
EEPROM
It Will All End in Tears

Philippe Teuwen
Christian Herrmann



Physical tearing

Source: IDF Mobilités 2/51



Plan

▶ Exploring RFID tearing events
▶ EEPROM physics
▶ How to control tearing effects
▶ Which security features to target
▶ Attack examples
▶ Tooling

Approximative order…

3/51



Electrical tearing

4/51



Toolbox: Proxmark3 RDV4

5/51



Interrupting a WRITE command

Example: a MIFARE Ultralight

1. Choose a user memory address, e.g. block 4
2. Set an initial value

▶ WRITE(4, 0xFFFFFFFF)
3. Launch a second write and interrupt it

▶ WRITE(4, 0xFFFFFFFF)
▶ Shutdown reader field after N µs

4. Read memory block
▶ READ(4)

5. Adjust timings, goto step 2

6/51



Interrupting a WRITE command (0..3 ms)

WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 200 µs → READ → FFFFFFFF
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 400 µs → READ → FFFFFFFF
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 600 µs → READ → 00000000
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 800 µs → READ → 00000000
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 1000 µs → READ → 00000000
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 1200 µs → READ → 00000000
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 1400 µs → READ → 00000000
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 1600 µs → READ → 00000000
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 1800 µs → READ → 00000000
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 2000 µs → READ → 00000000
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 2200 µs → READ → 00000000
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 2400 µs → READ → FFFFFFFF
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 2600 µs → READ → FFFFFFFF
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 2800 µs → READ → FFFFFFFF
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 3000 µs → READ → FFFFFFFF

7/51



Finding interesting targets

▶ Security features involving EEPROM erase and/or write

▶ That can be triggered by attacker
▶ But final result supposedly not under attacker control

8/51



Example

MIK640M2D, ”Ultralight” by Mikron
9/51



Example

OTP = One-Time Programmable bits

10/51



Example: poorly implemented OTP

READ(3) → 0x12345678
WRITE(3, 0x00000001)
▶ read(3) = 0x12345678
▶ 0x12345678 OR 0x00000001 = 0x12345679
▶ write(3, 0x12345679)

READ(3) → 0x12345679

11/51



Example: poorly implemented OTP

READ(3) → 0x12345678
WRITE(3, 0x00000001)
▶ read(3) = 0x12345678
▶ 0x12345678 OR 0x00000001 = 0x12345679
▶ erase(3)
▶ write(3, 0x12345679)

READ(3) → 0x12345679

11/51



Example: poorly implemented OTP

READ(3) → 0x12345678
WRITE(3, 0x00000001)
▶ read(3) = 0x12345678
▶ 0x12345678 OR 0x00000001 = 0x12345679
▶ erase(3)
▶ TEAR-OFF before write(3, 0x12345679)

READ(3) → 0x00000000

Attack published by Grisolìa and Ukmar in 2020

11/51



Interrupting a WRITE command (0..3 ms)

WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 200 µs → READ → FFFFFFFF
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 400 µs → READ → FFFFFFFF
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 600 µs → READ → 00000000
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 800 µs → READ → 00000000
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 1000 µs → READ → 00000000
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 1200 µs → READ → 00000000
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 1400 µs → READ → 00000000
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 1600 µs → READ → 00000000
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 1800 µs → READ → 00000000
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 2000 µs → READ → 00000000
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 2200 µs → READ → 00000000
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 2400 µs → READ → FFFFFFFF
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 2600 µs → READ → FFFFFFFF
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 2800 µs → READ → FFFFFFFF
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 3000 µs → READ → FFFFFFFF

12/51



Tear-off during first transition phase

WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 546 µs → READ → FFFFFFFF
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 548 µs → READ → FBFFFFFF
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 550 µs → READ → FBFFFFFF
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 552 µs → READ → FBFFFFFF
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 554 µs → READ → FBFFFFFF
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 556 µs → READ → F3DFF7FB
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 558 µs → READ → F1CFF6FB
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 560 µs → READ → F0CF76FB
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 562 µs → READ → E0CF42DB
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 564 µs → READ → E0010003
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 566 µs → READ → 60010003
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 568 µs → READ → 60010001
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 570 µs → READ → 60000001
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 572 µs → READ → 20000001
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 574 µs → READ → 20000000
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 576 µs → READ → 00000000

