# Sécurité du réseau fixe d'un opérateur : focus sur les dénis de service



David Roy et Pascal Nourry,
Orange France / Direction Technique



### Plan de la présentation

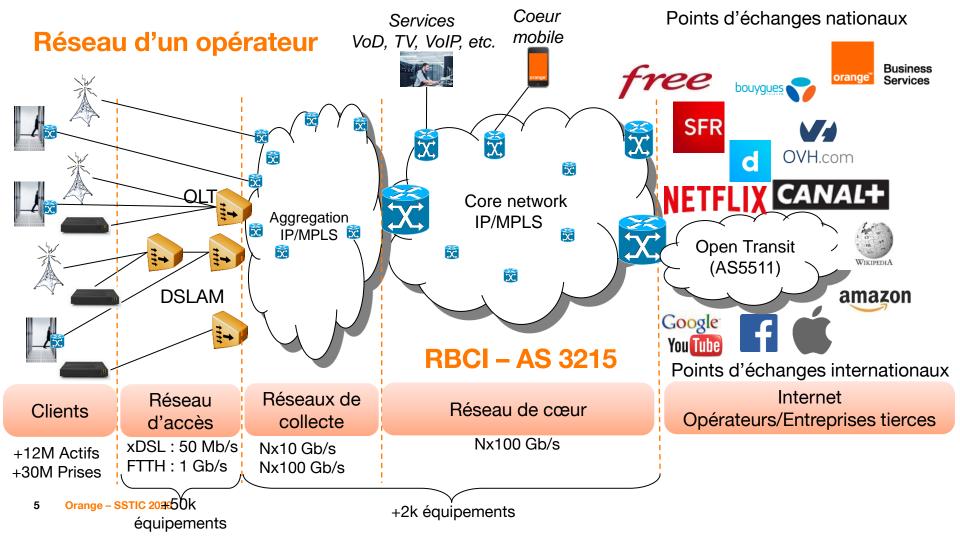
Réseau d'un opérateur

Politique de sécurité

Attaques de dénis de service

Contre-mesures statiques pour les DDoS par amplification

Contre-mesures dynamiques pour les DDoS de botnets


Attaques au cœur des offres Wholesale



### Réseau fixe d'un opérateur

### RBCI = AS 3215 = support de multiples offres réseaux : Ethernet, IPv4, IPv6, TV (multicast), etc.

- Offres triple play Orange Internet / VolP / TV
- Besoins internes Orange France
  - VPN (par routage) pour le fonctionnement de services VoIP ou pour le cœur du réseau mobile
  - Raccordement des plateformes Orange comme le portail Orange.fr, les plateformes TV&VoD/CDN, etc.
- Offres de transit IPCI (IP Connexion Internet)
- Offres de collecte régulés (pour des opérateurs tiers comme SFR, BYT, OBS, Orange « Mobile », etc.)
  - Collecte des antennes mobiles (CEMx)
  - Collecte de clients entreprises
  - Collecte des clients résidentiels



