
Defeating a Secure Element with Multiple Laser

Fault Injections

Olivier Hériveaux

Ledger Donjon

Abstract. In 2020, we evaluated the Microchip ATECC508A Secure
Memory circuit. We identified a vulnerability allowing an attacker to read
a secret data slot using single Laser Fault Injection. Subsequently, the
product life cycle of this chip turned to be deprecated, and the circuit
has been superseded by the ATECC608A, supposedly more secure. We
present a new attack allowing retrieval of the same data slot secret for
this new chip, using a double Laser Fault Injection to bypass two security
tests during a single command execution. A particular hardware wallet is
vulnerable to this attack, as it allows stealing the secret seed protected by
the Secure Element. This work was conducted in a black box approach. We
explain the attack path identification process, using help from power trace
analysis and up to 4 faults in a single command, during an intermediate
testing campaign. We construct a firmware implementation hypothesis
based on our results to explain how the security and one double-check
counter-measure are bypassed.

1 Introduction

The Microchip (formerly Atmel) ATECC608A is a secure memory
offering a fixed set of commands to manage secret keys, encrypt and
store secret data, run cryptographic operations to perform authentica-
tion, process secure boot verification, etc. We studied a previous chip
version, the ATECC508A, and reported last year a vulnerability to the
manufacturer, which allows extracting a secret data slot using Laser Fault
Injection [2]. Microchip is working actively to improve this circuit, and as
the ATECC508A has been deprecated, we were motivated to have a look
on its successor and observe it’s security improvements. We don’t have
any access to the chip design files or source code, and all our work is done
in black box approach.

Laser Fault Injection is a well known and mature technique used
during the security evaluation of circuits. In brief, this powerful tool allows
an attacker to precisely inject errors during the computation of a chip,
to bypass security features. This technique has been presented in many
previous publications [4–7], and this paper will assume the reader has basic

2 Defeating a Secure Element with Multiple Laser Fault Injections

understanding of fault injection and power trace analysis. The reader may
refer to our previous publication [2] as this new study is a continuation of
our previous work.

The first part of this paper briefly presents the evaluated circuit and
the targeted assets, for a particular hardware wallet application. Indeed,
the presented attack only exploits one security feature of this multipurpose
chip: the general purpose secret data slots. P256 key storages are not
vulnerable to this attack, though we don’t exclude derivative work might
compromise them. We also recap the experimental setup used for fault
injection.

The second part of this paper details our fault characterization work
on the EEPROM memory of the chip, conducted in black box, which
allowed us to identify a precise fault model, required to construct the
subsequent sophisticated attack path.

The last part walks through the many progressive attack steps we
led until the final successful attack. We tried different attack campaigns
with one or more faults, and each result allowed us to progressively refine
our firmware implementation hypothesis. In particular, we present an
intermediate attack using 4 faults injection. This quadruple fault attack
was unsuccessful, but its results helped us to understand the device
firmware implementation and then find out that only two well chosen
faults are enough to bypass the security checks. Fault injection in black
box approach is known to be difficult, and therefore performing multiple
faults was challenging!

2 Application

As described in our previous paper [2], the Coldcard Mk2 hardware
wallet was using the ATECC508A secure memory to store the secret
seed and protect its access with a PIN code. This wallet was therefore
vulnerable to our attack on the ATECC508A.

The latest revision, the Coldcard Mk3, uses the new ATECC608A
circuit for enhanced security. The presented work shows the wallet secrets
stored in the ATECC608A can still be retrieved using Laser Fault Injection,
but with higher effort. One particular data slot is targeted: the PIN hash
data slot, which unlocks access to the seed data slot. Moreover, this new
wallet revision now encrypts the seed using a secret key stored in the main
microcontroller, a STM32L496, thus attacking the ATECC608A secure
memory is not enough to access the funds. STM32 devices are known to

O. Hériveaux 3

be weak from previous publications [3], and we managed to successfully
attack this microcontroller as well, with a high success probability.

