,

G. Fournier 3

and time when your local filters are finally updated? Putting aside this
downtime problem, how are you even going to apply those filters? In AWS,
you could use security groups or network ACLs [11] for example. But then
one could argue that it wouldn’t be granular enough since those filters
apply to entire hosts. Another more fine grained solution would be to
apply different iptables rules on each interface of your host. By applying
some rules only to specific interfaces you could, in theory, control what
access is allowed on a per container basis (but this is really a bad idea
since you’re messing around with iptable rules that Docker already set up
for your containers). And even if you had a fine grained solution to apply
those rules, applying one filter per microservice means that you somehow
have a magical way of predicting what access is needed per node. Indeed,
in theory Kubernetes [5] is free to schedule its pods on any available node,
which means that not only would you have to update the filters based
on IP changes, but also based on pod scheduling. And that’s not even it!
Because pods can be scheduled on different nodes, you’ll need to account
for internal IP updates on a per service basis as well.

Although you could configure only specific pods to run on specific
nodes [20], all those challenges show that IP-based solutions will not
scale in modern environments, or will do so, at the cost of uncontrollable
downtimes.

2.2 Challenges of a DNS based solution

If IPs are such a pain to deal with, what about proxying DNS requests
and allowing or denying traffic based on domains whitelists?

The first solution that comes to mind is to create a DNS proxy for
the entire infrastructure, that allows the resolution of whitelisted domain
names. Putting aside the scary bottleneck and terrifying single point of
failure that it would introduce, there is still an unsolvable problem: how
could one be sure to restrict specific domain names to specific services?
Once again, the source IP of the requests will be one of a node, and
therefore, from the proxy point of view, it would be impossible to know
what service made the request.

And even if you did somehow find a solution to map the requests back
to a service, there still is one huge problem: what if an attacker uses a
static IP to call back home, instead of relying on DNS resolution? . . . and
we’re back to IP whitelisting.

The final problem of a DNS only solution is domain fronting [7]. Mobile
applications like Signal have been notorious for exploiting this technique
to avoid state censorships [6]. In a few words, this attack lets a program

4 Process level network security monitoring

hide the true domain name which it is communicating with, by pretending
to communicate with an authorized domain. A DNS proxy would simply
be unable to block this kind of activity.

2.3 Cutting egress and ingress in Kubernetes at the pod level

One of the better solutions to solve egress and ingress filtering in
Kubernetes is Cilium. When a Kubernetes cluster is deployed with Cilium,
both internal and external traffic can be enforced on a per-microservice
basis, using network profiles [1]. An agent running as a DaemonsSet 2 on
each node enforces those network profiles for all the pods that are running
on the node. Relying on a complex mechanism of endpoint identities,
Cilium lets one whitelist traffic between pods, abstracting the IP problems
we talked about earlier. When it comes to external traffic, DNS resolution
requests are intercepted on each host with a DNS proxy, and either
allowed or dropped depending on the pod making the request. Any traffic
to an unrecognized IP is immediately dropped. This also means that each
pod needs its own network profile, which is to be expected for such a
fine-grained solution.

On a more technical point of view, Cilium uses multiple eBPF programs
to perform deep packet inspection at runtime. Giving more details about
how Cilium works would out of the scope of this paper, but we encourage
you to read their excellent documentation [1].

Although Cilium takes us 70% of the way, a few crucial steps are
needed to reach our non-intrusive process level enforcement goal. Indeed
Cilium is very intrusive into your Kubernetes clusters. If a cluster is already
running, chances are you’ll have to restart an entirely new one in order to
configure Cilium as a network plugin. Depending on how your architecture
is designed and how big your Kubernetes clusters are, this might make
it a no-go for your organization. The other problem is that the rules are
defined at the pod level. A pod can in theory have multiple containers,
and each container can have multiple processes [20]. For example, if a
developer obtains a shell in a production container to debug a service,
then the entire shell will have the same network access as the pod, which
is probably unnecessary and could even be dangerous if an attacker hid
some code in .bash_profile or .bashrc. RCE vulnerabilities could also be
widely mitigated if shells in containers had different network access than
the compromised service that spawned them. Finally, precise alerting and

2. A DaemonSet is a Kubernetes resource that ensures that at least 1 replica of a
given workload is running on each node [5]

G. Fournier 5

monitoring is limited with Cilium as it won’t give any information about
the process that tried to make an illegal network access.

