
Mining AOSP Dependency Graph for
Security
Alexis Challande, Robin David, Guénaël Renault

Who am I?

Me
Alexis Challande, Ph.D. student (2nd year).
CIFRE between Quarkslab and LiX (Ecole Polytechnique/Inria).

2/18

Problem

Problem
Let take a source file F in a project P .
How to find which targets of P contains F after the compilation?

What is a target?

� Product of a compilation rule;

� Examples: an executable, libraries (shared and static)…

3/18

Classical solutions

Handmade process

1. Read the build-file;

2. Find the rules involved to get the final targets;

3. Iterate over every new target using intermediates one.

Building

1. Setup the build environment;

2. Build in debug mode;

3. Read debug information of final targets or parse a compile-db file.

4/18

Classical solutions

Handmade process

� Time consuming;
� Hard for large systems;
� Error-prone.

Building

� Time consuming;
� Need to have a proper build setup;
� Ressource intensive.

4/18

Unified Dependency Graph

Definition
An UDG is a directed graph where:

� Nodes are either source files or compilation targets;

� Edges represent dependency links.

Example

Extract of a Makefile
pres.pdf: pres.tex slides.tex

lualatex pres.tex

pres.tex slides.tex

pres.pdf

5/18

Compilation & Build Systems

GNU autotools (1976)

� Defaut build system of the *NIX world;

� Around the make command.

(More) Recent challengers

� CMake (2000)

� Ninja (2011)

� Bazel (2015)

� Soong (2015)

6/18

Android Open Source Project

What is AOSP?

Android Open
Source Project

~ 2000 projects

80 Go per version

350 branches

248k files C/CPP

2h37 of compilation
(with 56 cores)

142k files Java

6 architectures

7/18

Soong

Soong: a new build system

� Used in AOSP since Android 7;

� Leverage internally Ninja and kati;

� Written in Go;

� Use blueprint files for build directives
(Android.bp).

cc_library_shared {
name: "liblpdump",
defaults: ["lp_defaults"],
shared_libs: ["libbase",

"liblog", "liblp",],↪→

static_libs:
["libjsonpbparse",],↪→

srcs: ["lpdump.cc",
"dynamic.proto",],↪→

}

Figure: Extract of an Android.bp

8/18

From blueprints to UDG

Conversion is doable:

� Blueprint are declarative;

� Syntax is explicit;

� Files are easy to parse.

libbase.so

liblog.so

liblp.so

libjsonparse.a

lpdump.cc

dynamic.proto

liblpdump.so

Figure: Extract of the UDG for liblpdump.so.

9/18

Theoretical grounds

Theorem
A target A is dependent of B if and only if a path exists in the UDG from B to A.

Properties

� The graph induced by a source node represents all its dependencies;

� The intersection of two induced graphs represents common dependencies between
two targets.

10/18

UDG applied to AOSP

Constructing process for one Android version

1. Checkout all Android.bp files;

2. Parse modules;

3. Construct the UDG;

4. Save and use.

Strengths

� Fully static: No building time.

� Sparse: Almost no checkout.

� Accurate: No guessing.

11/18

Figures

125 Mo

80 Go

BGraph AOSP

15min

2h30

BGraph AOSP

Disk usage Building time

12/18

Tool overview

BGraph: Unified Dependency Graphs for AOSP

� Generates and queries bgraphs;

� Outputs in multiple formats (text, JSON, dot);
� Works also with a local AOSP mirror;

� Written in Python (Licence Apache 2.0).

� Available on GitHub at https://github.com/quarkslab/bgraph.1

1Usually works.
13/18

https://github.com/quarkslab/bgraph

Examples

CVE-2020-0471

CVE-2020-0471

� Fixed in January 2021 in the commit ca6b0a21;
� Packet injection in Bluetooth connexions leading to an EoP;

� Patch modified packet_fragmenter.cc.

Query

Which entry points in the system that could be impacted by this vulnerability?

15/18

CVE-2020-0471

Query

Which entry points in the system that could be impacted by this vulnerability?

% bgraph query graphs/android-11.0.0_r31.bgraph --src
'packet_fragmenter.cc'↪→

Dependencies for source file packet_fragmenter.cc
| |

Target | Type | Distance
=============|===================|==========
libbt-hci | cc_library_static | 1
libbluetooth | cc_library_shared | 2
libbt-stack | cc_library_static | 2
Bluetooth | android_app | 3

15/18

Static vulnerabilities

Definition
A vulnerability affecting a static library is called static vulnerability.

Query

What are the static vulnerabilities in AOSP (with CVE identifiers)?

16/18

Static vulnerabilities

Query

What are the static vulnerabilities in AOSP (with CVE identifiers)?

Algorithm

(0.) List vulnerabilities on AOSP.

1. For each vulnerability, list affected files.

2. For each of the affected files, get the first descendent.

3. Accept the CVE if the first descendent is a static library.

16/18

Static vulnerabilities

Query

What are the static vulnerabilities in AOSP (with CVE identifiers)?

def is_static_lib_vuln(graph: networkx.DiGraph, vuln: Cve) -> bool:
Find the (first) target in the graph
_, targets = bgraph.viewer.find_target(graph, vuln.file, radius=1)
Resolve node types
node_types = set(bgraph.viewer.get_node_type(graph.nodes[targets[0]],

all_types=True))↪→

return 'cc_library_static' in node_types

16/18

Static vulnerabilities

Query

What are the static vulnerabilities in AOSP (with CVE identifiers)?

Results
∼370 vulnerabilities were found, mostly affecting the Media Framework and the System
component.

Artefacts are available in the repository.

16/18

Conclusion

BGraph limitations

� Rely on the exhaustivity on Soong build system;
� Incomplete parsing/support of blueprint files.

Strengths

� Resolve the source to target propagation problem.
� Fast and scalable.

� AOSP is an awesome security playground and could bootstrap more security oriented research.

17/18

Thank you
Contact information:

� achallande@quarkslab.com

� +33 1 58 30 81 51

� https://www.quarkslab.com

18/18

https://www.quarkslab.com