13/51



Tear-off during second transition phase

WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 2356 µs → READ → 00000000
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 2358 µs → READ → 0235005B
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 2360 µs → READ → 8275007B
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 2362 µs → READ → 8AFD00FB
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 2364 µs → READ → 8EFD00FB
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 2366 µs → READ → AFFD3DFF
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 2368 µs → READ → AFFFBFFF
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 2370 µs → READ → EFFFFFFF
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 2372 µs → READ → FFFFFFFF

14/51



Bad analogy

15/51



EEPROM Transistor

silicon dioxide
(insulator)

silicon substrate

p-type silicon
n-type silicon

n-channel

floating gate
control gate

metal tracks

source draingate

16/51



Erasing an EEPROM Byte

0%

50%

100%

01234567

readout at 50%:

11111111

= 0xFF

17/51



Erasing an EEPROM Byte

0%

50%

100%

01234567

readout at 50%:

11111111

= 0xFF

18/51



Erasing an EEPROM Byte

0%

50%

100%

01234567

readout at 50%:

11111001

= 0xF9

19/51



Erasing an EEPROM Byte

0%

50%

100%

01234567

readout at 50%:

11000000

= 0xC0

20/51



Erasing an EEPROM Byte: weak bits

0%

50%

100%

01234567

readout at 50%:

11?11001

= ??

21/51



Erasing an EEPROM Byte: weak bits

0%

50%

100%

01234567

readout at 52%:

11011001

= 0xD9

22/51



Erasing an EEPROM Byte: weak bits

0%

50%

100%

01234567

readout at 47%:

11111001

= 0xF9

23/51



Tear-off during first transition phase

WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 546 µs → READ → FFFFFFFF
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 548 µs → READ → FBFFFFFF
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 550 µs → READ → FBFFFFFF
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 552 µs → READ → FBFFFFFF
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 554 µs → READ → FBFFFFFF
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 556 µs → READ → F3DFF7FB
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 558 µs → READ → F1CFF6FB
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 560 µs → READ → F0CF76FB
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 562 µs → READ → E0CF42DB
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 564 µs → READ → E0010003
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 566 µs → READ → 60010003
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 568 µs → READ → 60010001
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 570 µs → READ → 60000001
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 572 µs → READ → 20000001
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 574 µs → READ → 20000000
WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 576 µs → READ → 00000000

24/51



Progressive Tear-off during first phase

WRITE FFFFFFFF → WRITE FFFFFFFF with tearing at 500 µs → READ → FFFFFFFF
→ WRITE FFFFFFFF with tearing at 300 µs → READ → FFFFFFFF
repeated 20 times, still no visible change, then…
→ WRITE FFFFFFFF with tearing at 300 µs → READ → FBFFFFFF
→ WRITE FFFFFFFF with tearing at 300 µs → READ → FBFFFFFF
→ WRITE FFFFFFFF with tearing at 300 µs → READ → FBFFFFFF
→ WRITE FFFFFFFF with tearing at 300 µs → READ → FBFFF7FF
→ WRITE FFFFFFFF with tearing at 300 µs → READ → FBEFF7FB
→ WRITE FFFFFFFF with tearing at 300 µs → READ → FACFF7FB
→ WRITE FFFFFFFF with tearing at 300 µs → READ → F8CDF7FB
→ WRITE FFFFFFFF with tearing at 300 µs → READ → E8CD76FB
→ WRITE FFFFFFFF with tearing at 300 µs → READ → E00540FB
→ WRITE FFFFFFFF with tearing at 300 µs → READ → E00140FB
→ WRITE FFFFFFFF with tearing at 300 µs → READ → E00140D9
→ WRITE FFFFFFFF with tearing at 300 µs → READ → …

25/51



Controlling EEPROM erase/write

▶ Tear-off between erase & write operations
▶ Check logic of erased word: all zeroes or all ones

▶ Tear-off during erase or write operations
▶ Statistic bias across bits
▶ Possibility of fingerprinting

▶ Progressive tear-off during first operation for finer control

▶ Timings influenced by
▶ Distance to the reader
▶ Temperature
▶ Content to be erased/written

26/51



Controlling EEPROM erase/write

▶ Tear-off between erase & write operations
▶ Check logic of erased word: all zeroes or all ones

▶ Tear-off during erase or write operations
▶ Statistic bias across bits
▶ Possibility of fingerprinting