3 A non-intrusive design that enforces networking rules

at the process level

3.1 Controlling network access using security profiles

Before we deep dive into the solution we came up with, let’s first define
exactly what we want to do. The high level goal is to provide network
access control at the process level in a Kubernetes environment.

More precisely, the solution will be configurable on a per workload
and per process basis. As we are working with Kubernetes, this means
that each pod will have its own Security Profile (declared as a Kubernetes
custom resource [16]) that will define what network access should be
granted to each process.

1 kind : SecurityProfile

2 apiVersion : security . datadoghq .com/v1

3 metadata :
4 name : ping−p r o f i l e

5 l ab e l s :
6 app : ping # workload selector

7 spec :
8 actions :
9 − a l e r t

10 − enforce

11
12 processes :
13 − path : "/ usr/ l o c a l /bin/my−app" # binary selector

14 network :
15 egress :
16 fqdns :
17 − pong . default . svc . cluster . l o c a l

18 cidr4 :
19 − 1 0 . 9 6 . 0 . 1 0 / 3 2
20 l3 :
21 protocols : [ipv4]
22 l4 :
23 protocolPorts :
24 − protocol : udp

25 port : 53
26 − protocol : tcp

27 port : 80
28 l7 :
29 protocols : [dns , http]
30 dns :
31 − pong . default . svc . cluster . l o c a l

32 ingress :
33 cidr4 :
34 − 1 0 . 9 6 . 0 . 1 0 / 3 2
35 l3 :
36 protocols : [ipv4]
37 l4 :
38 protocols : [tcp , udp]
39 l7 :
40 protocols : [dns , http]

Listing 1. Example of a custom SecurityProfile. This profile applies to all the
containers of all the pods with the ping label.

6 Process level network security monitoring

The main goal here is to create a workflow that is both simple to
follow and scalable to an entire infrastructure, thus pushing security to
the developers and making sure that they are actively involved in securing
their services.

An agent running as a DaemonSet on each node will have the respon-
sibility of both listening for new security profiles 3 and applying those
profiles to protect the workloads running on its host. That second respon-
sibility will rely on the ability of the agent to both monitor and enforce
networking rules, which is where eBPF comes in.

3.2 Technical requirements

As explained above, we rely entirely on eBPF to monitor and enforce
networking rules at runtime. However eBPF can be used in a lot of different
ways when it comes to networking, so we need to explicitly define our
technical requirements.

1. Kernel compatibility is one of the top priorities, the lower version
the better.

2. All ingress and egress traffic must be monitored, regardless of the
protocols in use on layer 3, 4, and 7.

3. All monitored and enforced traffic must be mapped back to its
rightful user space process (when there is one) and container (or
host). The enforcement rules are as follow:

— For each process and for each network namespace, a whitelist of
protocols on layer 3, 4, and 7 is provided as well as a whitelist
of allowed domains for egress. Any activity that doesn’t fall
into these whitelists is dropped. Protocols that do not map
back to processes will be assessed against the container / host
whitelists.

— Regardless of network profiles, default attack detection can be
activated (for example ARP spoofing attacks).

4. Container NAT / PAT should be dealt with in kernel space.

5. Enforcement for both egress and ingress should be performed in
kernel space without going back to user space.

6. The solution has to be handled by Kubernetes like any other
workload. In other words, we don’t want any requirements when it

3. https://github.com/Gui774ume/network-security-probe/blob/1.0/pkg/

processor/profileloader/profileloader.go#L179-L194

https://github.com/Gui774ume/network-security-probe/blob/1.0/pkg/processor/profileloader/profileloader.go#L179-L194
https://github.com/Gui774ume/network-security-probe/blob/1.0/pkg/processor/profileloader/profileloader.go#L179-L194

G. Fournier 7

comes to interfacing with Kubernetes, and we cannot replace any
part of Kubernetes to make it work.

7. Enforcement can be turned off, resulting in an “alert only” mode.
The generated alerts must contain the full context of the network
traffic (including namespace and process metadata when available).

3.3 Technical deep dive into the solution

eBPF programs eBPF comes with a lot of program types, all dedicated
to specific use cases, introducing multiple options to do network monitoring
and enforcement [8, 14]. In this section, we are only going to focus on the
program types that we decided to use because it would take too much
time to go over them all.