### Politique de sécurité



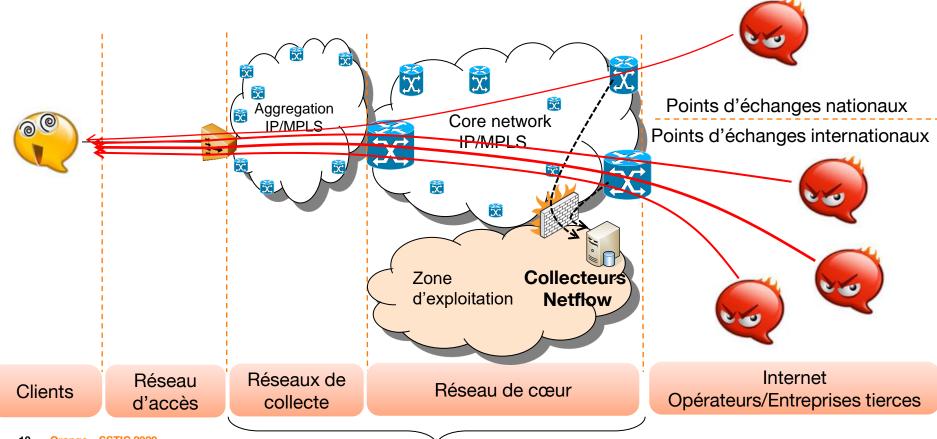
### Politique de sécurité

#### **Constat**

Les opérateurs subissent des attaques qui visent leurs clients ou qui visent l'opérateur lui-même
 Sécurité du RBCI - AS 3215

- La sécurité est partie intégrante du réseau depuis sa création du réseau en 1998-1999 avec un accent très marqué sur la disponibilité du réseau
- La première politique de sécurité date de 2004 puis elle a évoluée en 2008 et en 2012-2013
  - Travail collectif : ingénierie + exploitation

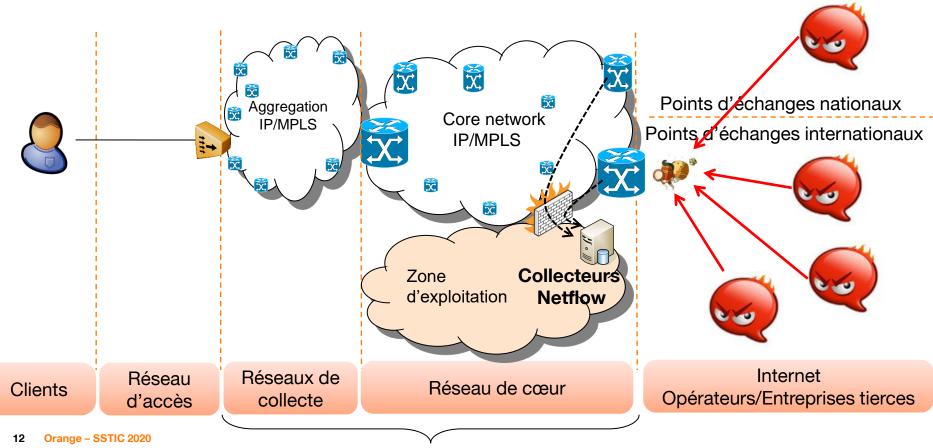
### Politique de sécurité


#### Sécurité du RBCI = AS 3215

### Les principaux axes

- Les équipements en périphérie du RBCI doivent protéger le RBCI des agressions extérieures
  - fiabilisation des en-têtes IP (anti-spoofing, marquage QoS, etc.),
  - destruction du trafic non légitime (adresse IP source privée, mécanismes anti-DoS, etc.),
  - limitation de la visibilité du RBCI vis-à-vis de l'extérieur,
  - fiabilisation du plan de contrôle en mettant en œuvre notamment les bonnes pratiques BGP,
- Chaque équipement du RBCI doit se protéger en contrôlant toute information à destination de son plan de contrôle ou de son plan de management
  - mise en place de fiiltres sur la base de l'en-tête IP avec dans certains cas des limitations en débit,
  - exploitation des équipements en utilisant des protocoles sécurisés (par exemple SSHv2 avec une vigilance particulière sur les suites cryptographiques utilisées) et permettant un contrôle fin des accès
  - mise en œuvre de la QoS afin de privilégier par exemple le plan de management et le plan de contrôle aux dépens du plan de données,
- Le RBCI doit être intégralement redondé pour être résilient dans tous les cas de panne simple, y compris en cas de "coup de pelleteuse" (ou de coup de disqueuse) sur un axe de transmission.




