
Analyzing ARCompact Firmware with Ghidra

Nicolas Iooss
nicolas.iooss@ledger.fr

Ledger Donjon

Abstract. Some microcontroller units use the ARCompact instruction

set. When analyzing their firmware, several tools exist to recover the code

in assembly instructions. Before this publication, no tool existed which

enabled to recover the code in a language which is easier to understand,

such as C language.

Ghidra is a powerful reverse-engineering project for which it is possible

to add support for many instruction sets. This article presents how

ARCompact support was added to Ghidra and some challenges which

were encountered in this journey. This support enabled using Ghidra’s

decompiler to recover the semantics of the code of studied firmware in a

language close to C.

1 Introduction

A modern computer embeds many microcontroller units (MCU). They
are used to implement complex features in the Network Interface Cards
(NIC), the hard disks, the flash memory devices, etc. These MCUs run
code in a similar way to usual processors: they use some firmware which
contains instructions for a specific architecture.

For example:
— Some NICs implement complex features using MIPS instruction

set [7].
— On some HP servers, the iLO (integrated Lights-Out) is imple-

mented using ARM instruction set [8].
— On some Dell servers, the iDRAC (integrated Dell Remote Access

Controller) is implemented using Renesas SuperH instruction set [6].
— Some Hardware Security Modules (HSM) are implemented using

PowerPC instruction set [4].
— On some Intel computers, the ME (Management Engine) is imple-

mented using ARCompact instruction set [11].
— On some of Lenovo’s Thinkpad computers, the EC (Embedded

Controller) is implemented using ARCompact instruction set [3, 5].
— On some computers, the WiFi chipset runs code implemented using

ARCompact instruction set (cf. page 5 of [5]).

2 Analyzing ARCompact Firmware with Ghidra

Many of the used instruction sets have been implemented in reverse-
engineering tools such as Binary Ninja, Ghidra, IDA, metasm, miasm,
objdump and radare2. However these tools usually only implement a disas-

sembler for instructions sets which are not widely used. The static analysis
of firmware is much easier when the code can be actually decompiled, for
example in C language or in a pseudo-code which is easier to read than
raw assembly instructions.

Ghidra (https://ghidra-sre.org/) is a powerful tool which enables
implementing a decompiler for any instruction set quite easily. This relies
on a domain-specific language called SLEIGH [1].

ARCompact is the name of an instruction set used by some ARC
processors (Argonaut RISC Core). It is still widely used in several MCUs
embedded in computers. This is why implementing support for this in-
struction set in reverse-engineering tools can be very useful.

This article presents how the support for ARCompact was added to
Ghidra in order to analyze the firmware of an MCU studied by Ledger
Donjon. This support enabled using Ghidra’s disassembler and decompiler
in the analysis. It was submitted as a Pull Request in May 2021, https://

github.com/NationalSecurityAgency/ghidra/pull/3006. This article
highlights the main challenges which were encountered and how they were
solved.

2 ARCompact instruction set discovered through Ghidra

When studying an instruction set, some characteristics need to be
determined. Is the length of instructions fixed? How many core registers
are available? Are there several address spaces for code and data? How
are functions called?

For ARCompact, the Programmer’s Reference [2] provides answers to
all these questions. ARCompact is an instruction set which operates on
32-bit values using variable-length instructions. There are sixty-four 32-bit
core registers. Some instructions can be conditionally executed, with a
condition which depends on four condition flags (Z, N, C and V) like ARM
instruction set.1 When calling functions, the instruction Branch and Link

(bl) puts the return address in the register named blink, like ARM’s link
register.