At a very high level our solution is based on eBPF Traffic Control
classifiers.4 The Traffic Control [4] Classifier-Action subsystem is a mecha-
nism by which the kernel filters and shapes the network traffic on ingress
and egress. The motivation behind this choice is that TC classifiers are
the first type of eBPF programs introduced in the kernel that allows one
to monitor and enforce network traffic for all protocols. Therefore we
maximize requirement 1, while checking requirement 2 and 3 at the same
time. Another huge advantage of TC classifiers is that they can be used
to resolve container NAT and PAT at runtime, without having to use
tools like conntrack to keep track of opened connections. Indeed, like any
other TC classifiers, an eBPF TC classifier is attached to a specific qdisc
of a specific interface. This means that you can attach to multiple well
chosen interfaces to see the packets being routed at runtime. Parsing the
IPs and ports at those different hook points will let you resolve NAT and
PAT between the host and its containers, without having to worry about
keeping an active connection table updated. In other words, requirement
4 and 5 are met.

Unfortunately, these were the “easy” requirements. Let’s first move on
to requirement 6, showing how new containers can be detected at runtime
and how new TC classifiers can be dynamically started to protect new
workloads. Then we’ll go back to requirement 3, explaining how packets
can be mapped back to processes even if the kernel hasn’t routed them to
a socket yet.

4. https://github.com/Gui774ume/network-security-probe/blob/1.0/pkg/

monitor/tcsched/tcsched.go#L155-L204

https://github.com/Gui774ume/network-security-probe/blob/1.0/pkg/monitor/tcsched/tcsched.go#L155-L204
https://github.com/Gui774ume/network-security-probe/blob/1.0/pkg/monitor/tcsched/tcsched.go#L155-L204

8 Process level network security monitoring

Detecting and supporting new containers at runtime As men-
tioned earlier, the only way for TC classifiers to resolve NAT and PAT
between containers at runtime is to make sure that there is a classi-
fier running on all relevant interfaces. Although this might sound pretty
straightforward, it relies on the ability to detect when your container
runtime creates new interfaces for a new workload. Moreover, out of all
the interfaces created by your container runtime, you also need to focus
only on those you care about. We decided to work with Docker, although
the same principles could be applied to other runtimes.

When a new container is started, Docker will create a veth pair
of interfaces to route traffic from the host network namespace to the
container network namespace (along with a set of iptables rules to define
the redirection) [13]. In other words, you need to hook onto at least one
of the veth interfaces to capture all traffic going to or coming from the
container. Ideally you’d want to hook on the one that is in the host network
namespace so that you won’t have to deal with switching namespaces. The
first idea that comes to mind is to look for Docker events and hope that
they expose the interfaces created and used by the running containers.
Unfortunately, Docker only exposes the interface(s) inside the network
namespace of each container, and resolving their veth counterpart in the
host network namespace requires quite a bit of work. As veth interface
names are randomly generated by the kernel, trying to guess their names
won’t work either.

In other words, the last remaining option is to deep dive into the kernel
and detect the creation of veth pair interfaces 5 using kprobes.6 Using a
very basic state machine 7 and hooking on the relevant functions of the
veth kernel module [12], we were able to detect new containers at runtime
and make sure that the right eBPF TC classifiers are loaded even before
the workload is actually started. We also have the opportunity to detect
the network namespace of the newly created container,8 which means that
in future eBPF programs, we’ll be able to map packets to containers using
the network namespace as key.

5. https://github.com/Gui774ume/network-security-probe/blob/1.0/ebpf/

main.c#L502-L606

6. kprobes and tracepoints are a feature of the Linux Kernel that one can use to
hook at runtime in the kernel [2].