3 Chip identification

Laser Fault Injection requires access to the circuit’s silicon substrate.
We performed backside package decapsulation and infra-red imaging to
have a brief look at the chip internal structure. Surprisingly, we did not
find any visible difference between this chip and its predecessor. Yet this
new circuit provides more functionalities, so we considered two possible
options:

— Option 1: The chip is exactly identical, and a programming fuse
in EEPROM selects between ATECC508A or ATECC608A to
enable the new features. The ATECC608A is backward compatible,
and furthermore, some settings in EEPROM memory are marked
as Reserved in the old version and used in the latest one. As we
discovered through our experiments, the software implementation
of the Read Memory command is hardened in the ATECC608A,
so this hypothesis is unlikely.

— Option 2: Only the ROM memory, storing the firmware of the
chip, has different programming. This allows the manufacturer to
reuse most of the wafer masks for this new version production,
which is cost-effective. Deprocessing and optical or SEM imaging
can confirm or disprove this hypothesis, but we are not equipped
for this.

As the circuit hardware seems to be exactly the same, we decided to
try to perform the same attack which worked for the ATECC508A. In
this attack, we faulted the instructions to bypass a test on the IsSecret

data slot flag, by illuminating the ROM memory with a short laser pulse.

After several attempts, we did not manage to pass this attack. We
obtained circuit errors and crashes, but not a single secret data slot could
be extracted with this method. Our following work in this paper explains
why the same attack did not succeed.

4 Experimental setup

Our experimental setup for the described study is similar to what
we presented in our previous paper for the ATECC508A. The device
under test is plugged in our Scaffold [1] testing motherboard. This board

4 Defeating a Secure Element with Multiple Laser Fault Injections

sends I2C commands to the secure memory and generates synchronization
signals for fault injection.

Faults are injected using an infra-red pulsed laser source and a mi-
croscope for focusing. We used a 20X objective, hence the laser beam is
about 3 µm. Nonetheless our experiments revealed that spatial resolution
is not important for applying the vulnerability we found. In particular, we
believe this might be reproduced with much cheaper equipment (< 10k$).

Studying this circuit was done in black box approach. To understand
the behavior of the chip, we used a resistor to measure the electrical current
consumed by the device. The signal was amplified with an analog amplifier
embedded in Scaffold, and we used an oscilloscope to record the traces.
In the following presented power traces, the reader may observe the raw
waveforms are very noisy and difficult to read. For this paper, we replayed
most of the attack steps, recorded lots of traces and averaged them to
clearly show the differences between faulty executions and nominal ones.
That was easy to do once we found the vulnerabilities, but it does not
reflect the real conditions we were working in black box.

Fig. 1. Scaffold motherboard under the microscope

O. Hériveaux 5

Fig. 2. Backside decapsulated ATECC608A chip, soldered on Scaffold daughter-
board.

5 From self-test abuse to fault model identification

After 1.3 seconds of inactivity, the ATECC608A watchdog puts the
chip into sleep mode automatically, for power saving. Issuing commands
requires waking up the chip before, by holding low the I2C SDA input
pin for a defined duration. When executing this wake up sequence, we
remarked on the power trace a 800 µs long processing operation executed
by the chip. Leaving a sleep state should not be a complex operation for
a chip, so we initially supposed the access conditions to the data slots
might be parsed and compiled at this time and cached in RAM for further
use. We decided to inject faults during the wake up sequence and then
execute the Read Memory command without fault injection to see if wake
up sequence corruption has any effect on following commands.

During this campaign, lots of faults led to an unknown error code
0x07 being returned by the chip when calling Read Memory after wake up.
After investigation, we found out this error means the chip self-test failed.
We found this information in the ATECC608A-TNGTLS documentation,
which is a pre-provisioned variant of the ATECC608A and whose complete
datasheet is not under NDA yet.

104814 fault injections have been performed and 1567 experiments
resulted in self-test failure. Figure 3 plots the fault injection time for self-
test error events. Each dot matches an experiment. Abscissa represents
injection times, and ordinate corresponds to experiments number. We can
observe several vertical bands, evenly spaced by 5 µs intervals, showing

6 Defeating a Secure Element with Multiple Laser Fault Injections

that self-test errors happen at particular injection times. As faults are
injected in the EEPROM memory, we concluded the circuit performs 84
EEPROM memory accesses during wake up.