▶ Progressive tear-off during first operation for finer control
▶ Timings influenced by

▶ Distance to the reader
▶ Temperature
▶ Content to be erased/written

26/51



Controlling EEPROM read of weak bits

▶ Distance to the reader, e.g.
▶ 1 close to the reader
▶ 0 far away

▶ Bonus: Time since powering, e.g.
▶ 0 if read immediately after the card gets powered
▶ 1 if read later

▶ ⇒ Combine controls, e.g.
▶ 0 if far away and read immediately
▶ 1 if close and read later

27/51



Controlling EEPROM read of weak bits

▶ Distance to the reader, e.g.
▶ 1 close to the reader
▶ 0 far away

▶ Bonus: Time since powering, e.g.
▶ 0 if read immediately after the card gets powered
▶ 1 if read later

▶ ⇒ Combine controls, e.g.
▶ 0 if far away and read immediately
▶ 1 if close and read later

27/51



ATA5577C

28/51



ATA5577C Configuration Block

29/51



ATA5577C Password Protection

▶ 1 bit in Configuration word → Block 7 data becomes a mandatory password
▶ Test-mode hidden command to write patterns in the whole memory

Strategy: (destructive, foresee a few cards with the same password)
▶ Tear a test-mode during erase phase → few bits cleared across memory
▶ Repeat with progressive tearing till password protection configuration bit is cleared
▶ Overwrite configuration to stabilize it
▶ Read partially erased password (use tips to force weak bits towards 1)
▶ Repeat on other cards, bruteforce the rest if needed

30/51



ATA5577C Password Protection

▶ 1 bit in Configuration word → Block 7 data becomes a mandatory password
▶ Test-mode hidden command to write patterns in the whole memory

Strategy: (destructive, foresee a few cards with the same password)
▶ Tear a test-mode during erase phase → few bits cleared across memory
▶ Repeat with progressive tearing till password protection configuration bit is cleared
▶ Overwrite configuration to stabilize it
▶ Read partially erased password (use tips to force weak bits towards 1)
▶ Repeat on other cards, bruteforce the rest if needed

30/51



EM4305

31/51



EM4305 Protection Words

▶ ”Write locking” configuration blocks
▶ When a bit is set, it locks the corresponding memory word
▶ Acts like OTP → a lock can’t be cleared
▶ Last bit indicates which Protection Word is active

E.g. PROTECT(0x00000001) to lock first Word

⇓

Should the operation be interrupted for any reason (e.g. tag removal from the
field) the double buffer scheme ensures that no unwanted ”0”-Protection Bits
(i.e unprotected words) are introduced. – EM4305 datasheet

32/51



EM4305 Protection Words

▶ ”Write locking” configuration blocks
▶ When a bit is set, it locks the corresponding memory word
▶ Acts like OTP → a lock can’t be cleared
▶ Last bit indicates which Protection Word is active

E.g. PROTECT(0x00000001) to lock first Word

⇓

Should the operation be interrupted for any reason (e.g. tag removal from the
field) the double buffer scheme ensures that no unwanted ”0”-Protection Bits
(i.e unprotected words) are introduced. – EM4305 datasheet

32/51



EM4305 Protection Words

▶ ”Write locking” configuration blocks
▶ When a bit is set, it locks the corresponding memory word
▶ Acts like OTP → a lock can’t be cleared
▶ Last bit indicates which Protection Word is active

E.g. PROTECT(0x00000001) to lock first Word

⇓

Should the operation be interrupted for any reason (e.g. tag removal from the
field) the double buffer scheme ensures that no unwanted ”0”-Protection Bits
(i.e unprotected words) are introduced. – EM4305 datasheet

32/51



Defeating Protection Words

▶ Launch and interrupt a PROTECT command
▶ Hope for a Protection Word with 0x00008000

⇒ Both Protection Words become active
▶ The same one has always priority
▶ → Start with the other one being active

⇒ Complex strategy loop
▶ Adjust timings
▶ Deal with all outcomes and corner cases (weak bits)
▶ Restart from stable situation

⇒ Automated attack: few seconds to few minutes
Success rate: about 85%

33/51



Defeating Protection Words

▶ Launch and interrupt a PROTECT command
▶ Hope for a Protection Word with 0x00008000

⇒ Both Protection Words become active
▶ The same one has always priority
▶ → Start with the other one being active