7. https://github.com/Gui774ume/network-security-probe/blob/1.0/ebpf/

main.c#L382-L400

8. https://github.com/Gui774ume/network-security-probe/blob/1.0/ebpf/

main.c#L608-L654

https://github.com/Gui774ume/network-security-probe/blob/1.0/ebpf/main.c#L502-L606
https://github.com/Gui774ume/network-security-probe/blob/1.0/ebpf/main.c#L502-L606
https://github.com/Gui774ume/network-security-probe/blob/1.0/ebpf/main.c#L382-L400
https://github.com/Gui774ume/network-security-probe/blob/1.0/ebpf/main.c#L382-L400
https://github.com/Gui774ume/network-security-probe/blob/1.0/ebpf/main.c#L608-L654
https://github.com/Gui774ume/network-security-probe/blob/1.0/ebpf/main.c#L608-L654

G. Fournier 9

Mapping traffic flows with processes It is finally time to talk about
the biggest challenge of this paper: mapping network traffic back to their
user space processes. Most of the network monitoring program types that
are implemented in the Linux kernel won’t let you access the process send-
ing (or receiving) the packet. The famous bpf_get_current_tid_tgid

helper is indeed unavailable in eBPF TC classifier programs. It actually
makes sense: some packets are not destined to any specific user space pro-
cess (for example, the kernel network stack is actually the one answering
ICMP requests), or even if they are, the kernel itself might not yet know
to which process they are destined when the eBPF program is triggered.

To work around this limitation, one solution could be to use
kprobes or tracepoints [2] on network related syscalls. Indeed, the
BPF_PROG_TYPE_KPROBE and BPF_PROG_TYPE_TRACEPOINT program types
have access to the bpf_get_current_pid_tgid helper function, that will
map back to the calling process automatically. Although this sounds like
a great idea for monitoring purposes (and this is what Datadog is doing
for its Network Performance Monitoring product [9]), some limitations
make it a no go for a security tool. Indeed, only IPv4 / IPv6 and TCP /
UDP protocols are available through this technique, and it doesn’t provide
access to network packets but only to raw data buffers. Any protocol that
doesn’t have a specific syscall to send and receive data will be almost
impossible to monitor.

Another option could be to hook right into the network stack with
multiple kprobes (or tracepoints). This way, your eBPF program would be
triggered on any packets entering or leaving the host, regardless of the pro-
tocol in use, while still having access to the bpf_get_current_pid_tgid

helper. For example, a kprobe could be set on __netif_receive_skb_core

to monitor ingress [17] and __dev_queue_xmit to monitor egress [18].
Although it solves the protocol limitation problem, mapping back packets
to processes with bpf_get_current_pid_tgid will be quite flaky. Indeed,
if you start two containers on a host, and have them communicate over a
netcat TCP server, you will soon realize that ACK packets are improperly
resolved to the wrong process, wrong network namespace and wrong pro-
cess namespace. For example, you will see below a data packet sent from
the container “flamboyant_turing” and then the ACK packet acknowledg-
ing the data. The acknowledgement packet was captured on the egress
hook point, which means that it should have been mapped to the receiving
container. Unfortunately, bpf_get_current_pid_tgid resolves both of
them to the same pid 16679 in the first container “flamboyant_turing”.

10 Process level network security monitoring

INFO - 2020/01/30 03:43:57 event : Xmit [container : flamboyant_turing]

[binary_path :/ bin/nc. traditional tty: pts0] [user : root group : root

] [172.17.0.3:56856] -> [172.17.0.2:8091] (IPPROTO_TCP , 54 B,

ACK+PSH) (sum :20568 , id :5103) pid :16679 (Pidns :4026532241 , NetNS

:4026531993 , uid :0, skb :0 xffff99ed7bafb0e8) [02:42: AC :11:00:03]

-> [02:42: AC :11:00:02] (ETH_P_IP) { vethbcaa2b4 }

INFO - 2020/01/30 03:43:57 event : Xmit [container : flamboyant_turing]

[binary_path :/ bin/nc. traditional tty: pts0] [user : root group : root

] [172.17.0.2:8091] -> [172.17.0.3:56856] (IPPROTO_TCP , 52 B,

ACK) (sum :20056 , id :2291) pid :16679 (Pidns :4026532241 , NetNS

:4026531993 , uid :0, skb :0 xffff99ed76bb8900) [02:42: AC :11:00:02]

-> [02:42: AC :11:00:03] (ETH_P_IP) { veth302c6d8 }

Listing 2. Example of two network packets that eBPF mistakenly mapped to the
same process and container.

