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Abstract. Bluetooth Low Energy is a widely deployed protocol in the
world of connected devices. As such, the question of the security level of
communications is important. This paper analyses and summarises the
previous work from a communication security point of view. It discusses
the concept of key exchange and key generation in Bluetooth Low Energy
as well as their inner working. Some new shortcomings of the standard-
ised key exchange and key generation are discussed in this paper. Test
procedures are developed, enabling one to verify that a device has none
of the mentioned problems.

1 Introduction

Among the several wireless communication protocols deployed in elec-
tronic "smart" devices, Bluetooth Low Energy (BLE) has a prominent
role. It is currently integrated by default in billions of devices [30], be
it smartphones, Smart TVs, healthcare devices, locks, etc. Because it is
deployed in a lots of different devices, contexts and scenarios, the concept
of "security" in BLE can cover many cases. Common security research
efforts tend to go in the following directions:

— Device security: in this context, researchers try to get access
to the information or capabilities of the device. Smart locks or
glucometers have been subject to those kind of studies;

— Privacy: in this context, researchers analyse the privacy impli-
cations of BLE devices and study the privacy-preserving modes
implemented;

— Tool manufacture: in this part, developers and researchers craft
tools to interact with BLE devices and test their security. Studies
about sniffers and framework are represented;

— Communication security: in this context, researchers set to
analyse the security properties of the BLE communication protocol.

The first three approaches will be briefly discussed in this paper, while
a focus will be made on BLE communication security. Therefore related
work of this nature will be examined more thoroughly.
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Like many standards, the BLE specification is a rather complex doc-
ument which does contribute to give neither a clear comprehension of
the security mechanisms nor a precise view of the best way to implement
those. Furthermore, backwards compatibility raises questions about the
way security is implemented and managed in devices which are compatible
with several versions of the standard.

In this study, the auditability of closed source BLE stacks against
potential misinterpretations or bad implementations of specific security
requirements of the standard is discussed.

First, an effort is made to decribe with clarity and pedagogy the security
mechanisms supported by the standard. Then, an example description
of two weaknesses that become exploitable when some specific security
requirements from the standard are not correctly implemented is provided.
The first one relies on a lack of entropy in one of the key generation methods
described in the standard. An attacker with the ability to repeatedly bond
with a device which uses this method is able to enumerate all the keys
that the device will generate. This attack affects all Pairing procedures
and requires the implementation of the Key Hierarchy key generation.
The second one can be viewed as an extension of CVE-2018-5383 in the
case key renewal is improperly implemented. It impacts the key exchange
in BLE. Both attacks lead directly or indirectly to compromising the
keys involved in the confidentiality, the integrity and the authenticity
of communications. The effectiveness of both attacks is conditioned by
the way delays are introduced between successive pairing attempts, as
mandated by the standard.

It is to be noted that devices implementing correctly the security
requirements of the latest version of the standard will not be impacted
by those attacks. But it becomes pretty obvious that the possibility to
determine if a target implementation is vulnerable to such attacks is of
fundamental interest. To adequatly address this issue, it is suitable to
design and release efficient test procedures which ideally would be benign,
i.e. do not require or provide means to exploit the vulnerabilities to identify
vulnerable devices.

Thus the main outcome of this study is the design, the evaluation
and the implementation of test vectors allowing to test closed source
implementations against the aforementioned vulnerabilities.

In section 2, necessary basics about Bluetooth protocols will be pro-
vided. The security mechanisms and keys involved will be detailed in an
understandable way. Section 3 will present the state of the art with a
focus on BLE communication security. In section 4, the inner workings of
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BLE key exchange and key generation mechanisms will be discussed. Sec-
tion 5 will explain the problems brought by the Key Hierarchy generation
method and devise a testing method for it. The section 6 will focus on
detailing the implementation flaws highlighted by Biham et al. [22]. It will
discuss the analysis of their work made by Cremers et al. [27] and discuss
the applicability of the key retrieval scenario. Some test vectors will be
discussed in this section. Section 7 will present the challenges encountered
when performing successive pairings on various type of devices. It will
discuss the effectiveness of designed test procedures when testing an open
implementation for the identified vulnerabilities. Finally, section 8 will
conclude this paper.

2 Bluetooth technical background

This section provides an introduction to several protocols which were
standardized under the "Bluetooth" denomination. Their main differences
and the security mechanisms they provide are discussed in detail.

2.1 Bluetooth Classic and Bluetooth Low Energy basics

Bluetooth-related protocols are developed and standardised by the
Bluetooth Special Interest Group (SIG) [7]. Bluetooth Classic (BT) and
Bluetooth Low Energy are communication protocols, that is they allow to
exchange data between two or more entities. When a communication link is
established between two devices using either protocol, the communication
follows a master-slave fashion on the lower layers.

The first version of the specification appeared in 1999, in which Blue-
tooth Classic was described. There have been significant changes in the
security of BT in version 2.1, published in 2007, with the addition of
security procedures under the name Secure Simple Pairing (SSP).
Bluetooth Low Energy was officially added to the specification in version
4.0 in 2009 (though it lived a few years before under the denomination
"Bluetooth Smart"). There have been some evolutions to the security
of BLE in version 4.2 with the addition of security procedures called
LE Secure Connections 1 (LESC). Retro-actively, the previous security
procedures have been named Legacy Pairing (versions 4.0 and 4.1).

New security procedures defined in LESC are in fact those that had
been defined in SSP, being rebranded, though cryptographic primitives

1. The term Secure Connections (without ’LE’) refers to a security mode of
Bluetooth Classic. The term LE Secure Pairing may be found in relevant literature,
it is a synonym of LE Secure Connections.
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used in LESC security procedures are not the exact same as the ones
used in SSP security procedures. This means that some results apply
equally to SSP and LESC, which is why part of the relevant literature for
BLE communication security refers only to SSP security procedures and
predates BLE itself.

2.2 Security in Bluetooth Low Energy

As a communication protocol, BLE attempts to provide four 2 security
properties:

— Confidentiality;
— Integrity;
— Authenticity;
— Privacy.

To guarantee those properties, the specification defines several proce-
dures, involving different cryptographic keys in the process. As mentioned,
security of BLE has changed between versions 4.0 and 4.2. However, the
various Bluetooth specifications require backwards compatibility: BLE
devices compliant with the latest version of the specification will imple-
ment both security specifications. Between both versions, the properties
have been kept, some procedures have changed and key management
strategy has slightly changed. In the following descriptions, the elements
are common to both versions, except when specifically noted.

The keys introduced in the specifications are as follows:

— STK: Short-Term Key (specific to Legacy Pairing);
— LTK: Long-Term Key;
— CSRK: Connection Signature Resolving Key;
— IRK: Identity Resolving Key.

The specifications also describe the following security-related proce-
dures: 3

— Pairing: this is the process of exchanging an ephemeral key and
optionally authenticating two devices. Different procedures in 4.0
and 4.2;

— Link Encryption: this is the process of encrypting the commu-
nications between a master and a slave. It requires a LTK or a
STK;

2. Some would argue that it also provides "Authorization", but this property is not
standardised in the specification, which is why it has been excluded from the list.

3. Depending on the procotol layer considered, those procedures are renamed or
aggregated into higher-level procedures.
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— Bonding: this is the process of creating a bond between two
devices. This bond is a persistent mapping between a device and
an exchanged set of keys. It must be done after Pairing and over
an encrypted link. Few differences between 4.0 and 4.2;

— Data Signing: this is the process of signing some commands 4 to
a device. It is not available over an encrypted link. It requires the
CSRK;

— Private Address Resolution: this is the process of resolving
(∼decrypting) the address of a device from an advertised one.
Requires the IRK.