⇒ Complex strategy loop
▶ Adjust timings
▶ Deal with all outcomes and corner cases (weak bits)
▶ Restart from stable situation

⇒ Automated attack: few seconds to few minutes
Success rate: about 85%

33/51



Defeating Protection Words

▶ Launch and interrupt a PROTECT command
▶ Hope for a Protection Word with 0x00008000

⇒ Both Protection Words become active
▶ The same one has always priority
▶ → Start with the other one being active

⇒ Complex strategy loop
▶ Adjust timings
▶ Deal with all outcomes and corner cases (weak bits)
▶ Restart from stable situation

⇒ Automated attack: few seconds to few minutes
Success rate: about 85%

33/51



Defeating Protection Words

▶ Launch and interrupt a PROTECT command
▶ Hope for a Protection Word with 0x00008000

⇒ Both Protection Words become active
▶ The same one has always priority
▶ → Start with the other one being active

⇒ Complex strategy loop
▶ Adjust timings
▶ Deal with all outcomes and corner cases (weak bits)
▶ Restart from stable situation

⇒ Automated attack: few seconds to few minutes
Success rate: about 85%

33/51



Unlocked EM4305

34/51



MIFARE Ultralight EV1

Three 24-bit monotonic counters with anti-tearing support
▶ INCR_CNT
▶ READ_CNT
▶ CHECK_TEARING_EVENT

⇒ Saved internally in 2 slots, a bit like EM4305 Protection Words, but:
▶ Slots: not readable directly
▶ Validity flag: a full byte (=0xBD)
▶ Priority: if both slots are valid, it returns the highest counter
▶ Evidence: Command to detect tearing event

35/51



MIFARE Ultralight EV1

Three 24-bit monotonic counters with anti-tearing support
▶ INCR_CNT
▶ READ_CNT
▶ CHECK_TEARING_EVENT

⇒ Saved internally in 2 slots, a bit like EM4305 Protection Words, but:
▶ Slots: not readable directly
▶ Validity flag: a full byte (=0xBD)
▶ Priority: if both slots are valid, it returns the highest counter
▶ Evidence: Command to detect tearing event

35/51



MFUL EV1 Counter Examples

Slot Flag Value Active =⇒ READ_CNT CHECK_TEAR…

0x000123 + 1 in normal conditions
A 0xBD 0x000123 0xBD
B 0xBD 0x000124 ⋆ 0x000124

0x000123 + 1 interrupted
A 0xBD 0x000123 ⋆ 0x000123
B 0x98 ¿0x000124? 0x98

36/51



MFUL EV1 Experiments

We need a valid flag byte (0xBD)
⇒ Testing some tearing on an INCR_CNT near the end of the operation
⇒ Got the following:
▶ CHECK_TEARING_EVENT returning 0xBD but
▶ READ_CNT returning the old counter value

37/51



MFUL EV1 Experiments

Possible explanation:

Slot Flag Value Active =⇒ READ_CNT CHECK_TEAR…

0x000123 + 1 in normal conditions
A 0xBD 0x000123 0xBD
B 0xBD 0x000124 ⋆ 0x000124

0x000123 + 1 interrupted
A 0xBD 0x000123 ⋆ 0x000123
B 0xBD ¿0x000104? 0xBD

38/51



MFUL EV1 Counter Strategy

▶ Bump counter to next 2N − 1 (0x000123→0x0001FF)
▶ INCR_CNT(0) to copy it to the other slot
▶ INCR_CNT(1) and tear, hope for a weak bit

Slot Flag Value Active =⇒ READ_CNT CHECK_TEAR…

Initial values, B gets priority
A 0xBD 0x0001FF 0xBD
B 0xBD 0x0001FF ⋆ 0x0001FF

After +1 interrupted late
A 0xBD 0x000?00

?? ?? 0xBD
B 0xBD 0x0001FF

39/51



MFUL EV1 Counter Strategy

Slot Flag Value Active =⇒ READ_CNT CHECK_TEAR…

Weak bit in 2N counter
A 0xBD 0x000?00

?? ?? 0xBD
B 0xBD 0x0001FF

When read close to reader → weak bit = 1
A 0xBD 0x000?00 ⋆ 0x000200
B 0xBD 0x0001FF 0xBD

When read far from reader → weak bit = 0
A 0xBD 0x000?00 0xBD
B 0xBD 0x0001FF ⋆ 0x0001FF

40/51



MFUL EV1 Counter Strategy

If no weak bit at 2N

▶ Try again a few times
▶ Then try from 2N+1 − 1: 0x0003FF, 0x0007FF, 0x000FFF,...
▶ Reaching 2N + 1, 2N + 2?