These characteristics enabled to bootstrap ARCompact support in
Ghidra. For this, several files were created in a new directory named

1. Z is the Zero flag, N is the Negative flag, C is the Carry flag and V is the Overflow

flag.

https://binary.ninja/
https://ghidra-sre.org/
https://www.hex-rays.com/products/ida/
https://github.com/jjyg/metasm
https://github.com/cea-sec/miasm
https://man7.org/linux/man-pages/man1/objdump.1.html
https://github.com/radareorg/radare2
https://ghidra-sre.org/
https://github.com/NationalSecurityAgency/ghidra/pull/3006
https://github.com/NationalSecurityAgency/ghidra/pull/3006

N. Iooss 3

Ghidra/Processors/ARCompact in Ghidra’s directory. These files were
inspired from the support of other instruction sets, including previous
works about supporting MeP [12–14] and Xtensa instruction sets [9, 10].

The file which described how instructions are decoded,
Ghidra/Processors/ARCompact/data/languages/ARCompact.slaspec

was initialized with the definition of some registers (listing 1).

1 define register offset =0 x00 size =4 [

2 r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15

3 r16 r17 r18 r19 r20 r21 r22 r23 r24 r25 gp fp sp ilink1 ilink2

blink

4 r32 r33 r34 r35 r36 r37 r38 r39 r40 r41 r42 r43 r44 r45 r46 r47

5 r48 r49 r50 r51 r52 r53 r54 r55 r56 mlo mmid mhi lp_count

r61reserved r62limm pcl

6];

7 define register offset =0 x130 size =1 [Z N C V];

Listing 1. SLEIGH specification of ARCompact core registers

Implementing the decoding of each instruction is then a matter of
defining tokens to extract bits and defining the associated semantics in
pseudo-code. This process was described in length in previous presenta-
tions [12] and in Ghidra’s documentation [1].

There were several challenges in the implementation of ARCompact
instruction set. One of them was that instructions using 32-bits con-
stants encode them in a mix of Little Endian and Big Endian: the value
0xAABBCCDD is encoded as bytes BB AA DD CC. This issue was solved by
defining a constructor limm (for long immediate) using specific tokens
(listing 2).

1 define token limm_low_token (16) limm_low = (0, 15);

2 define token limm_high_token (16) limm_high = (0, 15);

3 limm : limm is limm_high ; limm_low [limm = (limm_high << 16) +

limm_low ;] { export *[const]:4 limm ; }

Listing 2. SLEIGH specification of the decoding of 32-bit immediate values

Some other challenges are described in the following sections.

3 64-bit multiplication

The analyzed firmware contains the code in listing 3.

1 Address Bytes Instruction Description

2 c0085164 08 74 mov_s r12 ,r0 ; move the value in r0 to r12

3 c0085166 e0 78 nop_s ; no operation

4 c0085168 1d 22 41 00 mpyu r1 ,r2 ,r1 ; multiply r2 and r1 into r1

4 Analyzing ARCompact Firmware with Ghidra

5 c008516c 1d 22 00 03 mpyu r0 ,r2 ,r12 ; multiply r2 and r12 into r0

6 c0085170 1c 22 0b 03 mpyhu r11 ,r2 ,r12 ; multiply r2 and r12 and

store the high 32 bits in r11

7 c0085174 1d 23 0c 03 mpyu r12 ,r3 ,r12 ; multiply r3 and r12 into r12

8 c0085178 61 71 add_s r1 ,r1 ,r11 ; add r1 and r11 into r1

9 c008517a 99 61 add_s r1 ,r1 ,r12 ; add r1 and r12 into r1

10 c008517c e0 7e j_s blink ; jump back to the caller

Listing 3. Assembly code containing multiplication instructions

mpyu and mpyhu compute the product of two 32-bit registers as a 64-bit
value and store in the destination register either the low 32 bits or the
high 32 bits of the result. Using both instruction could mean that the code
implements a 64-bit multiplication. When doing some maths, it appears
that the code indeed computes the 64-bit product of two 64-bit numbers.
With Ghidra, it is possible to accelerate this analysis by implementing the
semantics of the instructions.

The SLEIGH specification of these instructions was implemented as
shown in listing 4.