Fig. 1. Mapping between security properties, procedures and keys in Legacy
Pairing

Fig. 2. Mapping between security properties, procedures and keys in LE Secure
Connections

4. The only command that can be signed is "ATT Signed Write Command" defined
in ATT protocol.
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The relationships between the security properties, the aforementioned
procedures and the cryptographic material is shown in Figures 1 for Legacy
Pairing and 2 for LE Secure Connections. Those procedures are performed
in a sequence as follows:

1. Both devices perform a Pairing procedure, after which they share a
key (STK in Legacy Pairing and LTK in LE Secure Connections);

2. The Link Encryption procedure is ran using the shared key obtained
after pairing;

3. If they wish for it, both devices perform the Bonding procedure,
after which they may generate and exchange the CSRK, the IRK
and the LTK. In LESC, the LTK generated by the Pairing procedure
is stored and not re-generated during Bonding;

4. Subsequent connections will be encrypted with the LTK using the
Link Encryption procedure.

The case of authentication is a bit more subtle, because it is optional.
In order to know if the link is authenticated, devices have to remember if
the key used to encrypt was authenticated, that is if the Pairing procedure
provided this property.

Though not explicitely defined, it is possible to infer two attacker levels
from the specification:

— Passive: this attacker can listen to all messages exchanged between
two devices;

— Active: this attacker can listen, inject, intercept and forward
messages between two devices.

From a communication security standpoint, the goal of an attacker
is to get knowledge of the key used in the Link Encryption procedure
(either STK or LTK). Once in possession of this key, it is possible to
passively decrypt all communications between devices by capturing the
Link Encryption procedure. For devices that use the specific Data Signing
procedure, which doesn’t require encryption, the goal of an attacker is
to get knowledge of the CSRK. For devices that use the Private Address
Resolution procedure, the goal of an attacker is to get knowledge of the
IRK to be able to track a device across time.

Therefore, the way those keys are generated and/or derived is important
for the security properties to hold. Those phases occur during the Pairing
and the Bonding steps.
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2.3 Pairing and Bonding in BLE

Pairing is the process in which two devices exchange a shared key
and optionnally authenticate to each other. This process comes in several
flavours as the standards describe seven different paring procedures. It is to
be realized that the name of Pairing procedure reflects the user interaction
required, not their security or the messages exchanged. In practical terms,
some procedures bear the same name in Legacy Pairing and in LESC,
but do not use the same cryptographic primitives nor exchange the same
messages. Therefore, they do not exhibit the same security properties.
This situation adds an unnecessary but more critically harmful complexity
to the protocol.

In Legacy Pairing (BLE 4.0 and 4.1) were defined three procedures.
After Pairing with one of those, both devices share the STK. The Pairing
procedures are:

— JustWorks: no interaction required from the user;
— Passkey Entry: one device displays a six-digit number and the

user inputs it in the other device;
— Out of Band: the devices use an other communication channel

(such as Near-Field Communication (NFC), Infrared (IR), etc.) to
share the STK.

In LE Secure Connections (BLE 4.2), four additional Pairing proce-
dures were defined. After Pairing with one of those, both devices share
the LTK. The Pairing procedures are:

— JustWorks: no interaction required from a user;
— Passkey Entry: one device displays a six-digit number and the

user inputs it in the other device;
— Numeric Comparison: both devices display a six-digit number

and the user must validate on both devices that they match;
— Out of Band: the devices use an other communication channel

(such as NFC, IR, etc.) to exchange authentication data.

Therefore, to accurately talk about a specific Pairing procedure, the
pairing mode should be mentioned e.g. LESC Passkey Entry. As discussed
in section 2.1, devices which are compliant with the latest version of the
specification implement those seven procedures.

Essentially, the way the pairing modes work is the following:

— Legacy Pairing: the Pairing procedure (JustWorks, Passkey En-
try, Out of Band) serves to exchange a temporary secret, from
which STK is derived. Authentication is performed based on user
interaction, using a commitment scheme.
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— LE Secure Connections: an ECDH key exchange (over curve
P-256) is used to share a secret, from which LTK is derived. The
Pairing procedure is used to authenticate the public key of the
participants. This authentication relies on user interaction, using a
different commitment scheme.

The Bonding procedure is used to exchange keys between devices. Each
device asks for a set of keys the other party has to generate and send.
For example in Legacy Pairing, the master could ask for a LTK, CSRK
and IRK while the slave could ask for a LTK and CSRK. Then the slave
will generate an LTK, CSRK and IRK and send them over the encrypted
link. The master will generate a LTK and CSRK and send them over
the encrypted link. Only the slave’s set of key is used after bonding. The
rationale for the master to send its own set of keys is in case both devices
switch roles in an upcoming connection: the master becomes slave and the
keys he generated become the ones used, without requiring a new pairing
nor bonding.

3 Related work

Recent research efforts regarding BLE-enabled devices security have fo-
cused on smart locks [32,39], connected toothbrushes [20] or e-scooters [14].
In those cases, it is considered that an attacker has physical access to a
device and is able to connect and pair to it. For some devices, this is a
reasonable model, such as for smart locks whose function is to prevent a
physically present attacker to open them.

On the privacy side, several researchers have tackled the issue. A
usual target is the advertising mechanism, which broadcasts metadata
about a device and leaks some identifiable information [25,26,28]. Other
research has studied the possibility to fingerprint devices using other
public information [43].

Several tools are available to work with BLE, starting with the most
obvious which are the official Linux stack BlueZ [4] and its suite of tools or
the official Android BLE API [3]. In order to test communication security,
several sniffers exist. Proprietary sniffers are TI’s one [8] and Adafruit
BLEfriend [5]. Open-source sniffers are Ubertooth One [12], btlejack [24]
and SniffLE [15]. There are also man-in-the-middle (MITM) frameworks
for BLE, which are GATTacker [42], btlejuice [23] and Mirage [6].

All of them have different capacities, for example btlejack is able not
only to sniff, but also to take control of a link: it actively disconnects the
master and takes its place in the connection. Mirage is also more than a
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MITM framework, it aggregates several third-party tools and exposes an
interface to manipulate them. Using those capabilities, it is possible to
reimplement more complex scenarios. It finally enables to interact directly
with a BLE dongle, which can be leveraged to program custom behaviors.
In addition, multiple libraries allow to interact with BLE dongles in various
programming languages. The advantage of Mirage over those is that lower
layers are directly accessible and not wrapped into high-level APIs.

Regarding communication security, researchers have mostly focused on
the Pairing procedure, as it is this process which is used to derive a LTK
or STK for both devices. Some results regarding BT SSP are provided in
this section, however those shouldn’t be mistaken for a complete state of
the art of Bluetooth Classic communication security. In 2013, Ryan [40]
showed that the Pairing procedures JustWorks and Passkey Entry in
Legacy Pairing allowed a passive attacker to recover STK. The attacker
could use it to passively decrypt all the subsequent communications, by
capturing the Link Encryption procedure with knowledge of the key. If
both devices bonded afterwards, the attacker was thus able to get the
LTK of this bond, having decrypted the link over which it is sent The
tool crackle [41] was released at the same time, which enables to decrypt
a capture if it uses one of those two Pairing procedures or if the LTK
is known in advance and the Link Encryption procedure is part of the
capture.

Rosa [38] showed that the commitment scheme used in Legacy Pairing
was flawed: the committed value can be changed after being produced.
This means that an attacker could complete a pairing as a slave device
using the Legacy Passkey Entry Pairing procedure without knowledge of
the numeric code displayed by the master. More generally, this shows that
the authentication property of this Pairing procedure does not hold. It
still holds in the case of the OOB procedure if the exchanged secret stays
so.