### Attaques de dénis de service

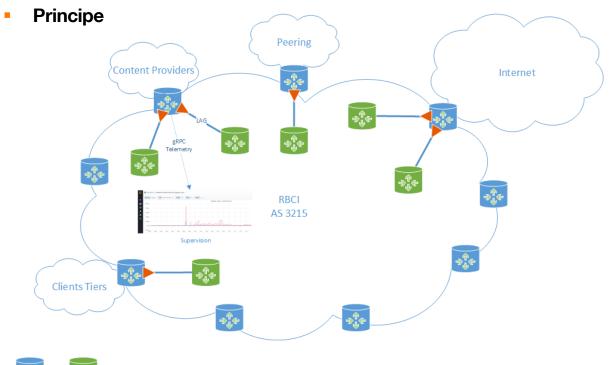


### Attaques de dénis de service

|                              | 2009 | 2010 | 2011 | 2012 | 2013 | 2014  | 2015  | 2016  | 2017 | 2018 | 2019  | 2020 |
|------------------------------|------|------|------|------|------|-------|-------|-------|------|------|-------|------|
| 2 Gb/s > Attacks > 1 Gbps    | 2    |      | 15   | 224  | 8307 | 12026 | 13808 | 12974 |      |      |       |      |
| 4 Gb/s > Attacks > 2 Gb/s    | 0    |      | 23   | 79   | 3903 | 5181  | 11108 | 14386 | 7786 | 6220 | 11001 | 2622 |
| 8 Gb/s > Attacks > 4 Gb/s    | 0    | 1    | 6    | 59   | 1072 | 2210  | 7310  | 12720 | 4877 | 5827 | 6924  | 1810 |
| 16 Gb/s > Attacks > 8 Gb/s   |      | 0    | 2    | 19   | 227  | 715   | 2857  | 9200  | 1322 | 2602 | 4612  | 1536 |
| 32 Gb/s > Attacks > 16 Gb/s  |      |      | 0    | 11   | 19   | 166   | 430   | 1582  | 245  | 684  | 1788  | 692  |
| 64 Gb/s > Attacks > 32 Gb/s  |      |      |      | 6    | 7    | 25    | 97    | 62    | 40   | 57   | 359   | 325  |
| 128 Gb/s > Attacks > 64 Gb/s |      |      |      | 0    | 1    | 4     | 8     | 6     | 0    | 6    | 18    | 169  |
| Attacks > 128 Gb/s           |      |      |      | 0    | 0    | 0     | 0     | 0     | 0    | 0    | 4     | 6    |

### Attaques de dénis de service




# Contre-mesures statiques pour les DDoS par amplification

### **Contre-mesure DDOS par amplification : filtres statiques**

 La première contre-mesure mise en place par Orange a été le positionnement de filtres statiques en entrée de son réseau

- Ces filtres permettent:
  - D'identifier des signatures réseaux d'attaques par Amplification bien connues:
    - Référencées entre autre par le CERT US.
  - De mesurer le volume de ces attaques
  - D'atténuer ces attaques par un mécanisme de « policing » (rate-limiter de trafic)
- Une quinzaine d'attaques sont ainsi en permanence atténuées en entrée du réseau.
- Ces filtres sont mises à jour périodiquement en fonction des nouvelles signatures identifiées.

### **Contre-mesure DDOS par amplification : filtres statiques**



### A noter

- Les filtres sont positionnés en « output » sur les liens ASBR > POP
- Les « policer » possèdent une valeur absolue – indépendante du nombre de liens dans les bundle Ethernet (LAG)
- Les statistiques des filtres: volume reçu Vs volume policé sont collectées en Telemetry (gRPC - gNMI).