Also, some bands are missing, or have only a single fault event. We
supposed the fetched corresponding bytes had a special value, and we
matched those "holes" to null bytes of two EEPROM CONFIG data
segments, as highlighted in Table 1, and illustrated in Figure 3 (see
EEPROM CONFIG segments data overlaid at the bottom).

EEPROM config address Data
(decimal) (hexadecimal)

0: 01231e310000600208ae6592ee014500

16: c000550000008f2d8f808f438f440043

32: 00448f478f48c343c444c747c8488f4d

48: 8f430000ffffffff00000000ffffffff

64: 00000000ffffffffffffffffffffffff

80: ffffffff00000000ffff000000000000

96: 3c005c00bc01fc01fc019c019c01fc01

112: fc01dc03dc04dc07dc08fc01dc013c00

Table 1. The two segments of EEPROM CONFIG data read during wake up.

— Bytes 0 to 51 include device serial number and revision, various
device option bits, and data slots configuration.

— Bytes 96 to 127 correspond to the keys configuration.

We understood a checksum is calculated over those configuration
bytes to detect settings corruption. Indeed, the chip must have hardware
support for CRC-16 with polynomial 0x8005 since it is used for commands
transmission error detection. This CRC-16 engine is probably reused for
the self-test.

Zooming in the last band (Figure 3 bottom zoom) reveals two bytes
are fetched at very close time. We believe this is the 16-bit CRC value
the configuration data checksum is compared with.

From this experiment, we can infer the fault model with confidence:
we are easily able to stick bits to zero during EEPROM readout. For a
fixed injection time targeting a non null byte readout, we are able to fault
with 97% probability.

In Figure 4, each byte of the checked configuration data is plotted
depending on its hamming weight and the number of times it was faulted.
We don’t have any data byte with 7 or 8 hamming weight. This figure
shows the chances to fault a byte is little dependent on its hamming

O. Hériveaux 7

600 µs 700 µs 800 µs 900 µs 1000 µs

0
1

2
3

1
e

3
1

0
0

0
0

6
0

0
2

0
8

a
e

6
5

9
2

e
e

0
1

4
5

0
0

c
0

0
0

5
5

0
0

0
0

0
0

8
f

2
d

8
f

8
0

8
f

4
3

8
f

4
4

0
0

4
3

0
0

4
4

8
f

4
7

8
f

4
8

c
3

4
3

c
4

4
4

c
7

4
7

c
8

4
8

8
f

4
d

8
f

4
3

0
0

0
0

5
2

3
c

0
0

5
c

0
0

b
c

0
1

f
c

0
1

f
c

0
1

9
c

0
1

9
c

0
1

f
c

0
1

f
c

0
1

d
c

0
3

d
c

0
4

d
c

0
7

d
c

0
8

f
c

0
1

d
c

0
1

3
c

0
0

580 µs 600 µs 620 µs 640 µs 660 µs

01 23 1e 31 00 00 60 02 08 ae 65 92 ee 01 45 00

Zoom

dc 01 3c 00 CRCCRC

Zoom

Fig. 3. Instant of fault injection in EEPROM memory, during wake up.

8 Defeating a Secure Element with Multiple Laser Fault Injections

weight, and therefore most of the faults sets all bits of the fetched byte to
zero.

0 1 2 3 4 5 6 7
10

15

20

25

30

35

40
Median

Mean

Fig. 4. Relation between byte fault count and hamming weight

We also observed few occurrences of faulted null bytes. Such faults
occurred near the bottom EEPROM decoder, at the edge of our scanning
area (See Figure 5). We ran another characterization campaign exclusively
on the bottom decoder, and we were able to reproduce those faults.
After tuning the parameters, we were able to fault null bytes with 75%
probability.

6 Fault model exploitation

As already highlighted in our previous work about the ATECC508A,
only one bit in the configuration of a data slot defines it as secret (See
Table 2). Since we have a reliable way of overwriting a configuration
byte to zero, we decided to try faulting the Read Memory command by
smashing the configuration byte fetch in EEPROM memory to disable
the IsSecret flag. This is a different approach as we did previously on
the ATECC508A where we faulted instructions of the ROM memory, in a
much less reliable way.