Regarding LESC security, one must look at research papers studying
BT SSP security. Haattaja et al. [29] did a summary of their research on
Bluetooth SSP security. The base element is called ’Nino’ attack which is
a MITM on the SSP JustWorks procedure, therefore applies equally to
LESC JustWorks procedure. They show that an active attacker is able
to perform a successful MITM on this Pairing procedure and complete
pairing with both devices. This is a logical conclusion because this Pairing
procedure does not provide authentication (i.e. explicitely does not protect
against an active attacker), therefore the result is self-evident. Then, they
explored various scenarios where an active attacker was able to downgrade
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to a less secure Pairing procedure by carefully tampering with the messages
exchanged during pairing. As a result, an active attacker is able to change
the Pairing procedure that two devices are about to use. For example, it
could downgrade the Pairing procedure from LESC Numeric Comparison
which is authentified, to LESC JustWorks which is not. In this case, the
attacker will be able to complete a successful pairing. A side note regarding
BLE could be added, the same principle could be used to downgrade any
LESC procedure to Legacy Passkey Entry, which is broken. Therefore, it is
possible for an active attacker to combine Haattaja’s approach and Ryan’s
results to downgrade any LESC procedure to Legacy Passkey Entry and
to recover STK then the keys exchanged.

Lindell, A. [33] has shown that the SSP Passkey Entry procedure did
not prevent eavesdropping of the numeric code used in an instance of the
Pairing procedure. This means that if the code is static or can be guessed
from previous ones, an attacker who would be able to force re-pairing
devices could authenticate its own public key to both master and slave.
As the attacker is in possession of the code used as authentication secret,
he could successfully perform a MITM attack on the Pairing procedure. A
second result is discussed, which is the ability for an attacker to ’read’ the
static code from a device. In case a device is preconfigured with a static
code, an attacker could perform several pairing attempts and infer the code
using the device as an oracle. In at most 20 attempts, an attacker will be
able to retrieve the preconfigured code from any device using this scheme.
Note that this result, developed for SSP Passkey Entry, is applicable to
LESC Passkey Entry, but not to Legacy Passkey Entry because of the
differences that exist between the uses of the commitment scheme of those
modes.

Lindell, Y. [34] performed a formal proof of the security of the SSP
Numeric Comparison procedure. This result should be considered en-
couraging for the security of LESC Numeric Comparison. However, the
cryptographic primitives used in SSP and LESC are different, thus the
proof may not directly apply to LESC Numeric Comparison.

More recently, Biham et al. [22] showed that vulnerable implementa-
tions of the ECDH key echange in SSP and LESC could allow an active
attacker to compromise the LTK (or its equivalent in the context of SSP)
without affecting the pairing process. This attack will be discussed in more
details in Section 6.

Cremers et al. [27] extended the field of formal protocol analysis to
add the modelisation of small subgroup and invalid curve attacks in the
symbolic model. They implemented this work in the Tamarin prover [11].
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Building up on Biham et al.’s work, they tested their implementation on
the SSP Numeric Comparison procedure. It found the original attack and
also a new one where the authentication property could still be broken if
one of the two devices was vulnerable. Their attack applies equally to all
SSP and LESC procedures. 5

Finally, Antonioli et al. [19] explored the ability to reduce the key size
down to vulnerable values in Bluetooth Low Energy, extending a previous
work they did on Bluetooth Classic [18]. However, besides suggesting and
verifying that the key size reduction was transposable to BLE, an in-depth
anaysis of the consequences of such attack on the overall security of BLE
communications is missing.

Overall, from a communication security standpoint, the Pairing process
of BLE has been scrutinized and found vulnerable in various cases.

3.1 Synthesis

It must be mentioned that the NIST published guidelines to Bluetooth
(Classic and LE) security in 2017 [37], which provide an accurate view of
the threats to communication security up to the publication date, even
though results presented in previous section are not referenced. This guide
also provides good practices and verifications to properly integrate BT
and BLE communications in an application.

There have been many attempts to provide descriptions of how the
Pairing procedure occurs, the different steps it requires and how the
choice of the Pairing procedure is made. However, from the authors’s
experience, those descriptions are generally paraphrasing the specification
without improving the overall understandablitity of those over-complicated
processes. Rather than explaining in details the Pairing and Bonding steps,
an alternative description of those processes is proposed. It applies equally
to all Pairing procedures:

— Identification: devices identify themselves and provide their abil-
ities;

— Key exchange: devices exchange a key;
— Authentication: devices authenticate the key that has been ex-

changed;
— Key generation: devices generate several keys if needed
— Key distribution: devices provide their set of keys to the other.

5. In spite of a typo in the curve used (P-224 is used neither in SSP nor LESC),
their results hold for both SSP and LESC.
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This alternative description fails to take into account the subtleties of
the specification and the fact that some elements are optional, but can be
used to contextualise the various works presented.

Authors Mode Procedure Element
discussed

Impact

Ryan et
al. [40]

Legacy JustWorks,
Passkey Entry

Key Exchange Confidentiality and Integrity of
those procedures do not hold

Rosa [38] Legacy Passkey Entry Authentication Authentication property in this
Pairing procedure does not hold

Haataja
et al. [29]

SSP
(and
LESC)

all Identification MITM on the JustWorks procedure
is possible, various downgrade at-
tacks to force the use of the Just-
Works procedure.

Lindell,
A. [33]

SSP
(and
LESC)

Passkey Entry Authentication Passkey is not protected against
passive eavesdropper. Using pre-
dictable passkeys exposes to MITM
attacks.

Lindell,
A. [34]

SSP Numeric
Comparison

Authentication Formal proof of the security of the
SSP Numeric Comparison proce-
dure

Biham et
al. [22]

SSP
(and
LESC)

all Key Exchange Some implementations do not cor-
rectly verify received public key val-
ues and are susceptible to MITM
attacks.

Cremers
et al. [27]

SSP
(and
LESC)

all Key Exchange An implementation which does not
correctly verify received public key
does not guarantee the Authentica-
tion property.

Antonioli
et al. [19]

Legacy
and
LESC

all Identification Discussion about the susceptibility
of BLE to key length reduction at-
tacks.

Table 1. Summary of relevant literature for Bluetooth Low Energy communication
security

Table 1 summarises the results and known attacks on Bluetooth Low
Energy. It also provides insight into the procedure step which has been
impacted, using the terminology proposed above.
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4 Key generation in Bluetooth Low Energy

4.1 Legacy Pairing

In Legacy Pairing, devices end the Pairing process with STK. The
LTK, CSRK and IRK are generated as part of the Bonding procedure
and exchanged over an encrypted link.

When encrypting the link, a device needs to know the security context
(i.e. which key) to use. When persistently stored, the keys are associated
with two pieces of information called EDIV and Rand. Those numbers are
sent during the Link Encryption procedure in a specific message. When
encrypting the link for the first time with a device (e.g. right after a
Pairing procedure) those numbers are set to 0 because they have not been
generated yet. Each device provides its own EDIV and Rand alongside
the set of keys during the Bonding procedure.

Regarding the actual generation of the keys, the specification is loose
on the details and doesn’t require anything. It gives two examples of
generation:

— Keys are randomly generated;
— Keys are generated using a Key Hierarchy mechanism.

As there is not much to say about random number generation at a
protocol’s level, 6 the Key Hierarchy option will be discussed in more
details.

This option brings in three new keys:

— ER: Encryption Root
— IR: Identiy Root
— DHK: Diversifier Hiding Key

Furthermore, it defines another parameter called DIV, which serves as
an identifier for a bond. In this method, EDIV is the masked version of
DIV. The generation itself uses two functions called dm and d1. Operator
·|· denotes concatenation.

dm takes two arguments: a 128-bit key and a 64-bit value.

dm(k, r) = aes_128(k, 0x0000000000000000|r) mod 216

d1 takes three arguments: a 128-bit key and two 16-bit values.

d1(k, d, r) = aes_128(k, 0x000000000000000000000000|r|d)

The key generation works as follows:

6. Other than generic statements like "It should be cryptographically secure"
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— Generate DIV (16 bits) and Rand (64 bits);
— Compute LTK = d1(ER, DIV, 0);
— Compute CSRK = d1(ER, DIV, 1);
— Compute IRK = d1(IR, 1, 0);
— Compute DHK = d1(IR, 3, 0);
— Compute EDIV = DIV ⊕ dm(DHK, Rand).