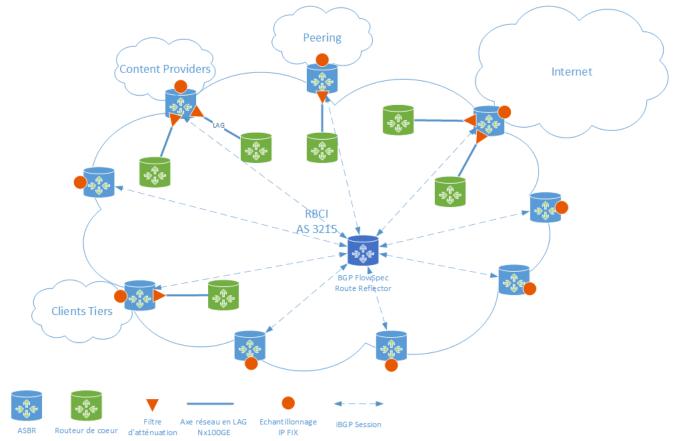


### Contre-mesure DDOS par amplification: filtres statiques - exemple

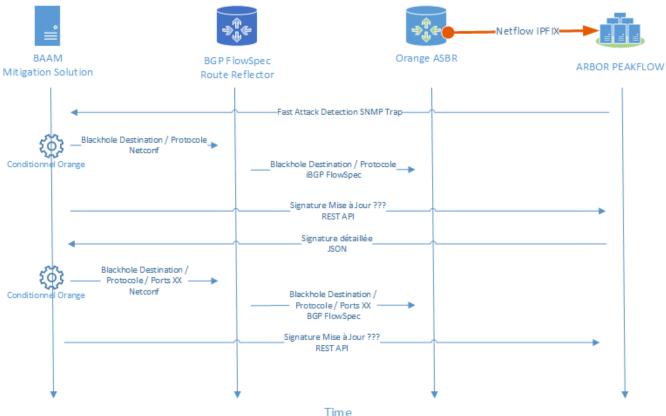
```
term NTP {
    from {
        protocol udp;
                            Signature
        source-port ntp;
    then {
        policer DOS-NTP;
        count DOS-NTP;
                          Contre mesure et statistiques
        accept;
policer DOS-NTP {
    shared-bandwidth-policer;
    if-exceeding {
        bandwidth-limit 1m;
                                    Bande passante autorisée
        burst-size-limit 625000;
```

- Depuis 2015: de plus en plus de dynamicité dans les signatures des attaques est observée
- Le couple: attaque par amplification + attaque sur ports dynamiques (aléatoires) est devenu quelques choses de très commun
- Les amplifications classiques restent atténuées par les filtres statiques.
- Pour les attaques sur ports dynamiques:
  - Orange s'appuie sur la solution d' Netscout/ARBOR pour détecter les attaques dites dynamiques. La solution permet :
    - Détection rapide des attaques sur la base d'échantillons réseaux transmis par les routeurs (protocole Netflow/IPFIX)
    - Fourniture de la signature réseau via une API
  - Orange utilise les signatures temps réels pour supprimer ces attaques (« blackholing ») avec :
    - Un outils maison de pilotage des contres mesures
    - Du protocole BGP Flowspec pour la diffusion des filtres (contres mesures) dynamiques sur le réseau

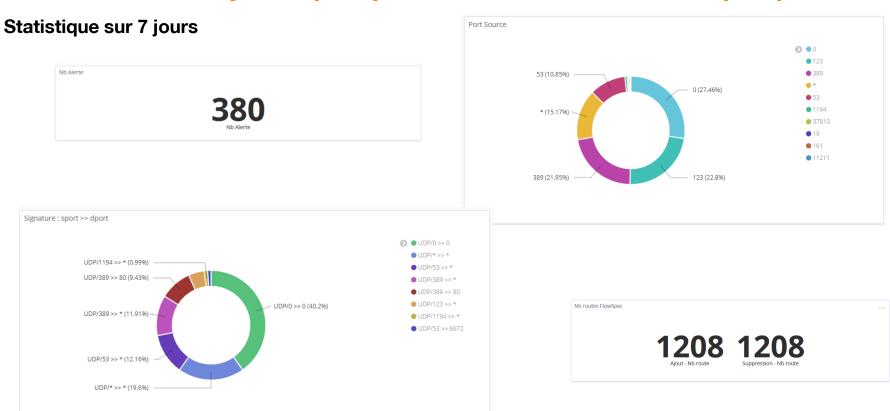
- La détection des attaques dynamiques par la solution Arbor se fait en 3 temps:
  - Phase 1 : L'heuristique sur la première minute consiste à détecter/-pondérer les attaques par le débit. Détection rapide des attaques les plus importantes en débit : signature macroscopique, à savoir uniquement les informations de types IP (adresses IP impliquées et protocole utilisé).
  - Phase 2 : Entre 1 et 2 min après le début de la détection, la solution continue son apprentissage sur l'observation suspecte et fournit une version plus détaillée de l'attaque notamment avec les informations