Therefore, it became clear that matching traffic to processes using
bpf_get_current_pid_tgid wasn’t the way to do it. This is why we
started looking into another option: socket cookies. Socket cookies are
global identifiers that can be assumed unique and stable for the entire life
of a socket. Another reason why this sounded like an appealing option
is that eBPF TC classifiers have access to the bpf_get_socket_cookie

helper. This helper is meant to retrieve the cookie (generated by the kernel)
of the socket to which the intercepted packet will be routed to. So if you
found a way to map a socket cookie to a process using a simple kprobe, you
should in theory be able to map packets to processes. Unfortunately, it still
doesn’t work because depending on the interface on which you are hooked,
the sk_buff structure representing the captured packet might not point
to a socket yet. For that reason, bpf_get_socket_cookie will almost
systematically return 0 for a packet captured by the host namespace veth

interface with an eBPF TC classifier.
Once again we had to go back to the drawing board to find another

way to match packets to processes. The last option we came up with was
flow registration. The idea is simple: if you can’t determine the destination
process using the context of the eBPF call because the Kernel itself might
not have resolved it yet, then you need to route the network flow yourself.
It is relatively easy to catch a process that tries to bind a socket to an
IP and port,9 which means that you can map ingress and egress traffic
with a listening process. However it is much harder to match the network
traffic generated by a process that is reaching out to the world. Indeed,
you could try to catch “connect” calls, and you would be able to get the
IP that a process is trying to contact, but the port listening for the answer

9. https://github.com/Gui774ume/network-security-probe/blob/1.0/ebpf/

main.c#L831-L880

https://github.com/Gui774ume/network-security-probe/blob/1.0/ebpf/main.c#L831-L880
https://github.com/Gui774ume/network-security-probe/blob/1.0/ebpf/main.c#L831-L880

G. Fournier 11

is usually not provided (and you obviously need this port to match the
answer from the remote server). Although the kernel could let you choose
one (by manually binding the socket to a port), most of the time a random
port is automatically selected by the kernel. Another kernel deep dive was
necessary.

The solution we finally came up with is to use the Linux
Security Module. Indeed, all outgoing flows will go through the
security_sk_classify_flow function to check against various security
models if a connection should be allowed. This is an easy way to register
outgoing connections 10 for IPv4 and IPv6 [19]. On top of that, kprobes
on the LSM modules are usually considered more stable across kernel
versions [10]. Technically, ICMP flows are also visible using this method,
although there is not enough data to uniquely identify one process if two
or more are making ICMP requests at the same time.

Detecting attacks and enforcing security rules Thanks to the previ-
ous sections, we are now able to map each network packet to a namespace
and even to a user space process when there is one. The only thing left to
do is assess if the detected network traffic is allowed or should be dropped.
We decided to implement two types of assessment:

— Protocol attacks detection and prevention. This assessment is
tasked to look for common attacks on various network protocols
and alert on / drop malicious traffic. A good example for this kind
of assessment is ARP spoofing detection and prevention. Note that
the kernel part of this feature has not been implemented in the
first release of the project yet.

— Network profiles. In a security profile, the network profiles define
what kind of traffic is to be expected on a per binary basis. Anything
falling outside of those profiles will either trigger an alert or will
cause the traffic to be dropped. Network profiles are defined in
the network field of each binary in the processes section of a
SecurityProfile resource.

The last missing piece of eBPF code that we haven’t explained, is the
one mapping a PID to its network profile. The first step to understand
how we did it, is to understand how we implemented and pushed security
profiles in the kernel. First, we associated each security profile with a
random and unique identifier “profile_id”. Then for each security profile,
and each binary path listed in that profile, we associated another unique

10. https://github.com/Gui774ume/network-security-probe/blob/1.0/ebpf/

main.c#L767-L829

https://github.com/Gui774ume/network-security-probe/blob/1.0/ebpf/main.c#L767-L829
https://github.com/Gui774ume/network-security-probe/blob/1.0/ebpf/main.c#L767-L829

12 Process level network security monitoring

identifier “binary_id”. By joining those two identifiers, you get a unique
selector across namespaces for each process that is expected to run on the
node.

Next, you need to map a network namespace id to a “profile_id” at
runtime. There are multiple options here, but since this isn’t in the scope
of this paper, we decided to go for the easy way out: listening for Docker
events. Whenever Docker emits a container creation event, we inspect the
container to get the PID of its init process. Then we grab the network
namespace of this init process and push it along with the “profile_id”
of the container in a key-value eBPF hashmap. Based on the Docker
event metadata, we added some logic to make sure that we push the right
security profile for the right container. There will technically be a small
delay between the creation of the container and the event, but we decided
that it was good enough for the sake of this project. Also, since all traffic
will be dropped during those few milliseconds, this doesn’t introduce a
coverage gap.