Fig. 3. Summary of the Key Hierarchy generation method

Figure 3 shows the key generation in LE Legacy Pairing. It summarizes
the various elements involved as well as their size. It also shows that the
IRK is static per device. Even without using the Key Hierarchy method
for generating keys, the IRK must be unique: if two devices have paired
with the same slave device, they must know the IRK that the slave uses
in its advertising messages, hence the unicity.
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4.2 LE Secure Connections

In LE Secure Connections, devices exit the Pairing process with a
shared LTK. Only the CSRK and IRK are generated as part of the Bonding
procedure and exchanged over an encrypted link.

The CSRK and IRK can be generated using the same processes as in
Legacy Pairing: either using random generation or using the Key Hierarchy
method. In the latter case, it uses the exact same keys, elements and
algorithms as in Legacy Pairing.

As explained in section 2.3, all pairing methods of LE Secure Connec-
tions start with an ECDH key exchange over curve P-256. After this key
exchange, both devices share the Diffie-Hellman Key: DHKey. This key
is used to generate the LTK using two random numbers and the device
addresses of the master and slave.

The random numbers and device addresses are transmitted over the
BLE link, no matter which Pairing procedure involved (even OOB). This
means that if an attacker is able to eavesdrop the communication and gains
knowledge of the private key used by a device during the ECDH exchange,
he will be able to retrieve DHKey and therefore the LTK derived by both
devices. This is a desired property of BLE communications (from Bluetooth
SIG’s point of view) to enable debugging encrypted communications with
knowledge of one of the used private keys and a capture of the pairing.
The specification mentions that devices may implement a Debug mode,
in which a default Debug keypair 7 is used for the ECDH exchange and
implements exactly this feature.

5 Analysis of the Key Hierarchy generation

This section studies the Key Hierarchy generation method and deter-
mines a testing procedure to verify if a device uses it.

5.1 Issues with Key Hierarchy

The problem with this generation scheme is the lack of possible keys:
LTK and CSRK are generated by encrypting a changing 16-bit value
(DIV) with a 128-bit static key (ER). As described in section 4:

LTK = aes_128(ER, 0x000000000000000000000000|DIV |0)

CSRK = aes_128(ER, 0x000000000000000000000000|DIV |1)

7. This keypair is standardised and can be found in the specification.
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There is no overlap between possible LTKs and CSRKs for a device
due to the last bit of the cleartext which is fed into the AES, that changes
depending on the key to generate. This means that a given device (thus a
given ER) can generate only 216 LTKs and 216 CSRKs with this method.
More precisely, for a given ER, a device can generate only 216 (LTK,
CSRK) key pairs.

This brings two issues: first, when a device pairs with a lot of devices,
there is a high probability that two devices will derive the same LTK
or CSRK. The birthday paradox indicates that if a device performs 302
pairings, there is a 50% chance that it will generate twice the same DIV,
meaning that it will generate twice a given LTK and CSRK.

Second, this also means that if an attacker has access to a vulnerable
device for long enough, he can pair it multiple times and enumerate all
possible LTKs and CSRKs. Knowing the possible LTKs means that an
attacker could decrypt all the past and future connections 8 for which the
device has acted as a slave and used a bond. This would enable an attacker
to decrypt communications even without assisting to the Pairing

procedure, which is a significant change compared to existing results on
BLE communication security. Knowing the possible CSRKs means that
an attacker could sign data and impersonate one of the two devices of
the bond. Alternatively, compromising ER of a given device one way or
another would allow an attacker to generate all LTKs and CSRKs that
would be generated by a device, for the same results.

The root of the issue here is that DIV is 16 bits, hence does not
provide enough diversification in the generated keys. As the problem
affects the Key Generation step, it is agnostic of the Pairing procedure
used for a given Pairing mode. Putting DIV to a larger value (e.g. 127 bits,
considering the one-bit switch between CSRK and LTK) would eliminate
this issue, but is not possible with the current standards due to message
formats.

Devices that use the Key Hierarchy generation algorithm for either
Legacy Pairing or LE Secure Connections should change to the first
proposed scheme which is random generation. Even though this problem
affects both Legacy Pairing et LE Secure Connections, the impact is higher
for the former as the LTK is also generated this way.

It should be noted that this issue is likely known by the Bluetooth
SIG. In the current version of the specification (v5.2), the key generation
procedures are discussed in Vol. 3, Part H, Appendix B., Paragraph 2.2:
"This method [Key Hierarchy] provides an LTK and CSRK with limited

8. BLE does not offer the Forward Secrecy property
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amount of entropy because LTK and CSRK are directly related to EDIV
and may be less secure than other generation methods. To reduce the
probability of the same LTK or CSRK value being generated, the DIV
values must be unique for each CSRK, LTK, EDIV, and Rand set that is
distributed."

5.2 Detecting the implementation of the Key Hierarchy

generation method

In many cases, BLE devices are closed-source and their code cannot
be audited. Even when the BLE stack is open-source, the information
regarding the security settings and parameters is not accessible. Thus,
there exists no generic approach to straightforwardly determine if the cryp-
tographic material has been generated using a Key Hierarchy scheme.
This section will provide a testing method applicable even for black-box
devices to determine which key generation scheme is used. An important
assumption is however made here regarding the key generation methods.
It is assumed that the key generation scheme used is whether the Key

Hierarchy or the random generation, given as examples in the standard.

First approach The main idea is to try to determine the size of the key
space on the tested device by collecting CSRKs and LTKs it generates
when performing successive pairings. If the Key Hierarchy generation
method is implemented, it will allow to generate only up to 216 different
keys. A random generation of a 128 bit key will provide keys in a 2128 key
space. Therefore, if after collecting 216 + 1 LTKs no collision is found, it
means the other key generation method is used. However, if a collision
occurs, this approach is inconclusive as a small probability exists that the
collision is random.

Repeatingly pairing two devices has a non-negligible temporal cost
as each pairing implies an update of the BLE state machine and the
management of bonds for the slave device. Manual empirical tests on
devices have shown that the pairing process is conducted rather quickly
(< 1sec). However, erratic behavior 9 can sometimes occur, introducing a
longer waiting time required between two pairings. In order to roughly
estimate the time necessary to perform the test, it seems reasonable to
consider that the delay between two successive pairings ranges between 1

9. Typically, pairing process has been found to be interrupted by the slave device
for no apparent reason when one pairing process was done too close to another.
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and 10 seconds. 10 Based on those timings, enumerating 216 + 1 LTKs and
CSRKs for a device would take between 65537 and 655370 seconds, which
corresponds respectively to 18h 12min and 7d 14h 3min.

Generalizing the approach The outcome of the first approach shows
that testing for collisions for determining the key space raises a confidence
question regarding the result of a test campaign. Indeed, if no collision if
found after observing more than the entire smallest key space, there is a
100% confidence that the key generation method is not the vulnerable one.
If only a subset of the key space is observed, this confidence decreases.
On the other hand, if a collision is observed, the generation method can
be either the Key Hierarchy or the random generation. Increasing the
number of observations will also increase the probability of witnessing a
random collision.

As such, the number of observations is a key parameter for estimating
the efficiency of the test, by maximizing the probability of detection while
minimizing the required testing time. In what follows, the formalization of
this decision problem is proposed in order to provide a theroretical basis
which can be used to tune the testing parameters in order to adapt the
testing efficiency to the operational testing conditions (number of devices
to test, total testing time available).

Estimating the test efficiency The following propositions are estab-
lished:

T : the test is positive
T : the test is negative
V : the device is vulnerable; it employs the Key Hierarchy generation

mechanism.
V : the device is not vulnerable; it does not employ the Key Hierarchy

generation mechanism.
By hypothesis, a device that does not use Key Hierarchy will use

the random generation, which yields 2128 possible keys. This also means
that P (V ) + P (V ) = 1.