des couches TCP/UDP.

— Phase 3 : **au-delà de 2 min**, la solution effectue **une mise à jour périodique de la signature** de l'attaque jusqu'à ce que celle-ci s'arrête.


 A chaque phase les sondes Netscout/Arbor fournit ses informations au travers de notification ou d'une API.

- L'outil d'Orange (nom de code: BAAM) écoute les notifications / puis interroge périodiquement Arbor via son API.
- L'outil sur la base de contraintes propres à Orange va prendre ou non la décision de déclencher la suppression de l'attaque
- Cette suppression passe par :
  - La pose d'un élément de configuration via une RPC Netconf sur un équipement réseau spécifique (routeur) : le route reflector BPG Flowspec
    - La configuration représente la signature de l'attaque
  - Automatiquement le routeur maillé avec l'ensemble des ASBR du réseau Orange diffuse l'information via la protocole BGP Flowspec.
  - Les ASBR concernés par l'attaque installe le filtre dynamique reçu via Flowspec: l'attaque est supprimée en entrée du réseau.
  - L'outil met à jour périodiquement la signature si celle-ci évolue jusqu'à la suppression du filtre lorsque l'attaque est terminée.


### Contre-mesures dynamiques pour les DDoS de botnets : Architecture



### Contre-mesures dynamiques pour les DDoS de botnets : Macro algorithme



### Contre-mesures dynamiques pour les DDoS de botnets : quelques stats



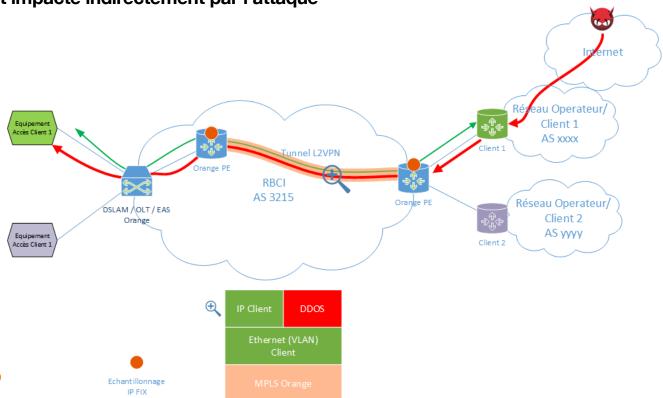

Contre-mesures dynamiques pour les DDoS de botnets : Extrait de l'IHM

### **DEMO DU PORTAIL BAAM**

### Attaques au cœur des offres Wholesale

### Attaques au cœur des offres Wholesale : Principe

- Le réseau d'Orange (AS 3215) supporte de nombreuses offres dites de « gros » ou Wholesale
- L'opérateur Tiers utilise ainsi le réseau d'Orange pour augmenter sa capillarité réseau
- Ces offres de transport réseau s'appuient sur l'infra réseau d'Orange infra mutualisée avec le réseau domestique grand public.
- Le transport des flux des opérateurs tiers se fait via la technologie L2VPN. On transporte la trame Ethernet de l'opérateur tiers dans une trame MPLS (maitrisée par Orange): on parle de Tunnel MPLS.




