
From CVEs to proof:

Make your USB device stack great again

Ryad Benadjila1, Cyril Debergé2, Patricia Mouy1, Philippe Thierry1

1firstname.lastname@ssi.gouv.fr
2cyril.deberge@irsn.fr

1 ANSSI
2 IRSN

Abstract. Nowadays, many devices embed a full USB stack, whose main
components are made of software elements dealing with hardware IPs.
USB sticks, hard-disk drives, smartphones, vehicles, industrial automa-
tons, IoT devices: they all usually offer a USB physical connection, and
a USB software driver dealing with it. In critical environments where
attackers are able to tamper with this interface, any exploitable software
Run Time Error (RTE) such as a buffer overflow might lead to a remote
code execution on the vulnerable device, usually in privileged mode. This
is even worse when the USB stack runs from a BootROM [12,45], yielding
unpatchable software. This matter of fact exhibits the need for a portable
RTE-free USB stack with concrete proofs: the current article proposes an
open-source implementation of such a stack using the Frama-C frame-
work [35], with proofs and various use cases (DFU, HID, mass storage,
and more to come). Beyond providing the mere implementation, we bring
a generic methodology to adapt complex protocols software stacks to
Frama-C with strong embedded contexts constraints.

1 Introduction

Software is becoming the core component of many systems, from small
embedded devices to bigger desktop Personal Computers. Even for what
seems to be simple and low-level tasks, dedicated hardware with hard-
wired logic circuits are almost always driven by pieces of software that tend
to become more and more complex. From network cards to hard-drives
controllers and motherboards chipsets, nowadays every piece of hardware
contains firmware that is often made of thousands of lines of (usually) C
or assembly code, let alone the drivers that interact with them on the
Operating System side.

Vulnerabilities in such software stacks have proven to be critical from
a security standpoint [3, 24,27,29]: due to the bare metal nature of such
code, any Run Time Error (RTE) allowing remote code execution (RCE)

2 From CVEs to proof:Make your USB device stack great again

permits an attacker to gain control over a system usually at its highest
privilege level, or at least compromises the confidentiality and integrity
of sensitive user data. Examples of RTEs are (among others) buffer and
integer overflows and invalid pointer access.

USB, a CVE minefield: An example of complex protocol that is be-
coming ubiquitous is USB. As a flexible and versatile bus, many devices
offer a USB interface and must embed a stack handling it. A rather
erroneous naive idea would be to consider that a USB stack is mainly
made of hardware accelerated hard-wired blocks: this is far from reality
as the public specifications [9, 19, 22, 33] expose abstract and portable
automatons. The physical transport part of USB is usually implemented
in a hardware Intellectual Property (IP), while the core, control and class
handling parts are developed in software on top of this IP. This usually
results in thousands lines of code for the core and control functions, and
a few hundreds to few thousands more for each class depending on its
complexity. As an example on the versatile desktop and embedded side,
the Linux kernel xhci.c [1] Extended Host Control Interface (XHCI)
stack is made of 3,747 sloc 3 of C in host mode in kernel release 5.11-rc7.
On the more constrained specific embedded side, STMicroelectronics USB
device stack [4] targeting MCUs is made of 1,000 lines of C for the core,
600 lines for the CDC (Communication Device Class), 1,100 lines for the
MSC (Mass Storage Class), 1,100 lines for the DFU (Device Firmware
Upgrade) class and 250 lines for the HID (Human Interface Devices) class.

Although a few thousands lines of C code might seem rather “small”,
the very nature of the USB protocols makes them error prone and hard
to implement: variable length fields to parse, generic types requests and
asynchronous event-driven automatons leave plenty of room for vulnerabil-
ities [29]. Among these vulnerabilities, Run Time Errors that could allow
remote code execution should be avoided, but recent examples [12,45] show
that even USB stacks developed with security in mind are not immune
to such disastrous attacks. This is even more true when these stacks are
implemented in a BootROM: no update is possible and the devices are
doomed unpatchable. Even in less critical contexts, a vulnerability such
as [46] (an exploitable buffer overflow on STMicroelectronics’ USB stack
on embedded MCUs) might prove hard to deploy in some situations, e.g.
when implemented in on-field devices with complex physical or remote
access.