O. Hériveaux 9

Fig. 5. Top circle area in EEPROM: sets bits to zero. Bottom circle area in
EEPROM: sets bits to one.

Name Value Comments

Raw 0x8f43 Slot configuration value

Write config encrypt Writes are always encrypted

Write key 0x3 Write encryption key index

Read key 0xf Read encryption key index

Is secret True This data slot can never be read

Encrypt read False
Read are forbidden by "is secret" flag, but allowing plain
text can help us if we manage to bypass "is secret" flag.

No MAC False MAC and HMAC commands with this data slot are allowed.

Table 2. Targeted data slot configuration (Recap from [2])

10 Defeating a Secure Element with Multiple Laser Fault Injections

6.1 Single fault trial

The electrical current consumed by a circuit depends directly on its
activity, and in particular on memory accesses and instructions executed
by the processor. To find when the fault must be injected, we performed a
differential power analysis in order to detect behavioral difference whether
the Read Memory command is accepted or denied.

As the signal is very noisy, probably because of a counter-measure from
the chip, we averaged 500 of them to make the execution path difference
clearer. Figure 6 shows single traces in light colors, and averaged traces in
dark color. The single traces have been filtered by a fifth order Butterworth
1 MHz low-pass filter to reduce noise. We can observe the execution path
between accepted and denied calls differs at 363 µs.

200 µs 400 µs 600 µs 800 µs 1000 µs 1200 µs

Averaged read allowed

Averaged read denied

Zoom

Command
reception

Start of processing
End of processing

Execution path difference

Fig. 6. Power traces comparison for Read Memory command. Single traces in light
colors, averaged traces in dark colors.

Similar to what’s been presented in our previous paper, this experiment
gives the instant of execution branch depending on the IsSecret flag
value. In the attack of the ATECC508A, we faulted the branch instruction
during program execution. This time, we wanted to fault the IsSecret

configuration byte fetch from EEPROM memory, which should happen

O. Hériveaux 11

200 µs 400 µs 600 µs 800 µs 1000 µs 1200 µs

Averaged read allowed

Averaged faulted

Zoom

Laser effect

EEPROM read executed

Second execution path difference

Fig. 7. Averaged first check fault bypassing.

earlier. We could not find when the memory fetch occurs from this analysis,
because it is executed in both cases, but we can assume it is close to
the divergence, which gave us a small time frame to try. Listing 1 is a
simplified pseudo-code hypothesis of what we are trying to exploit with a
single fault.

We ran an attack campaign with varying fault injection time, which
quickly produced interesting faults leading to a new observable execution
path (Figure 7). Unfortunately, the obtained power trace did not match
the expected trace in case of success and the circuit also returned the
EXECUTION_ERROR code.

Looking in detail the new execution trace in Figure 7, we see the
32 bytes EEPROM memory read was performed successfully, but right
after the transfer loop, the traces do not match anymore which means
the execution paths differ. Our interpretation was we had successfully
bypassed the security check, but later the chip executes some unexpected
branch. We thought the chip might perform a second security check, maybe
by reading a second time the IsSecret flag. For this reason, we decided to
try injecting a second fault to bypass this second test, still by overwriting
to zero the IsSecret security flag stored in EEPROM memory.

12 Defeating a Secure Element with Multiple Laser Fault Injections

void read_memory_command (int slot){

uint16_t config ;

// Access condition checking

// Fault EEPROM access here :

eeprom_read (get_config_address (slot), &config , 2);

if (config & IS_SECRET){

i2c_transmit (EXECUTION_ERROR);

return ;

} else {

// Data fetch

char buf [32];

eeprom_read (get_data_address (slot), buf , 32);

// Send response

i2c_transmit (OK , buf);

}

}

Listing 1. Pseudo-code hypothesis for single fault attack

6.2 Double fault trial

Identifying the correct time for a second fault injection was a bit harder
as averaging would have required too much work. We used the differential
analysis on single traces, and scanned a temporal window around the
observable difference. For this paper, we finally spent time averaging the
traces to make it clearer.

During this second campaign, both first and second faults successfully
branched the code as planned, and the execution trace matched the
expected one much longer. As shown in Figure 8, unfortunately again, a
later branch in the execution was different and the chip response was still
EXECUTION_ERROR.