Finally you need to map each process to their “binary_id”. Al-
though accurate process monitoring with eBPF would call for an en-
tire other paper, we decided to go for the simple solution: using the
sched:sched_process_exec tracepoint.11 From a security point of view,
this is far from being the recommended solution. Indeed, as the provided
path is a relative and unresolved path, an attacker could potentially exploit
it to fool your eBPF program into thinking that it is another program.
However this is out of the scope of this paper, and we can ignore this
limitation for now as there are multiple ways to avoid this vulnerability.
Anytime a new process is started, its binary path will be checked against
the list of expected binary paths for a given namespace (and therefore in
a given security profile), so that its PID can be matched to its relevant
“binary_id”. Going forward, (profile_id, binary_id) will be the key to
select the right network profile and to perform further security assessment.

Putting it all together In the previous sections, we explained the
different pieces of the puzzle that we had to put together to achieve our
goals. However there was a lot of information, and the overall picture
might be a bit blurry. So this section is simply going to be a timeline
of how and when those different parts interact with each other. Time is
moving forward as you go down the table below.

11. https://github.com/Gui774ume/network-security-probe/blob/1.0/ebpf/

main.c#L2658-L2699

https://github.com/Gui774ume/network-security-probe/blob/1.0/ebpf/main.c#L2658-L2699
https://github.com/Gui774ume/network-security-probe/blob/1.0/ebpf/main.c#L2658-L2699

G. Fournier 13

Event Action

A new security profile is uploaded
to Kubernetes. It applies to all con-
tainers tagged with “app:ping”.

The agent picks up on the new profile creation.
As no container is currently running with the
right tag, no other action is taken.

A new container with tag
“app:ping” is scheduled. The
container runtime creates a veth

pair for the container.

Multiple kprobes detect the creation of the veth

pair and save (interface ifindex, network names-
pace) in the “ifindex_netns” key-value hashmap.
The agent loads an eBPF TC classifier for the
veth interface in the host namespace. By de-
fault, all network activity is blocked for this
new workload until its profile is resolved.

Docker generates a container cre-
ation event.

The agent detects the event, resolves the net-
work namespace of the container, and looks for
the network profile that applies to the container.
It then pushes in multiple hashmaps the net-
work profile rules, after generating a unique ID
for the profile and for each binary path listed in
the profile. Finally it pushes (network names-
pace, profile_id) in the “netns_profile_id” key-
value hashmap.

A new process is started in the con-
tainer.

A kprobe detects the new process and the
network namespace in which it lives. Using
the “netns_profile_id” hashmap, it resolves
the profile and in the profile looks for the de-
tected binary path. If there is a match, the
eBPF program pushes (PID, binary_id) in the
“pid_binary_id” key-value hashmap.

The new process creates a socket
and binds it to 10.1.0.2:443

A kprobe detects that a new process is listening
on an IP & port. Using the network names-
pace and the PID, it resolves the “profile_id”
and “binary_id”, and uses them to check if this
process is allowed to listen on such IP & port
by querying the network profile hashmaps. If
so, the flow is registered and the eBPF pro-
gram saves in the “flow_pid” hashmap that
any traffic in that network namespace going to
10.1.0.2:443 shall be mapped to this process.

14 Process level network security monitoring

Event Action

An incoming packet is routed to
10.1.0.2:443 in the container.

After parsing the packet, the eBPF TC clas-
sifier resolves 10.1.0.2:443 to its rightful PID
using the “flow_pid” hashmap. From the
PID & network namespace (resolved using
“ifindex_netns”), the classifier is able to resolve
the profile and assess if such a traffic is allowed
(namely layer 3, 4, 7). If not, the packet is
dropped and never reaches the process.

The process reaches out to port 80
of pong.default.svc.cluster.local

First a kprobe will pick up on the flow regis-
tration. This flow registration will register on
what port the kernel expects a response. For
example, it could be 10.1.0.2:56678. Then, the
same process as above is followed, but with an
eBPF TC classifier on egress.
This process will actually happen as many times
as the process reaches out to an external IP with
a new flow. For example, here, the TC classifiers
will first catch a DNS request to resolve the
domain to an IP, and only then will we see
the HTTP request. During the DNS request
the agent will not only check that the traffic
is allowed but also parse the DNS domain to
make sure that the process is allowed to resolve
it.

pong.default.svc.cluster.local

answers.