Orange n'a pas la maitrise de la couche IP sur ce type d'offre.

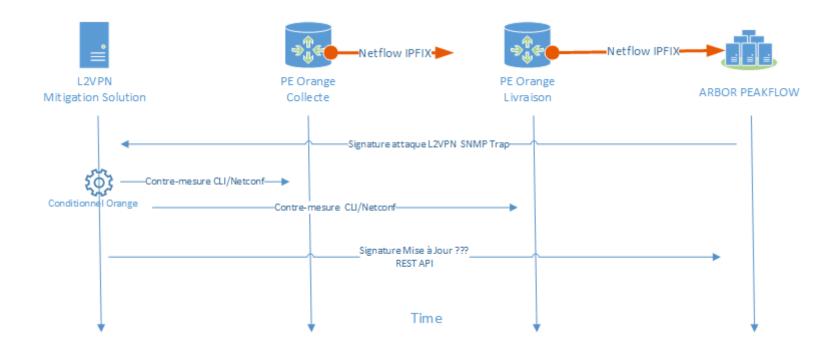
### Attaques au cœur des offres Wholesale : Principe

Comme Orange : ces opérateurs tiers subissent des attaques par déni de service sur leur réseau

Si l'attaque véhiculée dans le réseau de l'opérateur tiers utilises les « fameux » tunnel MPLS Orange est impacté indirectement par l'attaque



### Attaques au cœur des offres Wholesale : Contre mesure


- Orange a tout d'abord mise en place de l'échantillonage réseau (Netflow IPFIX) sur ces équipements (PE) d'interconnexion avec les opérateurs tiers:
  - Afin de travailler avec Arbor sur le décodage de ces échantillons de trafic de type L2VPN (non supporté au départ par Arbor)
  - Puis identifier le profil/les signatures de ces attaques.
- Orange s'appuie sur un nouveau template d'échantillonage L2VPN. Pour chaque paquet échantillonné on dispose de ces informations:

| MAC Src Addr                   | IPv4 Src Addr           | TCP control Bits (Flags) |
|--------------------------------|-------------------------|--------------------------|
| MAC Dest Addr                  | IPv4 Dest Addr          | Protocol                 |
| Ingress Physical Interface     | IPv6 Src Addr           | IPv6 Option Header       |
| Egress Physical Interface IPv6 | Dest Addr               | IPv6 Next Header         |
| Dot1q VLAN ID                  | Packet Count            | IPv6 Flow Label          |
| Dot1q Customer VLAN ID         | Byte Count              | TOS                      |
| Post Dot1q VLAN ID             | Flow Start Milliseconds | IP Version               |
| Post Dot1q Customer VLAN ID    | Flow End Milliseconds   |                          |
| Dest Port                      | Src Port                |                          |

### Attaques au cœur des offres Wholesale : Contre mesure

- A l'issue de cette collaboration entre Orange et Arbor la solution était en mesure de fournir une détection rapide des attaques dîtes « tunnelées » et de proposer les mêmes mécanismes de notification/API sur les signatures de ces attaques.
- Malheureusement: pas de spécification Flowspec pour les services L2VPN disponibles aujourd'hui
- Orange a donc fait évoluer son outil pour proposer de nouvelles contres mesures associées à ces attaques spécifiques:
  - Shutdown du port de livraison ou shutdown du port de collecte
  - Shutdown du VLAN de livraison ou shutdown du VLAN de collecte
  - Application d'un filtre de suppression de trafic Ethernet basé sur les adresses MAC src/dst sur le port de collecte ou de livraison.
- Ces actions de contre mesure sont réalisées directement sur le ou les équipements d'Orange (d'entrée) impactés par l'attaque. L'outil réalise ces changements au travers de RPC/Netconf.

### Attaques au cœur des offres Wholesale : Macro algorithme



## Merci