1 : mpyhu ^ op4_dotcond op4_a , op4_b_src , op4_c_src is

2 (l_major_opcode =0 x04 & l_sub_opcode6 =0 x1c & l_flag =0 &

3 op4_dotcond & op4_a) ... & op4_b_src & op4_c_src

4 {

5 # extend source values to 64 bits

6 local val_b :8 = zext (op4_b_src);

7 local val_c :8 = zext (op4_c_src);

8 # compute the product

9 local result :8 = val_b * val_c ;

10 # extract high 32 bits

11 op4_a = result (4);

12 }

13

14 : mpyu ^ op4_dotcond op4_a , op4_b_src , op4_c_src is

15 (l_major_opcode =0 x04 & l_sub_opcode6 =0 x1d & l_flag =0 &

16 op4_dotcond & op4_a) ... & op4_b_src & op4_c_src

17 {

18 local val_b :8 = zext (op4_b_src);

19 local val_c :8 = zext (op4_c_src);

20 local result :8 = val_b * val_c ;

21 # extract low 32 bits

22 op4_a = result :4;

23 }

Listing 4. SLEIGH specification of instructions mpyu and mpyhu

This enabled Ghidra to directly understand the function as the im-
plementation of a 64-bit multiplication between values stored in registers
r1:r0 and r3:r2 (figure 1 and listing 5).

1 uint64_t mul64 (uint64_t param_1 , uint64_t param_2)

N. Iooss 5

2 {

3 return param_2 * param_1 ;

4 }

Listing 5. Decompiled output of the function given in listing 3

Fig. 1. Implementation of a 64-bit multiplication

This example shows how a decompiler can speed-up the time spent
at reverse-engineering a firmware. Instead of trying to understand how
mpyu and mpyhu are combined together, it is possible to rely on the code
produced by the decompiler, which is much simpler.

4 Loop instruction

ARCompact instruction set provides an instruction named Loop Set

Up Branch Operation and written lp in assembly code. This instruction
could be misleading. To understand it, listing 6 presents a piece of code
which uses this instruction in the analyzed firmware.

1 c0085230 0a 24 80 70 mov lp_count ,r2

2 c0085234 42 21 41 00 sub r1 ,r1 ,0 x1

3 c0085238 42 20 43 00 sub r3 ,r0 ,0 x1

4 c008523c a8 20 80 01 lp LAB_c0085248

5

6 c0085240 01 11 84 02 ldb.a r4 ,[r1 ,0 x1]

7 c0085244 01 1b 0a 01 stb.a r4 ,[r3 ,0 x1]

8 LAB_c0085248

6 Analyzing ARCompact Firmware with Ghidra

9 c0085248 20 20 c0 07 j blink

Listing 6. Assembly code containing a loop

Contrary to usual branching instruction, lp LAB_c0085248 does not
mean: branch to address c0085248 if some condition is met. Instead, it
means:

— Execute instructions until address c0085248 is reached.
— When reaching c0085248, decrement register lp_count.
— If lp_count is not zero, branch back to the instruction right after

lp (at address c0085240).
This makes the code repeat the instructions between lp and the address

given as parameter (c0085248) exactly lp_count times. In this example,
the instructions copy a byte from the memory referenced by r1 into the
one referenced by r3, incrementing the pointers at each iteration.

The problem caused by instruction lp is that the semantic of the
instruction located at the address given as parameter changes. In order to
decompile the example code correctly, the semantic of the loop needs to
be added to the instruction at address c0085248.

In a real ARCompact MCU, lp is implemented by using two auxiliary
registers, lp_start and lp_end:

— lp LAB_c0085248 puts the address of the next instruction
(c0085240) into lp_start and the given address c0085248 into
lp_end.

— When the MCU reaches address c0085248, as it matches the con-
tent of lp_end, it decrements lp_count and branches to lp_start

if it is not zero.
How such a semantic can be implemented in Ghidra? The answer

is surprisingly simple, thanks to Ghidra’s documentation which already
contains an example of such a problem in https://ghidra.re/courses/

languages/html/sleigh_context.html:

However, for certain processors or software, the need to distinguish

between different interpretations of the same instruction encoding,

based on context, may be a crucial part of the disassembly and anal-

ysis process. [. . .] For example, many processors support hardware

loop instructions that automatically cause the following instructions

to repeat without an explicit instruction causing the branching and

loop counting.