The question that naturally arises is how to interpret the result of
the test: what does it mean that T is true or false regarding the tested
device’s key generation method? The quantities of interest are therefore
the True Positive rate P (V |T ), the False Positive rate P (V |T ), the False
Negative rate P (V |T ) and the True Negative rate P (V |T ).

10. On some devices, additional steps are required to put them in pairing mode, in
which cases this timing may change.
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Using Bayes theorem, we can develop:

P (V |T ) =
P (V )P (T |V )

P (V )P (T |V ) + P (V )P (T |V )

P (V |T ) =
P (V )P (T |V )

P (V )P (T |V ) + P (V )P (T |V )

and

P (V |T ) = 1 − P (V |T )

P (V |T ) = 1 − P (V |T )

Collision probabilities can be determined with the birthday paradox. To
simplify notations, the function b is introduced to compute the probability
of collision when taking at random t elements out of n:

b(t, n) =

(

n − 1

n

)

t∗(t−1)
2

It is possible to know the probability to get at least one collision in t

attempts knowing that a device can generate n0 = 216 and n1 = 2128 keys
respectively:

P (T |V ) = b(t, n0) = b0(t)

P (T |V ) = b(t, n1) = b1(t)

After applying those values in the equation of P (V |T ), then substitut-
ing P (V ) with 1 − P (V ):

P (V |T ) =
b0(t) ∗ P (V )

b0(t) ∗ P (V ) + b1(t) ∗ (1 − P (V ))

After applying those values in the equation of P (V |T ), then substitut-
ing P (V ) with 1 − P (V ):

P (V |T ) =
(1 − b0(t))P (V )

(1 − b0(t))P (V ) + (1 − b1(t))(1 − P (V ))

The probability of encountering a vulnerable device P (V ) is unknown
and therefore a definitive answer is out of reach, however those functions
can be studied with P (V ) varying from 0 to 1. The functions f1 and
f2 are defined over the interval [0; 1] × [2; 65535], using the equations of
P (V |T ) and P (V |T ) respectively:
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f1(p, t) =
b0(t)p

b0(t)p + b1(t)(1 − p)

f2(p, t) =
(1 − b0(t)) p

(1 − b0(t)) p + (1 − b1(t)) (1 − p)

If the test were perfect, it would always discriminate vulnerable devices
from non-vulnerable ones. Using the previous notations, it would mean
that f1(p, t) = 1 and f2(p, t) = 0.

Fig. 4. Evolution of f1(p, t) and f2(p, t) depending on the number of trials

Figure 4 shows the impact of the number of trials on the expected
accuracy of the test. Nothing significant can be seen at this scale regarding
the evolution of the True Positive rate: if the test is positive then it means
with near certainty that a device is vulnerable. What can be noticed
instead is the variation of the False Negative rate. It still depends a lot
on p, but choosing a large enough number of trials can reduce a lot the
expected number of False Negative, hence the number of devices which
are misclassified as not vulnerable.

Table 2 summarises some threshold numbers for several values of t.
The first two columns provide a condition on the proportion of vulnerable
devices p to get more than 99% of True Positive results (the lower the
better) and less than 1% of False Negative results (the higher the better).
The last two columns display the expected rate of True Positives and False
Negatives under the assumption that there are 10% devices vulnerable.

The green curves in figure 4 represent the False Negative rate relatively
to the proportion of vulnerable devices. It becomes sharper with an
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f1(p, t=N) >= 0.99 f2(p, t=N) <= 0.01 f1(0.1, t=N) f2(0.1, t=N)
N=10 p >= 1.907 ∗ 10−32 p <= 1.001 ∗ 10−2

≈ 1.000 9.994 ∗ 10−2

N=100 p >= 1.980 ∗ 10−32 p <= 1.078 ∗ 10−2
≈ 1.000 9.340 ∗ 10−2

N=300 p >= 2.633 ∗ 10−32 p <= 1.963 ∗ 10−2
≈ 1.000 5.307 ∗ 10−2

N=500 p >= 4.265 ∗ 10−32 p <= 6.347 ∗ 10−2
≈ 1.000 1.629 ∗ 10−2

N=700 p >= 7.292 ∗ 10−32 p <= 2.969 ∗ 10−1
≈ 1.000 2.651 ∗ 10−3

N=1000 p >= 1.454 ∗ 10−31 p <= 9.538 ∗ 10−1
≈ 1.000 5.440 ∗ 10−5

N=2000 p >= 5.816 ∗ 10−31 p <= 1 − ǫ ≈ 1.000 6.290 ∗ 10−15

Table 2. Summary of results regarding f1 and f2; with ǫ < 10−3

increasing number of trials. Optimizing the efficiency of the test becomes
equivalent to choosing a value of t such as the False Negative rate is
minimized and ideally independently from the value of p. The ideal green
curve would be a straight line from (0,0) to (1,0). The problem can then be
translated to a tradeoff between the number of trials and the minimization
of the area under the green curve. In this case, this can be done by taking
the definite integral of f1 and f2 over p. The functions F1 and F2 are
defined:

F1(t) =

1
∫

0

f1(p, t)dp

F2(t) =

1
∫

0

f2(p, t)dp

Fig. 5. F1(t) and F2(t) for t ∈ [2; 2000]
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Figure 5 shows the evolution of the area under both curves with the
number of trials, here varying from 2 to 2000. The curves remain flat
from 2001 to 65536 trials, not shown here. This validates the observations
made from Figure 4. Furthermore, it shows that the False Negative rate
improves a lot with the number of trials at the beginning, then improves
only marginally after that.

Overall, this shows that choosing a number of observations comprised
between 500 and 1000 will result in an interesting tradeoff between tem-
poral cost and test efficiency. The choice of parameters is ultimately a
compromise between the time needed for the test and the desired precision.
Furthermore, it can be deduced that between the naive test of 216 + 1 pair-
ings and 1000 pairings, the difference in accuracy is neglectable whereas
the temporal cost difference is significant.

The numeric values and graphics in this section have been generated
with SageMath [10]. The script to compute all the elements presented can
be found in Appendix A.

6 Issues with the ECDH key exchange

This section will detail the work of Biham et al. [22] and the im-
provements of Cremers et al. [27]. It will introduce the need to study an
overlooked element in those papers which is the key retrieval scenario.
After defining it and discussing it in depth in the context of BLE, testing
procedures are proposed to verify that implementations are not affected
by this problem.

6.1 Previous Work

Biham et al. [22] studied the use of ECDH in SSP and LESC. They
noticed that in the exchange, both devices send their full public key: the
X and Y-coordinate of their public point. However, in the authentication
process only the X-coordinate is verified, which means that an active
attacker can change the Y-coordinate without affecting the authentication
property of the Pairing procedure used.

Their attack consists in changing the Y-coordinate to 0 to reduce the
number of possibilities DHKey can take. They have imagined two versions
of this attack: one where they only affect the key exchange and has a 25%
chance of success and another where they affect the key exchange and all
subsequent messages which has a 50% chance of success. In both cases,
the principle remains the same. The question that arises naturally is: what
happens when an attacker can change the Y-coordinate?
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As usual in ECDH, DHKey is generated by multiplying a device’s
private key with the peer’s public key. When multiplying the point (x, 0)
with any private key the result will be (x, 0) (the same point) or a specific
point of the curve called Point at infinity P∞.

Fig. 6. Attack proposed by Biham and Neumann

The attack they proposed is depicted in figure 6. At the end, the
master has derived DHKeym = (xs, 0) or P∞ and the slave has derived
DHKeys = (xm, 0) or P∞ Therefore, there is a 25% chance that both
devices agree on DHKey being P∞, 11 in which case the attacker also
knows it hence he will be able to retrieve the LTK generated. For more
details about the rules of addition over elliptic curves that make this
attack possible, one could refer to an article [35] published shortly after
the original paper.