3. Single lines of code.

R. Benadjila, C. Debergé, P. Mouy, P. Thierry 3

RTE and formal guarantees: This state of affairs pushes the need for
a USB stack with formal guarantees regarding security (no exploitable
RTE), and ideally runtime behavior (concurrency and timing constraints)
as well as functionality (i.e. USB specifications are correctly implemented).
When it comes to catching RTEs, there are various paths to solve the issue.
Although using safe languages is an interesting one, we have mainly focused
on the C language because of its ubiquity even across exotic platforms, as
well as its optimal volatile and non-volatile memory footprints (e.g. making
it the de facto choice for BootROMs). Hence, we are mainly interested in
formal guarantees on C code in the scope of this article.

Our contributions: In this work, we provide an open source C im-
plementation of a USB 2.0 device stack with proofs against RTEs in
sequential contexts and some functional guarantees that we will detail in
section 5.2. The outcome is a RTE-free proven USB stack with limitations
regarding concurrency and multithreading: although all the possible RTEs
are formally not covered, we stress out that this is a big step forward
when compared to the state of the art on such a code base.

For proving the stack, we have used Frama-C [35], an open source
framework for C code analyzes which targets both academic and industrial
use cases. Frama-C is well-tested on various projects targeting many
platforms (from embedded to desktop contexts) and with various purposes
(security or safety checks, verification of coding rules or browsing of
unfamiliar code among others). This framework can be seen as an extensible
collection of various tools (called plug-ins) working in a collaborative way
on top of a shared kernel with compliance to a common specification
language, ACSL [40]. The results from various Frama-C plug-ins are
integrated by the kernel and given as input to the next analyzes with the
remaining unproved properties.

The current article builds upon the results of a previous work using
the same framework and proving the RTE-freeness of a X.509 parser [25].
Although similar techniques are used, attempting to prove a full USB 2.0
device stack brings its share of non trivial challenges and limitations that
will be discussed in section 3.

Section 4 describes in more details the USB stack software architecture,
chosen to fit with a modular proof strategy described in 5.1 where each
module is independently proven with Frama-C. The proofs target the
low-level USB HS (High-Speed) driver that has an adherence to the
STM32F4 MCU family, the portable USB core and control module, as
well as the MSC, DFU and HID classes. Despite some parts of the USB

4 From CVEs to proof:Make your USB device stack great again

HS driver are dedicated to a given IP, most of the USB stack is versatile
and USB specifications centric: porting it to another MCU, SoC or CPU
either in a bare-metal fashion or using an Operating System integration is
simplified.4 We stress out that we have chosen MSC and DFU classes as
use cases examples due to their wide usage, sensitivity and the various
CVEs jeopardizing these USB classes.

In order to validate our results we have used the proven USB stack
in a concrete physical device: the WooKey platform [13]. The USB MSC,
DFU and HID classes have been integrated to the existing SDK on top
of the EwoK microkernel, without noticeable performance degradation
when compared to the old USB stack of the project (while offering much
more flexibility and versatility). Security gains and performance results
are presented in section 6 along with the limitations and future outcome
of our work in progress on the proof as well as on the development sides.

2 About security, RTEs and formal methods

2.1 Security and Run Time Errors (RTEs)

It is not an easy task to find a common definition of a RTE which is
clear and precise but for some characteristics, a consensus exists. RTEs
are errors encountered by a program when it is executed, which roughly
corresponds to the undefined behaviors as defined in the C standards.
For this work, we are compliant with the ISO C99 standard [26] and a
description of the targeted RTEs is given in [10,17]. Our security target
is all the exploitable RTEs. Typical examples are buffer overflows when
accessing non allowed memory, invalid pointer access, division by zero,
signed integer overflow, and so on. Such “dangerous” behaviors sometimes
provoke immediate crashes of the program, but they could also silently
occur while corrupting the program’s nominal intended functionality. In
some cases, and beyond the mere crash and denial of service, such RTEs
can lead to remote code execution (RCE) allowing attackers to take the
full control of the faulty program. Of course, RTE-free does not mean
bug-free: functional proofs ensuring that a program follows its formal
specifications are beyond the scope of the RTE-freeness and must ideally
also be covered. However, when focusing on the security of a program
(written in C), RTE-freeness is a minimal requirement in order to ensure
the absence of (or at least heavily limit) exploitable RCEs.