6.3 Quadruple fault trial

On the right in Figure 8, we can observe a loop pattern similar to the
first 32 bytes EEPROM memory read. The loop is not very clear because
the jitter is more important at this time (temporal noise accumulates over
time and blurs the measurements).

We understood the chip reads the content of the data slot twice,
and compares the results to detect read corruptions from fault attacks.
Indeed, during our characterization work, we did not manage to fault a
32 bytes memory read on a public data slot. This was possible on the
older ATECC508A, but this new revision of the chip has this double-read
counter-measure.

O. Hériveaux 13

200 µs 400 µs 600 µs 800 µs 1000 µs 1200 µs

Averaged read allowed

Averaged double faulted

Zoom
Second laser fault injection

Third execution path difference

Another 32 bytes
EEPROM read

expected ?

Fig. 8. Averaged first and second checks fault bypassing.

200 µs 400 µs 600 µs 800 µs 1000 µs 1200 µs

Averaged read allowed

Averaged quadruple faulted

Zoom

Fig. 9. Averaged trace of quadruple fault injection, which sticks to the expected
trace in case of success.

14 Defeating a Secure Element with Multiple Laser Fault Injections

Therefore, bypassing the third check was similar to bypassing the first
one, and a fourth fault identical to the second one was also required.

After one day long testing campaign, one experiment with 4 faults
resulted in a OK response from the chip, and 32 bytes of data were returned!
The measured power trace was exactly matching the expected one (see
Figure 9), but the returned data was different from what we initially
programmed inside the device. Reusing the same fault injection settings,
we managed to execute the Read Memory command multiple times, with
the exact unfortunate issue.

7 Successful double fault attack

The ATECC608A provides the AES command allowing to encrypt or
decrypt data using a defined key (128 bits keys according to the datasheet).
We recorded and averaged power traces when executing this command,
which is presented on the top trace of Figure 10. 16 bytes are encrypted,
and 10 AES rounds execution is clearly visible. This remarkable pattern is
also visible in the power trace of our single fault early campaign (bottom
trace of Figure 10 and Figure 7). We see the AES is executed twice during
the Read Memory execution, which matches the command read length: 32
bytes, 2 blocks.

From this, we understood that the secret data we tried to extract was
probably encrypted in the EEPROM memory using the AES algorithm
with an internal key. In the power trace of Figure 7, we can observe the
circuit probably decrypted the data slot, and then failed at a second
access checking. This decryption does not occur for public data slots,
and so our first hypothesis of execution paths were incorrect. Indeed, the
circuit fetches from EEPROM the IsSecret flag one more time to enable
decryption or not.

In our quadruple fault attack, we force the circuit to follow the same
execution path as for public data slots. The faults 2 and 4 do not bypass
security checks, but prevent data decryption, and removing them should
allow us to read and decrypt our secret data slot correctly.

After some testing of double fault attack, we managed to extract the
content of the data slot, in plaintext. Since the power traces now include
AES decryption, the second fault time to bypass the second security check
had to be changed, as shown in Figure 11.

All those experiments helped us to infer a probable hypothetical imple-
mentation of the firmware Read Memory command, which is presented in
Listing 2. Please note this is a very simplified model, with lots of shortcuts,

O. Hériveaux 15

Execution of AES command

Faulted execution of Read Memory command

AES 10 rounds

Fault injection

AES block 1 AES block 2

Fig. 10. AES execution in traces

Fault injection Fault injection

EEPROM
read

32 bytes

AES decryption
2 blocks

EEPROM
read

32 bytes

AES decryption
2 blocks

Results
comparison

Fig. 11. Power trace for successful double-fault attack

16 Defeating a Secure Element with Multiple Laser Fault Injections

whose goal is only to help understanding the attack path. Indeed many
parameters and other functionalities of the command are ignored.

/**

* Handles read memory command (called by the command dispatcher).

* Result code and data are transmitted by I2C .

* This is very simplified , since it ignores block and offset

* parameters , response encryption , etc.

* @param index Data slot number .