10.1.0.2:56678 is mapped back to the pro-
cess making the call thanks to the “flow_pid”
hashmap. The incoming packet is assessed based
on the right network profile as explained before.

The container receives a non IPv4
/ IPv6 pack (let’s say an ARP re-
quest).

The “flow_pid” hashmap will not map the
packet back to a process since no user space
process has registered a flow for this packet.
Instead the TC classifier will only check if this
traffic is legitimate in the context of the network
namespace, as defined in the security profile.

G. Fournier 15

3.4 Performance and overhead

There are two kinds of overhead that one needs to assess when using
an eBPF-based tool. The first overhead is the resource usage of the user
space program. The more resources are allocated to our security agent,
the less will be available to the services you are running in production,
and therefore the slower your services will respond. The second overhead
is the in-kernel overhead. In other words this is the latency introduced by
the tool on each egress or ingress packet. The more logic you push in your
eBPF programs, the bigger the overhead on each packet will be.

Fig. 1. Average round trip time per domain (averaged over 5000 A record queries
per domain). The test was performed on a Linux ubuntu-bionic 4.15.0-88-generic,
2 vCPUs, 8 Gb RAM.

We decided to focus our benchmarking efforts on the packets that we
knew had the worst overhead: the DNS request and response packets. As
we parse both DNS requests and responses in the kernel to match domain
names,12 those packets are the ones that are the most delayed. We also
wanted to compare our results with Cilium which has a different strategy
when it comes to DNS packets: Cilium forwards the DNS traffic to a DNS

12. https://github.com/Gui774ume/network-security-probe/blob/1.0/ebpf/

main.c#L1266-L1352

https://github.com/Gui774ume/network-security-probe/blob/1.0/ebpf/main.c#L1266-L1352
https://github.com/Gui774ume/network-security-probe/blob/1.0/ebpf/main.c#L1266-L1352

16 Process level network security monitoring

proxy and performs the assessment in user-space. So how does the project
compare with a production ready solution like Cilium?

On Figure 1, the best case scenario represents a situation where the
tool was given the domain name, and therefore simply had to grant access
without pushing any alerts back to user-space. The worst case scenario
represents a situation where the tool had to alert on a request, thus
triggering one of the kernel-space to user-space communication mechanisms
available with eBPF. On the chart, NSP stands for Network Security Probe
(the name of our tool).

Fig. 2. CPU and RAM usage of the user-space program over time. The test was
performed on a Linux ubuntu-bionic 4.15.0-88-generic, 2 vCPUs, 8 Gb RAM.

Although more testing would definitely be required to accurately assess
the overhead in a real word environment, those results seem to confirm
that there are no red flags to mapping eBPF packets to processes and
assessing each packet at runtime. The worst case overhead is around 400
microseconds which is about half of the overhead of Cilium. This seems
to confirm that in-kernel DNS parsing is a good strategy performance
wise (but keep in mind that our DNS support is only partial for now,
DNS parsing without loops is hard). Also, keep in mind that the 400
microseconds is the worst case scenario for the packets requiring the most
processing. Our benchmark revealed that the actual overhead for a normal
packet is closer to 200 microseconds for our tool and 250 microseconds
for Cilium. Either way, those overheads are acceptable in a production
environment.

4 Conclusion

There is still some work to be done before being able to consider this
solution production ready. However this paper shows that it is possible to
implement network monitoring & enforcement at the process level with

G. Fournier 17

eBPF. Moreover, our design has the advantage that it is not intrusive in
a Kubernetes setup, which means that it can be deployed fairly easily.

This paper also shows how excitingly easy it is to build complex
security tools leveraging the insight that eBPF can provide into the depths
of the kernel. Any new eBPF program type added to the kernel tree is
an opportunity to generate new runtime security signals, that could be
processed to provide new alerting and threats detection capabilities. That
being said, the portability of such tools accross multiple kernel versions is
still a work in progress [15].

As for this project, an exciting eBPF program type hasn’t been explored
yet: BPF_PROG_TYPE_CGROUP_SOCK. This type of eBPF programs provides
the opportunity to execute code when a process in a cgroup opens a
network socket. It could be a good place to block attackers from opening
RAW sockets, which is needed for various network attacks.