4. The choice of the STM32F4 family, a MCU built around a Cortex-M4 core, is
mainly due to previous work on such microcontrollers.

R. Benadjila, C. Debergé, P. Mouy, P. Thierry 5

We also want to emphasize the fact that by default the undefined
behaviors as defined for the ISO C99 are caught by static analyzers,
but other code defects (or dangerous patterns) which can also be con-
sidered as RTEs such as unsigned integers overflows can be unhandled.
Such runtime errors are of course dangerous from a security perspec-
tive as they can lead to RCE or to an unexpected behavior. Conse-
quently, one should activate the detection of such critical bugs using extra
toggles (e.g. -warn-unsigned-overflow, -warn-unsigned-downcast,

-warn-signed-downcast, -warn-right-shift-negative in the case of
Frama-C).

2.2 Formal proofs and RTEs

The purpose of formal verification (for hardware or software systems)
is, in a few words, to prove or disprove the correctness of these systems
with a formal specification or any given property using formal logic.
Formal verification is always associated to a given property (absence of
RTE, respect of a functional property, etc.). One of the basic security
expectations is the absence of RTEs as previously defined, which is a
critical asset to prove when considering sensitive, complex and error prone
pieces of software such as a USB stack. To reach this proof of RTE-
freeness, a sound analyzer appears to be the appropriate approach. In [21],
the characteristics of static analyzers to detect RTEs and this notion of
soundness are described in more details. To make a long story short, a
sound analyzer overapproximates all the possible executions and then, it
will not miss any erroneous execution i.e. an execution with the violation
of the proved property.

We have chosen to focus on Frama-C, an open-source platform and
in particular the two well-known plug-ins EVA and WP dedicated to the
formal verification. The combination of these two plug-ins has previously
proved successful to ensure the RTE-freeness of a X.509 parser [25]. Other
sound static analysis tools exist for C code such as Astrée [8], Code-
Prover [42], IKOS [16] among others. Such tools can be very powerful, but
they are either commercial or less mature than Frama-C whose main
advantage is (beyond its open source aspect) the possibility of combining
the results of different formal methods through the usage of various plug-
ins. Since our proofs are to be published along with the code, Frama-C

fits our needs. As we aim at a generic proving strategy transferable to
other embedded software stacks, our work must be reproducible on any
piece of C code with the open source version 22/Titanium of Frama-C.

6 From CVEs to proof:Make your USB device stack great again

2.3 Using Frama-C: EVA and WP

In [25], the authors expose how they have used the Frama-C frame-
work, namely the EVA and WP plug-ins, to formally and automatically
prove the absence of RTEs on a fully functional X.509 parser using dedi-
cated annotations to ease the proofs. Since we build upon this work in
this article, we briefly recall EVA and WP main characteristics and how
they interact. The curious reader might refer to the original article [25]
for more insights and details on these.

EVA: The purpose of EVA is to pinpoint the RTEs and to help the
investigation of their cause. EVA [36] uses abstract interpretation [20],
it automatically proceeds to a complete value analysis of the analyzed
program and a set of RTEs are proven absent while some cannot be proven.
The best advantage of using EVA is the low level of user interactions
needed, the downside being it cannot discharge all emitted alarms because
of the over-approximation of all the possible executions. In practice, such
false positives have to be discharged manually one by one but this work
can rapidly become cumbersome and very time-consuming, leading to WP
usage as introduced hereafter. As far as we know, the largest system-level
code proved with EVA is a scada system of more than 100 ksloc of C code
used in nuclear power plants [44]: the coverage was about 80% with less
than 100 remaining alarms.

WP: To avoid the tedious manual task of false positives investigation,
WP [39] is used after EVA in our approach. In short, WP uses the proved
properties with EVA and targets the remaining unproved properties. WP
implements deductive verification calculus [23], a modular sound technique
to prove that a property holds after the execution of a function if some other
properties hold before it (i.e. function contracts expressed with pre/post
conditions explained in section 2.3). WP is able to verify more complex
logical annotations and assertions using external automated or interactive
provers but requires extra user efforts with the code annotations including
function contracts and especially loop contracts (a concrete example is
provided hereafter when introducing the ACSL language). Indeed, without
loop contracts, at each loop, WP uses an implicit specification which is
equivalent to “anything can happen”.