*/

void read_memory_command (int slot){

// Command arguments checking

// During attack campaigns , some faults produced PARSE_ERROR

// responses .

if (! slot_valid (slot)){

i2c_transmit (PARSE_ERROR);

return ;

}

uint16_t config ;

// First Access condition checking

// Fault EEPROM access here :

eeprom_read (get_config_address (slot), &config , 2);

if (config & IS_SECRET){

i2c_transmit (EXECUTION_ERROR);

return ;

}

// First data fetch

char buf_a [32];

internal_get_slot_data (slot , buf_a);

// Second access condition checking

// Fault EEPROM access here :

eeprom_read (get_config_address (slot), &config , 2);

if (config & IS_SECRET){

i2c_transmit (EXECUTION_ERROR);

return ;

}

// Second data fetch

char buf_b [32];

internal_get_slot_data (slot , buf_b);

// Double read checking

if (memcmp (buf_a , buf_b)){

i2c_transmit (EXECUTION_ERROR);

} else {

i2c_transmit (OK , buf_a);

}

}

O. Hériveaux 17

/**

* Get data slot content . Decrypt it if necessary .

* @param index Data slot number

* @param dest Destination buffer where the data slot content is

* copied .

*/

int internal_get_slot_data (int slot , char * dest){

uint16_t config ;

// Don ’t fault here :

eeprom_read (get_config_address (slot), &config , 2);

if (config & IS_SECRET){

char encrypted [32];

eeprom_read (get_data_address (slot), encrypted , 32);

aes_decrypt (encrypted , dest , SOME_INTERNAL_KEY);

} else {

eeprom_read (get_data_address (slot), dest , 32);

}

return OK;

}

Listing 2. Pseudo-code hypothesis corresponding to our successful double fault
attack

8 Success rate improvement

Faulting 4 times a chip in a single execution is a very difficult task.
Given 4 faults F1..4 with independent success probabilities P (F1..4), the
probability to pass successfully the complete attack is:

Psuccess = P (F1).P (F2).P (F3).P (F4)

That is for instance, if every P1..4 is 5%, which can be considered a
good success rate for a single fault attack, then Psuccess = 1/160000, which
is very low, especially when there is a chance to destroy the circuit with a
fault. Therefore to make the quadruple fault attack reliable and realistic,
we had to optimize the success rate of each fault, and we spent time tuning
the fault injection parameters (this was done before discovering only two
faults were necessary). In the end, we have reached very high success
rates, as detailed in Table 3. Each experimental probability measurement
is calculated over 500 experiments.

The most difficult fault to calibrate is the first one, as clock jitter
makes fault injection time uncertain and the fault injection is before the
execution divergence at an unknown instant (we are faulting the EEPROM
configuration memory fetch, not the flag branch).

Finding the offset for the second fault is also a bit challenging for the
same reasons. However, as it is very soon after the first fault, the jitter is
much smaller.

18 Defeating a Secure Element with Multiple Laser Fault Injections

Calculating the fault injection time for faults 3 and 4 is very easy.
Since the power trace pattern for those two faults is the same as the first
two faults, we can directly measure the time between the two EEPROM
fetches on the averaged power trace for a public data slot. Then the time
between fault 3 and 4 is the same as the time between 1 and 2.

Faults success rates Comments

P (F1) = 95.8% Data slot read, but EXECUTION_ERROR status
Experimental measurement

P (F2) = 91.1% Calculated result

P (F3) = 97.8% Calculated result

P (F4) = 93.5% Calculated result

P (F1).P (F2) = 87.3% Data slot read, but EXECUTION_ERROR status
Experimental measurement

P (F1).P (F2).P (F3).P (F4) = 79.8% Data received, but encrypted
Experimental measurement

P (F1).P (F3) = 93.7% Successful attack

Data received in plaintext

Experimental measurement

Table 3. Fault success rate overview

One more difficulty was to discriminate the successful faults for building
up statistics. Indeed, as the chip always sends the same EXECUTION_ERROR

response, the only way to distinguish between a successful fault and a
failed one is by looking at the power trace. We found that measuring the
command execution duration from the power trace was a good oracle, and
therefore we could automate the selection easily.

9 Conclusion

The checksum performed in the wake up sequence of the device to
verify the integrity of the configuration is probably a counter-measure to
prevent EEPROM bits erasure attacks under ultraviolet light. Ironically,
this was a great help for us to establish our fault model and then use
this tool with enough confidence to dare performing multiple faults attack
campaigns, in black box.