References

1. Cilium official documentation. https://docs.cilium.io.

2. Kernel Probes documentation. https://www.kernel.org/doc/Documentation/

kprobes.txt.

3. List of AWS public IP ranges. https://ip-ranges.amazonaws.com/ip-ranges.

json.

4. Traffic control manpage. http://man7.org/linux/man-pages/man8/tc.8.html.

5. John Arundel and Justin Domingus. Cloud Native DevOps with Kubernetes. March
2019.

6. Signal (blogspot about domain fronting). A letter from Amazon. https://signal.

org/blog/looking-back-on-the-front/, May 2018.

7. David Fifield, Chang Lan, Rod Hynes, Percy Wegmann, and Vern Paxson. Blocking-
resistant communication through domain fronting. https://www.bamsoftware.

com/papers/fronting.pdf.

8. Lorenzo Fontana and David Calavera. Linux Observability with BPF. November
2019.

9. Michael Gerstenhaber. Datadog Network Performance Monitoring. https://www.

datadoghq.com/blog/network-performance-monitoring/, November 2019.

10. Brendan Gregg. BPF Performance Tools: Linux System and Application Observ-
ability. December 2019.

11. Heartin Kanikathottu. AWS Security Cookbook. February 2020.

12. Greg Kroah-Hartman, Alessandro Rubini, and Jonathan Corbet. Linux Device
Drivers, 3rd Edition. February 2005.

13. Jon Langemak. Docker Networking Cookbook. November 2016.

14. Greg Marsden. BPF: A Tour of Program Types. https://blogs.oracle.com/

linux/notes-on-bpf-1, January 2019.

https://docs.cilium.io
https://www.kernel.org/doc/Documentation/kprobes.txt
https://www.kernel.org/doc/Documentation/kprobes.txt
https://ip-ranges.amazonaws.com/ip-ranges.json
https://ip-ranges.amazonaws.com/ip-ranges.json
http://man7.org/linux/man-pages/man8/tc.8.html
https://signal.org/blog/looking-back-on-the-front/
https://signal.org/blog/looking-back-on-the-front/
https://www.bamsoftware.com/papers/fronting.pdf
https://www.bamsoftware.com/papers/fronting.pdf
https://www.datadoghq.com/blog/network-performance-monitoring/
https://www.datadoghq.com/blog/network-performance-monitoring/
https://blogs.oracle.com/linux/notes-on-bpf-1
https://blogs.oracle.com/linux/notes-on-bpf-1

18 Process level network security monitoring

15. Andrii Nakryiko. BPF Portability and CO-RE. https://facebookmicrosites.

github.io/bpf/blog/2020/02/19/bpf-portability-and-co-re.html, February
2020.

16. Kubernetes official documentation. Custom resources. https://kubernetes.io/

docs/concepts/extend-kubernetes/api-extension/custom-resources/.

17. Packagecloud. Monitoring and tuning the Linux Networking Stack: Receiving
Data. https://blog.packagecloud.io/eng/2016/06/22/monitoring-tuning-

linux-networking-stack-receiving-data/, June 2016.

18. Packagecloud. Monitoring and tuning the Linux Networking Stack: Sending
Data. https://blog.packagecloud.io/eng/2017/02/06/monitoring-tuning-

linux-networking-stack-sending-data/, February 2017.

19. Rami Rosen. Linux Kernel Networking: Implementation and Theory. December
2013.

20. Stefan Schimanski and Michael Hausenblas. Programming Kubernetes. July 2019.

https://facebookmicrosites.github.io/bpf/blog/2020/02/19/bpf-portability-and-co-re.html
https://facebookmicrosites.github.io/bpf/blog/2020/02/19/bpf-portability-and-co-re.html
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://blog.packagecloud.io/eng/2016/06/22/monitoring-tuning-linux-networking-stack-receiving-data/
https://blog.packagecloud.io/eng/2016/06/22/monitoring-tuning-linux-networking-stack-receiving-data/
https://blog.packagecloud.io/eng/2017/02/06/monitoring-tuning-linux-networking-stack-sending-data/
https://blog.packagecloud.io/eng/2017/02/06/monitoring-tuning-linux-networking-stack-sending-data/

	Process level network security monitoring
	G. Fournier