WP is generally used to prove that the source code matches functional
properties (its specification). It has been adopted by Airbus to verify
safety properties of critical control-command code of avionic systems [15].

R. Benadjila, C. Debergé, P. Mouy, P. Thierry 7

For security properties as the absence of RTE, the use of WP is more
complicated for automatic separations because it requires a low-level
memory model. WP proposes three main memory models: Hoare which
provides automatic proofs but does not allow pointers, Typed which is a
good compromise between expressiveness and automation but excludes
casts, and Typed+ref that is more automatic than the later one but
excludes aliasing. This last model is the one used in our case.

1 int i;

2 //@ loop invariant 0 <= i <= 10;

3 //@ loop assigns i;

4 //@ loop variant (10 - i);

5 for (i = 0; i < 10; i++) {

6 ++i;

7 }

Fig. 1. A loop contract example

ACSL annotations: As previously explained, additional annotations
are necessary when using WP. These annotations are expressed in
ACSL [28, 40], a formal specification language for C. It is a contract-
based language designed for program proving and based on first order
logic using pre/post conditions. A precondition is a property or predicate
that must always be true just prior to the execution and the postcondition
the property that must always be verified just after the execution. The
ACSL language is close to C language with pure C expressions with spe-
cific but explicit keywords (result, old, etc.) and additional expressions
dedicated to contracts: requires, ensures, assigns respectively for pre-
conditions, postconditions or assignations (side-effects). These contracts
can be instantiated for each function or loop (adding the loop prefix) with
ACSL annotations added as C comments starting with /*@ or //@.

A simple example of loop contract is provided on Figure 1. loop

invariant is a condition that remains true during each iteration of the
loop but also just after the loop exit, e.g. a loop counter remains between
its bounds with the exit condition 0 <= i <= 10. loop assigns specifies
the modification of elements allocated outside the loop but modified inside.
loop variant optionally provides a strictly decreasing non-negative inte-
ger value at each loop iteration (e.g. the difference between a maximum
counter boundary and its current value) and is necessary to prove the
loop termination.

8 From CVEs to proof:Make your USB device stack great again

3 From proving a X.509 parser to proving a USB stack

In this section, we discuss the stakes and challenges of proving the
RTE-freeness of a USB stack when compared to more classical pieces of
software such as a parser.

3.1 Feedbacks on proving a parser

The X.509 parser proven RTE-free in [25] is made of 5,000 sloc of C
code with additional 1,200 lines of ACSL annotations (yielding a rate of
0.24 annotation per code line). One of the major idiosyncrasies of a code
such as the X.509 parser are its inherent sequential aspect as well as its
non-adherence to hardware: its execution is only dictated by software. All
the possible states of the code are sequentially reached and only depend
on the external API input (a buffer containing a certificate to parse),
with no possible interruption of a function when it is executed. Hence,
concurrency and reentrancy are not problems to address when proving
that the code is innocuous regarding RTEs.

On the opposite side, a USB stack exhibits at least four issues:

1. It is mostly based on an asynchronous execution of events (ex-
cept for some subparts such as the control plane handling that
is executed synchronously). The Frama-C framework does not
handle parallel units executions. Consequently, stacks requiring
asynchronous events (backend responses, host messages reception
or acknowledgement) are not easy to analyze without any modifi-
cation.

2. Uncontrolled hardware registers and memory areas (C volatile)
are the source of the previously described asynchronous events,
meaning that some states of the program will be reached depend-
ing on variables whose values can be anything in wide ranges
without more precision, yielding a combinatorial explosion of the
static analysis and even more with sound static analyses which
overapproximate all the possible executions.

3. The code base is substantially wider for the USB stack as it contains
more than 12,000 sloc with different layers (the software architec-
ture is detailed in 4). Soundness comes at the cost of analyzing all
the execution paths with possible inputs, producing an amount of
false alarms proportional to the code size. If the same one-piece
proving strategy is used as for the parser, the analysis time will
quickly diverge to unsustainable values. This is specifically striking

R. Benadjila, C. Debergé, P. Mouy, P. Thierry 9

when a patch must be applied and the whole code base must be
proven again. Moreover, since the USB stack is expected to be
extensible through independent additional modules, we want to
avoid to perform a very costly Frama-C proof analysis over all
the modules each time a new one is added (while the others are
untouched).