This work highlighted a double-check counter-measure which has been
added to this new circuit revision. It is probable that other functionalities of
the chip have been hardened as well. However, we demonstrated the ability
to manipulate EEPROM memory fetches easily can allow an attacker to

O. Hériveaux 19

inject many faults to disrupt a single command. Indeed our fault success
rate is very high, and the attack is therefore easy to reproduce and not
very risky.

We have to honestly emphasis that our previous experience on the
ATECC508A device was undoubtedly helpful to find the vulnerability on
its successor. For any evaluated circuit in black box approach, it may be
a good idea to try breaking previous silicon revisions to understand how
the chip works and what are its weaknesses, and then raise the bar by
trying hardened versions.

More counter-measures can increase the security of the circuit and
make this attack much harder:

— Clock jittering: by adding noise to the execution speed of the circuit,
the success rate of the attack may drastically decrease as it becomes
difficult to inject faults at the right time. Although hardware
generated jitter is probably best, a software implementation with
random delays can nonetheless be efficient.

— Light sensors: some Secure Elements embeds light sensors to de-
tect laser illumination. However, this requires heavy hardware
modifications. It can be tedious to implement and may also be
patented. This is probably the best counter-measure against laser
fault attacks.

— Adding error detection codes to memories highly reduces the
chances of injecting an undetected fault. Once again this requires
heavy silicon modifications. It also increases the surface of the
circuit and consequently rises the price of the circuit.

— Killing the chip permanently on tampering detection (for instance
if a double-check fails) makes very hard vulnerability research.

Today a new circuit revision is out, the ATECC608B, and the
ATECC608A is not recommended for new designs anymore. This compo-
nent is now available for purchase. . .

References

1. Ledger Donjon. Scaffold, 2019. https://github.com/Ledger-Donjon/scaffold.

2. Olivier Heriveaux. Black-Box Laser Fault Injection on a Secure Memory. Symposium

sur la sécurité des technologies de l’information et des communications - SSTIC

2020, 2020. https://www.sstic.org/2020/presentation/blackbox_laser_fault_

injection_on_a_secure_memory/.

3. Kraken. Inside Kraken Security Labs: Flaw Found in Keepkey Crypto Hardware
Wallet, 2020. https://blog.kraken.com/post/3248/flaw-found-in-keepkey-

crypto-hardware-wallet-part-2/.

https://github.com/Ledger-Donjon/scaffold
https://www.sstic.org/2020/presentation/blackbox_laser_fault_injection_on_a_secure_memory/
https://www.sstic.org/2020/presentation/blackbox_laser_fault_injection_on_a_secure_memory/
https://blog.kraken.com/post/3248/flaw-found-in-keepkey-crypto-hardware-wallet-part-2/
https://blog.kraken.com/post/3248/flaw-found-in-keepkey-crypto-hardware-wallet-part-2/

20 Defeating a Secure Element with Multiple Laser Fault Injections

4. Johannes Obermaier and Stefan Tatschner. Shedding too much Light on a Micro-
controller’s Firmware Protection. 11th USENIX Workshop on Offensive Technolo-

gies - WOOT 17, 2017. https://www.usenix.org/conference/woot17/workshop-

program/presentation/obermaier.

5. Sergei P. Skorobogatov. Optical Fault Masking Attacks. 2010 Workshop on Fault

Diagnosis and Tolerance in Cryptography, pages 23–29, 2010.

6. Sergei P. Skorobogatov and Ross J. Anderson. Optical Fault Induction Attacks.
pages 2–12. Springer, 2003.

7. Jasper. G. J. van Woudenberg, Marc F. Witteman, and Frederico Menarini. Practical
optical fault injection on secure microcontrollers. 2011 Workshop on Fault Diagnosis

and Tolerance in Cryptography, pages 91–99, 2011.

https://www.usenix.org/conference/woot17/workshop-program/presentation/obermaier
https://www.usenix.org/conference/woot17/workshop-program/presentation/obermaier

	Defeating a Secure Element with Multiple Laser Fault Injections