It should be noted that changing this coordinate invalidates the point:
it is no longer on the chosen curve and this can be detected by the imple-
mentation. Another finding of Biham et al. was that some implementations
did not implement this verification and were vulnerable to this attack.
Also, to be successfully conducted this attack requires the two devices
to be vulnerable. If one target implements the verification, then the pair-
ing won’t complete. This was given the CVE identifier 2018-5383 and
published during summer 2018. Since then, the specification explicitly
mentions that the ECDH public key must be validated for successfully
completing the Pairing.

11. It was determined by the researchers that the memory representation of this value
was 0 on the studied implementations.
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Cremers et al. [27] built up on this result using the automatic security
protocol prover Tamarin [11]. Their implementation found the same attack.
It also found that when only one device is vulnerable, it is possible to
break the authentication property of the Pairing procedure. Here is a
quick outline of their attack:

1. The attacker replaces the Y-coordinate of the public key of the
protected device by 0 but transmits the unmodified public key of
the vulnerable device;

2. Both devices will complete the Pairing procedure without problem;

3. When the pairing ends, both devices will have unmatched DHKey;

4. The attacker then takes the place of the protected device by guessing
the value of DHKey of the victim, it has 50% of success;

5. If successful, the protected device will notice a different DHKey
and disconnect; the victim device will be connected and paired
with the attacker.

Cremers et al. also found that in case of a static ECDH key, a vulnerable
device is susceptible to a key retrieval attack. The specification has slightly
changed between versions 5.0 and 5.1: requirements regarding public key
validation are more precise in order to prevent these types of attacks. The
reader will find the paragraph on the validation of received public keys in
Vol 3, Part H, section 2.3.5.6.1 of the specification. The section detailing
the private key renewal requirements is in Vol 3, Part H, section 2.3.6. In
the latest version of the specification, it is mentioned that the received
public key must be verified against the curve equation and that the private
key should be rotated in the worst case every 8 pairing attempts.

Both research efforts brushed off the key retrieval scenario by mention-
ing that almost all devices did re-generate their keypair at each pairing
attempt. However, during our observation of BLE devices, it was found
that some embedded devices do not follow the specification and keep
the same keypair for longer than specified. Therefore, the key retrieval
scenario cannot be completely overruled and deserves to be studied.

6.2 Studying the complexity of key retrieval in BLE

In the context of elliptic curves, key retrieval is a type of invalid curve
attack which has been described first by Biehl et al. [21] and developed
by Antipa et al. [17]. This type of vulnerability has already been found in
two TLS implementations [31], leading to a private key compromise when
TLS_ECDH_* cipher suites were used by the server.
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The generic idea behind this attack is that an attacker will send
invalid points to an oracle, which will multiply those points by a constant
secret value. The attacker can retrieve the result of this computation and
compute the secret little by little. In the attack proposed by Biham et
al. [22], replacing the Y-coordinate of the two public keys with 0 is a way
of constructing two points which will generate each a group of order 2.
This is another way to explain the 25% chance of success of their attack.

To retrieve the private key, an attacker needs to generate multiple
points p0, p1, p2, . . . which will generate groups of order n0, n1, n2, . . . . For
one generated group, knowing which point was computed by the target
device is equivalent to knowing the private key of the target device modulo
the order of the group. For example, retrieving the computed key after
sending the point (x, 0) is equivalent to knowing the private key of the
target modulo 2. The Chinese Remainder Theorem states that that when
we retrieve a number s modulo n0, n1, n2, . . . ni, it is possible to compute
s mod N , with N = lcm(n0, n1, n2, . . . ni) (the least common multiple).
In particular if all n are relatively prime, we have N =

∏i
j=0

nj . If an
attacker retrieves enough moduli such that N is greater than the order of
the curve used, then it is possible to completely retrieve the private key
of the target.

The process for generating interesting invalid points and retrieving
the complete private key from an oracle has already been developed in
several publications [17, 21, 31]. The oracle is a way to retrieve the private
key modulo a single n. By making several calls to the oracle with different
n, it is possible to retrieve the complete private key. Next section will
demonstrate how it is possible to build such an oracle from a vulnerable
Bluetooth Low Energy device and discuss the cases of a master and slave
device.

Figure 7 shows the scenario needed to perform this attack. Again, as
in the key enumeration against the insecure Key Hierarchy generation
method, an attacker needs to have access to a device for a certain amount
of time and to be able to perform many pairing attempts with it.

Figure 8 depicts the pairing process in LE Secure Connections. Beyond
the steps of identification and key exchange, the exact messages exchanged
for authentication depend on the Pairing procedure used (JustWorks,
Passkey Entry, . . . ). After those messages, the Pairing procedure ends
with an exchange of messages of type PairingDHKeyCheck which are
used, as the name suggests, to verify that DHKey derived at both ends of
the connection matches.
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Fig. 7. Outline of the Key Retrieval process

In the studied case, one end of the connection is malicious and tries to
retrieve the private key of the other device. What can be seen in Figure 8
is the asymmetry between the Master and Slave roles: the Master initiates
the exchange of DHKeyCheck messages, while the Slave only answers to
the Master.

In the easiest case, the attacker poses as a Slave and wants to retrieve
the private key of the Master modulo n.

1. The Slave sends a point which generates a subgroup of order n;

2. The Slave receives the PairingDHKeyCheck sent from the Master;

3. The Slave aborts the Pairing procedure;

4. The Slave computes offline which subgroup element was used to
generate the DHKey computed by the Master and which produces
the gathered PairingDHKeyCheck value.

Therefore, to get the information of the private key modulo n, the attacker
needs 1 pairing attempt and n-1 offline computations by posing as a
Slave.

In the opposite case, the attacker poses as a Master and wants to
retrieve the private key of the Slave. Note that in this case, the attacker
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Fig. 8. Overview of the Pairing procedure in LE Secure Connections

has to guess values that produce a correct Master PairingDHKeyCheck
in order to receive the Slave PairingDHKeyCheck value. This process is
outlined as follow:

1. The Master sends a point which generates a subgroup of order n;

2. The Master takes the first element of the subgroup and sends a
matching PairingDHKeyCheck;
— If the Slave answers (i.e. the Pairing completes), the Master

stops;
— Else, the Master restarts the Pairing process using the same

point and uses the next element in the subgroup.

Therefore, to get the information of the private key modulo n, the attacker
needs in the worst case n - 1 pairing attempts and as much offline
computations by posing as a Master.

Hence, if a BLE device does not verify the public key received in
LE Secure Connections and does not renew it’s key material frequently
(as mandated by the standard), it is possible for an attacker to retrieve



28 Testing for weak key management in BLE

partially or completely the ECDH private key, depending on the role of
the victim device and the number of pairing attempts performed. It has
been shown how to use both a Slave and a Master as an oracle in order to
finally retrieve information about this private key. In order to evaluate
the exact cost of this attack, one would need more informations about the
target role, the time between two pairing attempts and decide of a tradeoff
regarding the amount of computation to do offline and the number of
pairing attempts.

This does not represent a new vulnerability, but extends the work of
Biham et al. [22] and Cremers et al. [27] by studying the impact of CVE-
2018-5383 in other scenarios. Devices must check the public key received
and not perform computations based on invalid ones. Furthermore, it is
a good practice, in the case of BLE to regenerate the keypair regularly,
ideally at each new pairing attempt Finally, imposing a delay between too
many pairing attempts, either successful or failed, could prevent this type
of attacks.

All those recommendations are clearly identified as mandatory in the
latest versions of the Bluetooth specification.

6.3 Testing for ECDH keypair renewal

The specification mentions in Vol 3, Part H, paragraph 2.3.6 that
devices should regenerate their keypairs every 8 pairing attempts in the
worst case. Hence, if a device has kept the same public key during 9
successive pairings, then it most likely does not follow this line of the
specification. Despite being a non-compliance to the standard, this element
alone does not endanger communication security with regards to the
considered attacker models.