4. Contrary to regular code where only one main entrypoint is usu-
ally exposed (e.g. a parse_certificate function), the USB stack
possesses multiple entrypoints that can be accessed. This is related
to the concurrency aspect as multiple functions are designed to be
called in parallel.

In addition to the previous items, the X.509 parser made use of a
restricted subset of the C99 language, with no allocation (dealing with
certificate size limit through statically allocated buffers of known fixed
sizes) and a limited usage of function pointers. This last point was the
major difficulty to deal with for the Frama-C platform and we use
this feedback for the USB stack where function pointers usage is almost
mandatory to have a flexible stack. In the case of the USB stack, we had
to face additional difficulties. Dynamic allocation, although rarely used,
can be necessary for some classes such as DFU which is a divergence from
the parser that does not use it. This calls for some adaptations on the
proof side. Beyond this, minimalism has been applied regarding other
features of the language (no Variable Length Arrays, use of qualifiers such
as static and const, strict compilation options, etc.).

These elements bring new challenges to tackle when compared to
the work performed on the parser. These will be addressed in detail in
section 5.2. The scope of the proofs and the implications are discussed
hereafter.

Finally, it is worth mentioning that on the Frama-C learning curve
side, we have strongly taken advantage of the experience on the parser:
this led us to adapt our coding patterns and annotations as described
in [25] to optimize the manual annotation work and the proof time.

3.2 The scope of proofs in this article

The previously described issues on the USB stack can be dealt with
using ad hoc solutions. Dealing with the large code base is performed using
a dedicated modular proof strategy between independent modules that we
describe in 4. Dealing with the multiple entrypoints can be resolved using
a dedicated code that emulates all the functions calls that are expected

10 From CVEs to proof:Make your USB device stack great again

(main code and interrupts) so that code coverage is maximized. Finally,
dealing with the limitations of Frama-C regarding hardware interactions
and concurrency calls for minor code modifications to enforce sequentiality
where necessary (e.g. polling loops to avoid waiting states when a hardware
interrupt is expected to trigger events) and deal with volatile variables.

Proofs on an equivalent sequential code All in all, the version of
the code on which RTE-freeness proofs are ensured is no more the same
than the running code: a sequential code ersatz is crafted by transforming
some small parts to ensure attainable states during the analysis.

As we have already stated, a formal proof is only relevant on precise
properties in a given context. In the scope of this article, when we talk
about RTEs, we only consider those possible in a sequential execution of
the code. Hence, all the RTEs that could be related to concurrency and
race conditions are not covered. In the sequel of the article, RTE absence
and RTE-freeness regarding the USB stack are shortcuts for “absence of

RTE in a sequential context”, ruling out all the possible runtime errors
related to other contexts.

Limitations for parallel code We try to limit the classes of bugs
abusing race conditions, concurrency and reentrancy through a pragmatic
methodology described in 5.2, but we are well aware that this does not
stand up to formal guarantees as strong as the ones expected when talking
about a (fully) formally proven code without RTE. Nonetheless, we claim
that this is a first (big) step for proving such a complex code base yielding
a strong warranty against a large class of exploitable bugs supported by
the discovery (and patching) of classical RTEs during the development
process as detailed in 6.1.

4 Architectural constraints and design overview

4.1 Overview of the software architecture

One of the big challenges when designing a portable USB stack is to
limit the hardware specific part, and to allow enough flexibility for an
integration in any context. It should be easy to integrate this stack in
privileged mode with a rich OS such as Linux, in userland when there is an
access API to low-level hardware, and in bare-metal embedded contexts.
Memory constraints (both in volatile and non-volatile memory) must also
be taken into consideration for a reasonable trade-off between portability

R. Benadjila, C. Debergé, P. Mouy, P. Thierry 11

and versatility. We present on Figure 2 the software architecture of the
USB stack we provide with the rationale behind our choices.

The standardized abstraction presented in the USB specifications [19]
greatly spurs to isolate a hardware specific part. Usually, the existing
hardware IPs for USB 1 will expose some configuration registers, interrupt
handling flags in event registers (usable in interrupt or polling mode),
as well as endpoints related configuration and input/output streams. A
classical way of representing USB endpoints in hardware are FIFOs: a
memory mapped area is dedicated to various endpoints allocation through
dedicated configuration registers for elements such as maximum packet
length and other USB physical layer related items.