That’s fine... 0x00?002 → 0x000002 → 0x000FFF→ 0x00?000 → 0x000000

How to move
▶ from 0x0001FF ⇔ 0x000200
▶ to 0x000000 ?

41/51



MFUL EV1 Counter Strategy

If no weak bit at 2N

▶ Try again a few times
▶ Then try from 2N+1 − 1: 0x0003FF, 0x0007FF, 0x000FFF,...
▶ Reaching 2N + 1, 2N + 2?

That’s fine... 0x00?002 → 0x000002 → 0x000FFF→ 0x00?000 → 0x000000

How to move
▶ from 0x0001FF ⇔ 0x000200
▶ to 0x000000 ?

41/51



MFUL EV1 Counter Strategy

Slot Flag Value Active =⇒ READ_CNT CHECK_TEAR…

Card close to reader → weak bit = 1
A 0xBD 0x000?00 ⋆ 0x000200
B 0xBD 0x0001FF 0xBD

After +0 interrupted soon → other slot gets corrupted
A 0xBD 0x000?00 ⋆ 0x000200
B 0x98 ?? 0x98

But when read far from reader → weak bit = 0
A 0xBD 0x000?00 ⋆ 0x000000
B 0x98 ?? 0x98

42/51



MFUL EV1 Counter Strategy

Slot Flag Value Active =⇒ READ_CNT CHECK_TEAR…

Card far from reader → weak bit = 0
A 0xBD 0x000?00 ⋆ 0x000000
B 0x98 ?? 0x98

After +0, B gets priority
A 0xBD 0x000?00 0xBD
B 0xBD 0x000000 ⋆ 0x000000

But when read close to reader → weak bit = 1
A 0xBD 0x000?00 ⋆ 0x000200
B 0xBD 0x000000 0xBD

43/51



MFUL EV1 Counter Strategy

Slot Flag Value Active =⇒ READ_CNT CHECK_TEAR…

Card far from reader → weak bit = 0, B gets priority
A 0xBD 0x000?00 0xBD
B 0xBD 0x000000 ⋆ 0x000000

After +0
A 0xBD 0x000000 0xBD
B 0xBD 0x000000 ⋆ 0x000000

Counter is now fully reset!

44/51



Affected products

▶ In MIFARE Ultralight family:
▶ MIFARE Ultralight EV1, MF0UL;
▶ MIFARE Ultralight C, MF0ICU;
▶ MIFARE Ultralight NANO, MF0UN.

▶ In NTAG 21x family:
▶ NTAG 210(µ)/212: NT2L1, NT2H10, NT2H12;
▶ NTAG 213 (TT/F) /215 /216 (F): N2H13, NT2H15, NT2H16.

OTP & Lock bits security features potentially impacted too
Mitigations: see updated NXP Application Note AN11340 & new AN13089

45/51



Your turn!

▶ Large palette of EEPROM tearing effects
▶ Find other interesting targets
▶ EEPROM not only in RFID...
▶ We’ve opensource tools for you!

46/51



Proxmark

47/51



Proxmark2

47/51



Proxmark3

47/51



Proxmark3 RDV4

47/51



Tear-off Commands

Chip/Standard Command
MIK640M2D hf mfu otptear (automated)
ATA5577C lf t55xx dangerraw
EM4x05 lf em 4x05_unlock (automated)
EM4x05 hw tearoff combined with lf em 4x05_write
EM4x50 hw tearoff combined with lf em 4x50_write
ISO14443A hw tearoff combined with hf 14a raw
ISO14443B hw tearoff combined with hf 14b raw
ISO15693 hw tearoff combined with hf 15 raw
iClass hw tearoff combined with hf iclass wrbl

48/51



Proxmark3 Demo Time

49/51



Let’s keep in touch

Discord server “RFID Hacking by Iceman”
Contact us if you want to join
Twitter: @herrmann1001 & @doegox

50/51



Thank you
Contact information:

Email: contact@quarkslab.com

Phone: +33 1 58 30 81 51

Website: https://www.quarkslab.com

https://www.quarkslab.com