In order to perform this test, it is just necessary to actually initiate
several legitimate pairings and check when the public key changes.

6.4 Testing the validation of ECDH public keys

A testing methodology is described for determining if a target device
is vulnerable to CVE-2018-5383 in [22]. A Bluetooth stack is modified so
as to allow using invalid ECDH keypairs and is used in order to perform
several pairing procedures with various devices. If the pairing succeeds it
means that the device does not verify the validity of the public key and is
therefore vulnerable.

The Bluetooth SIG has recently opened its test criterias, among which
a test procedure for the validation of public keys. The drawback of the
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described method is that it only ensures that a device does not accept a
public key having a Y-coordinate at 0. The problem of this type of test is
already addressed by Biham et al. [22] and they propose to choose invalid
points of small order (e.g. 3) for testing devices. However, SIG’s approach
does not test with high confidence for invalid points whose coordinate is
different than 0.

Another problem is that when testing a Slave device, some targets do
not immediately reject a public key. In this case, one has to guess the
value of DHKey that has been derived by the Slave in order to try to
complete a successful pairing. This guess has only one chance over the
order of the generated group to succeed, for example it has a 33.33%
chance of success when providing a point which generates a group of order
3. The implication is the following: when an invalid public key is used
and the slave has rejected the pairing at the DHKeyCheck step, it is
impossible to distinguish if the rejection cause was an invalid public key
or if it was a wrong guess for DHKey. For this reason, multiple pairing
attempts are needed to have a higher confidence that a slave has rejected
pairing because it truly verifies the public key.

It should be noted that there exists a Proof of Concept to test the
presence of the vulnerability in Bluetooth Classic devices. This proof
of concept is included in the framework InternalBlue [16] and requires
the instrumentation of a Nexus 5 phone. In addition of being specific to
Bluetooth Classic, it only supports Master mode, hence is unable to test
Master devices.

7 Implementation and test results

This section will describe the choices made to implement the two tests
aforementioned.

7.1 Existing implementations

On an implementation level, BT and BLE define two entities:

— The Controller, which handles the radio link and some other pro-
cedures;

— The Host, which gives orders to the Controller and implements
higher-level protocols.

Both components communicate through the Host-Controller Interface
(HCI). In Bluetooth Low Energy, it is easier to perform tests about the
pairing process (relatively to Bluetooth Classic) for one main reason: the
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pairing process is implemented completely by the Host, while in BT it is
mainly implemented by the Controller.

Open-source BLE Host stacks include Linux’s stack BlueZ [4], An-
droid’s stack Fluoride [9], Mynewt’s stack NimBLE [1] for embedded
devices and Zephyr project’s stack [13] also for embedded devices.

Though those projects are interesting when the goal is to develop
a BLE-enabled device, in order to test their security the framework
Mirage [6] is more suited. It enables to develop new tests and applications
in Python, thus to iterate quicker. Also, it interfaces with many type of
devices natively. When performing tests about the Pairing and Bonding
processes, the ideal case if to interface directly with a BLE chip using the
HCI protocol, which is exactly what Mirage enables.

7.2 Testing for the Key Hierarchy generation method

In order to test the Key Hierarchy generation method, one has to bond
many times with a device to observe the keys generated.

Perform multiple bondings with a device To bond with a device,
one always has to perform an entire pairing attempt first In order to
automate the pairing process, not all devices have the same abilities. In
some cases, it is needed to instrument a device to pair it with another one
or to put it in pairing mode. Rather than trying to provide an exhaustive
list, different types of devices will be discussed.

First, some devices require no instrumentation at all: they advertise
themselves and accept connections automatically. In this case, one only
has to scan, connect, pair then disconnects as many times as needed to
perform the test. This approach can be applied to test various BLE stacks,
where it is possible to develop its own application using a provided API.
Some commercial devices also exhibit this behavior.

In other cases, the device needs a user confirmation to accept a pairing
attempt. This is the case, amongst others, of smartphones, whose leading
operating systems at the time of writing are Android and iOS. To study
phones, the application nRFConnect may be used to work more easily
with BLE. With it, it is possible to put a device into advertising and
connectable mode: it will accept connections and pairing requests (upon
user confirmation). In order to automate the pairing accept, one has to
send touch events to a device. In the case of Android, it is possible to
send touch events using Android Debug Bridge and shell commands, as
explained in [2]. For iOS, the authors are not aware of a similar way to
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send touch events. Alternatively, one could replicate the approach used
by Markert et al. [36] where they used a mecanical robot for this.

Other devices such as smartwatches may also need a user confirmation
(e.g. physical keypress) to accept pairings. In addition, some devices must
be put into pairing mode for each attempt, using dedicated buttons or
combination of buttons. In those cases using a mecanical approach may
be the least intrusive way to automate the pairing process, however no
general rule can be given here.

Overall, the way a device is instrumented will also impact the perfor-
mance of the test. If several actions are needed to perform one pairing, it
will slow the testing process as much.

Performing multiple pairings on a controlled device In order to
study the efficiency of the proposed test, it was chosen to use a controlled
device. This device is a BLE Nano 2 from RedBear, based on the nRF 52832
chipset. The firmware used was a custom version of Mynewt’s NimBLE.
The example application ’bleprph’ was installed, configured with Pairing
and Bonding support. This implements the first case discussed: the device
advertises itself automatically, no inputs are needed to put it into pairing
mode or to make it accept the pairing.

There was a modification done to the underlying stack: by default,
NimBLE uses the random generation mechanism. The stack was modified
to implement the Key Hierarchy mechanism, hence the device tested was
known to be vulnerable.

First, the test was ran using the parameter of 1000 tests. Mirage
was used on the testing computer, with the internal BLE chipset. The
Pairing procedure was set to Legacy JustWorks, that is the one with the
least messages exchanged. The first collision was found after 389 pairing
attempts, in 54 minutes and 6 seconds. Overall, in 1000 tests, there were
7 collisions in total. Then, 2000 pairings were performed to study the
interval between two pairing attempts: this setup performs one pairing
attempt every 8.5 seconds in average (standard deviation is 1.38s). The
limiting factors were the time needed to scan (set to 2 seconds) and the
interval between the end of an attempt and the next one (set to 2 seconds).
Those delays are needed to let the different stacks reconfigure themselves.
For example, without pause between two attempts, the chipset of the
computer failed every few attempts.

Overall, this shows that it is possible to perform multiple pairings
with devices. The value of 1 to 10 seconds per pairing attempt given
in Section 5 proved a bit optimistic, with real values of at least several
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seconds for non-optimised versions. This observation reinforces even more
the use of a statistic test which observes only a subset of possible keys.
During a test campaign on a dozen devices, it was found that at least
one commercial implementation uses the Key Hierarchy key generation
mechanism, which was successfully detected with the proposed method.
None of the tested devices implemented the recommendation of gradually
adding delays between pairing attempts. An ongoing responsible disclosure
process prevents from providing more precise results.

7.3 Testing the ECDH key exchange

In its previous state, Mirage had a pairing module whith support
for LE Legacy Pairing. Therefore, the new messages and cryptographic
primitives added in LE Secure Connections had to be developed and
were added to Mirage. Finally, the module ble_pair was modified to
implement the new pairing methods specific to LE Secure Connections.

Overall, this module now supports:

— Pairing using LE Legacy Pairing as Master and Slave, for procedures
JustWorks, Passkey Entry and Out of Band

— Pairing using LE Secure Connections as Master and Slave, for
procedures JustWorks, Passkey Entry and Numeric Comparison

As mentioned in Paragraphs 6.3 and 6.4, there are two tests that can
be performed on this key exchange:

1. Verify that the keypair is rotated as mandated by the specification

2. Verify that the public key is validated by the device under test

While the implementation of the first test is straightforward, the second
one is necessarily imperfect. It was observed that some implementations
reject an invalid point right after receiving it which seems to indicate that
they verify it right away. However, some devices reject a pairing with an
invalid point when performing the DHKeyCheck exchange. In this case,
the test should be repeated several times, with several invalid points, to
gain confidence that the device indeed validates the public key.