The SLEIGH processor specification language supports a feature called
context variables. Here is how the lp instruction was implemented with
this feature.

https://ghidra.re/courses/languages/html/sleigh_context.html
https://ghidra.re/courses/languages/html/sleigh_context.html

N. Iooss 7

First, a context was defined as well as a register storing lp_start (list-
ing 7). Another register was defined, is_in_loop, which defines whether
the lp instruction was executed (which is important to implement condi-
tional lp instruction).

1 define register offset =0 x140 size =4 [lp_start];

2 define register offset =0 x148 size =1 [is_in_loop];

3 define register offset =0 x200 size =4 [contextreg];

4

5 define context contextreg

6 phase = (0 ,0)

7 loopEnd = (1 ,1) noflow

8 ;

Listing 7. SLEIGH specification of the context used to implement instruction lp

Then, the decoding of lp sets the loopEnd bit of the context to 1 for
the address given to lp (listing 8). This is done using a built-in function
named globalset.

1 :lp op4_lp_loop_end is

2 l_major_opcode =0 x04 & l_sub_opcode6 =0 x28 & l_flag =0 &

3 l_op_format =2 & op4_lp_loop_end

4 [loopEnd = 1; globalset (op4_lp_loop_end , loopEnd);]

5 {

6 lp_start = inst_next ;

7 is_in_loop = 1;

8 }

Listing 8. SLEIGH specification of instruction lp

Finally, to change the semantic of the instruction which ends the loop,
a two-phase instruction decoding was implemented (listing 9).

1 :^ instruction is phase =0 & instruction

2 [phase = 1;]

3 {

4 build instruction ;

5 }

6 :^ instruction is phase =0 & loopEnd =1 & instruction

7 [phase = 1;]

8 {

9 if (is_in_loop == 0) goto <end_loop >;

10 lp_count = lp_count - 1;

11 if (lp_count == 0) goto <end_loop >;

12 pc = lp_start ;

13 goto [pc];

14 <end_loop >

15 is_in_loop = 0;

16 build instruction ;

17 }

18

19 with : phase = 1 {

8 Analyzing ARCompact Firmware with Ghidra

20

21 # ... all instructions are decoded here

22

23 }

Listing 9. SLEIGH specification of a two-phase instruction decoding pipeline

With these changes, the instructions of the example are decompiled
as something which seems to be a correct implementation of a memcpy

function (figure 2 and listing 10).

1 puVar3 = (undefined *) ((int)src + -1);

2 puVar4 = (undefined *) ((int)dst + -1);

3 do {

4 puVar3 = puVar3 + 1;

5 puVar4 = puVar4 + 1;

6 * puVar4 = * puVar3 ;

7 size = size - 1;

8 } while (size != 0);

9 return ;

Listing 10. Decompiled output of the instructions given in listing 6

Fig. 2. Implementation of memcpy in the studied firmware

N. Iooss 9

5 Conclusion

Thanks to this work, it is possible to perform static analysis on firmware
of some MCUs using ARCompact. This work enabled Ledger’s security
team to bypass the secure boot feature of a MCU. This result will hopefully
be presented in the future. This will also help finding issues in code running
on MCUs, for example by plugging a fuzzer to Ghidra’s machine emulator.

References

1. Ghidra language specification. https://ghidra.re/courses/languages/index.

html.

2. Arcompact instruction set architecture, programmer’s reference, 2008. http://me.

bios.io/images/d/dd/ARCompactISA_ProgrammersReference.pdf.

3. Embedded controllers used in lenovo thinkpad, 2016. https://github.com/

hamishcoleman/thinkpad-ec/blob/v1/docs/chips.txt.

4. Jean-Baptiste Bédrune and Gabriel Campana. Everybody be cool, this is a robbery!

SSTIC, June 2019. https://www.sstic.org/2019/presentation/hsm/.

5. Alexandre Gazet. Sticky fingers & kbc custom shop. SSTIC, June 2011. https:

//www.sstic.org/2011/presentation/sticky_fingers_and_kbc_custom_shop/.

6. Nicolas Iooss. idrackar, integrated dell remote access controller’s kind approach

to the ram. SSTIC, June 2019. https://www.sstic.org/2019/presentation/

iDRACKAR/.

7. Yves-Alexis Perez, Loïc Duflot, Olivier Levillain, and Guillaume Valadon.

Quelques éléments en matière de sécurité des cartes réseau. SSTIC, June

2010. https://www.sstic.org/2010/presentation/Peut_on_faire_confiance_

aux_cartes_reseau/.

8. Fabien Périgaud, Alexandre Gazet, and Joffrey Czarny. Backdoor-

ing your server through its bmc: the hpe ilo4 case. SSTIC, June

2018. https://www.sstic.org/2018/presentation/backdooring_your_server_

through_its_bmc_the_hpe_ilo4_case/.

9. Sebastian Schmidt. Tensilica xtensa module for ghidra, 2019. https://github.

com/yath/ghidra-xtensa.

10. Sebastian Schmidt. Ghidra pull request #1407: Add tensilica xtensa processor sup-

port, 2020. https://github.com/NationalSecurityAgency/ghidra/pull/1407.

11. Igor Skochinsky. Intel me secrets, hidden code in your chipset and how to discover

what exactly it does. Recon, June 2014. https://recon.cx/2014/slides/Recon%

202014%20Skochinsky.pdf.

12. Guillaume Valadon. Implementing a new cpu architecture for ghidra. BeeRump,

2019. https://guedou.github.io/talks/2019_BeeRump/slides.pdf.

13. Guillaume Valadon. Toshiba mep-c4 for ghidra, 2019. https://github.com/

guedou/ghidra-processor-mep.

14. xyzz. Toshiba mep processor module for ghidra, 2019. https://github.com/xyzz/

ghidra-mep.

https://ghidra.re/courses/languages/index.html
https://ghidra.re/courses/languages/index.html
http://me.bios.io/images/d/dd/ARCompactISA_ProgrammersReference.pdf
http://me.bios.io/images/d/dd/ARCompactISA_ProgrammersReference.pdf
https://github.com/hamishcoleman/thinkpad-ec/blob/v1/docs/chips.txt
https://github.com/hamishcoleman/thinkpad-ec/blob/v1/docs/chips.txt
https://www.sstic.org/2019/presentation/hsm/
https://www.sstic.org/2011/presentation/sticky_fingers_and_kbc_custom_shop/
https://www.sstic.org/2011/presentation/sticky_fingers_and_kbc_custom_shop/
https://www.sstic.org/2019/presentation/iDRACKAR/
https://www.sstic.org/2019/presentation/iDRACKAR/
https://www.sstic.org/2010/presentation/Peut_on_faire_confiance_aux_cartes_reseau/
https://www.sstic.org/2010/presentation/Peut_on_faire_confiance_aux_cartes_reseau/
https://www.sstic.org/2018/presentation/backdooring_your_server_through_its_bmc_the_hpe_ilo4_case/
https://www.sstic.org/2018/presentation/backdooring_your_server_through_its_bmc_the_hpe_ilo4_case/
https://github.com/yath/ghidra-xtensa
https://github.com/yath/ghidra-xtensa
https://github.com/NationalSecurityAgency/ghidra/pull/1407
https://recon.cx/2014/slides/Recon%202014%20Skochinsky.pdf
https://recon.cx/2014/slides/Recon%202014%20Skochinsky.pdf
https://guedou.github.io/talks/2019_BeeRump/slides.pdf
https://github.com/guedou/ghidra-processor-mep
https://github.com/guedou/ghidra-processor-mep
https://github.com/xyzz/ghidra-mep
https://github.com/xyzz/ghidra-mep

	Analyzing ARCompact Firmware with Ghidra
	Introduction
	ARCompact instruction set discovered through Ghidra
	64-bit multiplication
	Loop instruction
	Conclusion