The functionality was tested against Android in particular to verify
that the implementation works. The result are as expected: old Android
versions are affected while recent ones are patched.

Regarding the proposed key retrieval attack, tests have concluded that
some devices are vulnerable to CVE-2018-5383 and that some devices
use static key pairs. As there was no overlap between those two sets,
this particular attack could not be completed. Yet, these independent
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observations show that the existence of such vulnerable devices cannot be
completely overruled.

Overall, the tests on ECDH discussed in this paper showed their
efficiency on commercial devices.

8 Conclusion

The security of Bluetooth Low Energy devices is of great importance
due to their proliferation in recent years. As many standards, the BLE
specification is a rather complex document which does contribute to give
neither a clear comprehension of the security mechanisms nor a precise view
of the best way to implement those. Furthermore, backwards compatibility
raises questions about the way security is implemented and managed in
devices which are compatible with several versions of the standard. After
describing the various mechanisms meant to provide security properties to
this protocol, the previous work related to BLE communication security
was extensively discussed. This paper focused on the different processes
for key exchange and key generation in use in Bluetooth Low Energy.

Then, a description of two weaknesses that become exploitable when
some specific security requirements from the standard are not correctly
implemented is provided. The first relies on a lack of entropy in one
of the key generation methods described in the standard. The second
one represents an extension of CVE-2018-5383, which impacts the key
exchange in BLE.

This work showed that the Key Hierarchy key generation method,
used to generate the LTK in Legacy Pairing and the CSRK in all Pairing
modes suffers from a lack of entropy. An attacker with the ability to
repeatedly bond with a Slave device which uses this method is able to
get all the keys that the device will generate. Hence, this attacker is be
able to compromise the security of procedures which uses these keys,
in particular the Link Encryption and Data Signing procedures, which
provide Confidentialy, Integrity and Authenticity in the BLE protocol.
This proves to be significant change in the case of Legacy Pairing where
existing attacks all require an attacker to capture the Pairing procedure.
This attack affects JustWorks, Passkey Entry and Out of Band procedures,
require the implementation of the Key Hierarchy key generation and it
effectiveness will be conditioned by the way delays are introduced between
several pairing attempts, as required by the standard.

It was already known that, when a device uses LE Secure Connections
and uses a static or semi-static ECDH private key; then if it is vulnerable
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to CVE-2018-5383, it is possible to mount a small subgroup key recovery
attack to retrieve the private key in use. However, this scenario was swept
away by previous relevant literature. Based on observations of live devices,
it was considered plausible and therefore discussed in depth in this paper.
The complexity of this attack for different scenarios has been provided.
When in possession of the ECDH private key of a device, an attacker which
captures the LESC Pairing procedures made by this device will naturally
recover the LTK derived, hence will be able to decrypt communications
between the victim device and its interlocutor. This however relies on
implementation errors omitting to correctly implement the ECDH key
verification and the ECDH key renewal as required by the latest standard.

That being said, devices implementing correctly the security require-
ments of the latest version of the standard will not be impacted by those
attacks.

Those attacks being conditioned to implementation errors, an effort
was made to provide a test methodology for each weakness. This will
enable determining if a target device, which BLE stack might be closed
source and misconfigured, is vulnerable to the two attack vectors that were
described. The Key Hierarchy vulnerability being a diversity problem, a
probabilistic approach based on collision finding is proposed. It has been
shown that there exists a tradeoff between the number of pairing trials (i.e.
the temporal cost of the test) and the precision of the test. This tradeoff
was extensively discussed to enable a test operator to select the best
parameter choice with regards to his operational requirements. Regarding
the second scenario, one of the prerequisites being a vulnerability to CVE-
2018-5383, it is proposed to test for a bad key verification by performing
a pairing attempt with an invalid public key. Additionally, one can verify
the key renewal mechanisms implemented.

Furthermore, those tests do not rely on trying to exploit the vulnera-
bilities in order to prove that devices are protected.

A Sage script

#!/ usr / bin / env sage

from sage .all import *

import time

# Work with sufficiently precise numbers to handle little quantities

R300 = RealField (300)

# Birthday paradox
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def collision_proba (M, N):

""" Returns the probability of getting a collision by picking M

elements

at random in a set of N elements """

e = ( R300 (M)*( R300 (M) -1))/2

return (1 - (( R300 (N -1)/ R300 (N)))**e)

# Get f1(p, t= nb_trials ) and f2(p, t= nb_trials )

def make_probas ( nb_trials ):

proba_coll_key_hierarchy = collision_proba ( nb_trials , 2**16)

proba_coll_random = collision_proba ( nb_trials , 2**128)

p = var(’p’)

f1 = proba_coll_key_hierarchy *p/( proba_coll_key_hierarchy *p +

proba_coll_random *(1 -p))

f2 = (1- proba_coll_key_hierarchy )*p/((1 - proba_coll_key_hierarchy

)*p + (1- proba_coll_random )*(1 -p))

return (p, f1 , f2)

fig = text ( "p", (1.1 , -0.03) , color =" black ")

for (idx , i) in enumerate ([10 , 100 , 300 , 500 , 700 , 1000 , 2000]) :

(p, f1 , f2) = make_probas (i)

fig += parametric_plot ( (p, f1), (p, 0, 1) , rgbcolor =(0.4 + 0.1*

idx ,0 ,0) , legend_label ="f1(p ,{})". format (i))

fig += parametric_plot ( (p, f2), (p, 0, 1) , rgbcolor =(0 ,0.4+0.1*

idx ,0) , legend_label ="f2(p ,{})". format (i))

print (i)

sol1 = solve (( f1 >= 0.99) , p)

print ("f1 (0.1 , {}) = {}". format (i, R300 (f1 (0.1) )))

print ("f1(p, {}) >= 0.99: p >= {}". format (i, R300 ( sol1 [1][0].

right ())))

sol2 = solve (( f2 <= 0.01) , p)

print ("f2 (0.1 , {}) = {}". format (i, R300 (f2 (0.1) )))

print ("f2(p, {}) <= 0.01: p <= {}". format (i, R300 ( sol2 [0][0].

right ())))

fig += text ( "N=300", (0.59 , 0.5) , color =" black ")

fig += text ( "N=500", (0.6 , 0.25) , color =" black ")

fig += text ( "N=700", (0.65 , 0.09) , color =" black ")

fig += text ( "N =1000 ", (0.9 , 0.05) , color =" black ")

show (fig)

fig. save (" n_varies .png")

nb_trials = var(’t’)

e = ( nb_trials *( nb_trials -1))/2

proba_coll_key_hierarchy = (1 - (( R300 (2**16 -1) / R300 (2**16) ))**e)

proba_coll_random = (1 - (( R300 (2**128 -1) / R300 (2**128) ))**e)

f1 = proba_coll_key_hierarchy *p/( proba_coll_key_hierarchy *p +

proba_coll_random *(1 -p))

f2 = (1- proba_coll_key_hierarchy )*p/((1 - proba_coll_key_hierarchy )*p

+ (1- proba_coll_random )*(1 -p))

F1 = f1. integral (p, 0, 1)

F2 = f2. integral (p, 0, 1)
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fig = parametric_plot ( ( nb_trials , F1), ( nb_trials , 2, 2000) ,

rgbcolor =(1 ,0 ,0) , legend_label ="F1(t)")

fig += parametric_plot ( ( nb_trials , F2), ( nb_trials , 2, 2000) ,

rgbcolor =(0 ,1 ,0) , legend_label ="F2(t)")

fig += text ( "t", (2000 , +0.03) , color =" black ")

fig. set_aspect_ratio (’automatic ’)

fig. save (" integrals .png")

Listing 1. Sage script
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