The software responsible for configuring and monitoring all these bare-
metal elements is the USB driver 2 . In an interest of portability, even
if the driver itself is not portable and adherent to a dedicated hardware,
it exposes a USB-centric API 3 to upper layers for stack initialization,
endpoints allocation and manipulation (registering callbacks for sending
and receiving packets on specific endpoints, Zero Length Packets, etc.).

The USB core 4 is responsible for the enumeration and configuration
phases automaton as well as the control requests on EP0 afterwards. It is
the main part implementing the USB core automaton (from the powered
state to all other possible states). After the enumeration, specific USB
classes (mass storage, DFU, HID, modem, etc.) are instantiated (and
other EP allocated) after the host has configured the device. The USB
class module 5 handles this part with a specific more or less complex
automaton (depending on the class) managing the allocated endpoints
through the driver API. This module exposes a USB-class abstract API 6
to the upper layer 7 that manages possible upper stack automatons,
such as the CTAPHID one for FIDO/U2F and FIDO2 standards, and
exposes its upper-class dedicated API 8 . Finally, backend functions 9
have an abstract view of the USB stack and can use it to retrieve or
send data to the host through either the class or upper-class APIs. Such
functions can be a flash read/write backend for DFU (to fetch and update
the firmware), (flash, SSD or solid state) sectors read/write backend for
MSC SCSI, keyboard or mouse event handling for HID, two factor FIDO
cryptography for CTAPHID, etc.

In the scope of this article, we mainly provide a device USB stack. All
the layers provided in our implementation are portable across platforms
except for the driver 2 that is specific to the STM32F4 MCU USB
IP 1 [5], specifically on the WooKey platform [13] using its SDK. There
are actually two drivers: one for the USB HS (High-Speed) IP, and one

12 From CVEs to proof:Make your USB device stack great again

for USB FS (Full-Speed) IP since the way hardware is handled in the
two cases presents some variations on the STM32F4. The USB core 4
is quite complete although integrating some advanced USB features is
still work in progress. Finally, we have validated our stack with various
classes 5 (MSC, DFU, HID, CDC) and some upper-classes 7 (CTAPHID),
as well as different backends 9 supporting these classes in the context
of the WooKey platform (full DFU support for firmware update, fully
functional mass storage device with transparent encryption, FIDO/U2F
token, keyboard emulation, etc.).

On the Frama-C side, the USB HS driver 2 , the USB core 4 as
well as three classes 5 (MSC, DFU and HID) are proven to be RTE free
using the modular methodology we describe in 5.1. The main rationale
behind choosing DFU and MSC as proof of concepts is the fact that they
implement quite complex and error prone automatons as emphasized by
many public CVEs [12,31,32,45].

USB Hardware core 1

EP0 EPx EPyConfig

USB driver 2

USB oriented API3

USB core4

USB enum

USB Std Rqst

U
S

B
st

a
te

s

d
y

n
a
m

ic
∗

Iface/EPx Rqst

rqst target=iface/EP

data EP I/O

5

USB class

automaton

USB class API 6

d
y

n
a
m

ic
∗

Possible upper stack (e.g. CTAPHID) 7

stack API 8

end of USB protocol

Backend function (storage, crypto, etc.) 9

U
S

B
in

te
rf

a
ce

(s
)

Full USB function (set of interface(s) up to backend)

pipe, connected the host associated service
∗ interface declaration, registration, EP (de)activation

H
a
rd

w
a
re

IP N
o
n

-p
o
rt

a
b

le
so

ft
w

a
re

P
o
rt

a
b

le
so

ft
w

a
re

S
o
ft

w
a
re

U
S

B
st

a
ck

Fig. 2. Logical overview of the proven USB stack

R. Benadjila, C. Debergé, P. Mouy, P. Thierry 13

4.2 A new USB stack in C: why?

Two rightful questions are to ask when considering formal verification
and security insurance on a USB stack: why develop a new stack from
scratch, and why use the C language?

Notwithstanding its imperfections and inherent security flaws [10], the
C language combines performance (on both memory and CPU footprints)
allowing embedding code in BootROMs, as well as portability across
platforms: even though other languages support major architectures (e.g.
thanks to the LLVM backends), more outlandish IPs might not have a
compatible compiler or lack optimizations while a C compiler is (almost)
always guaranteed. Moreover, C allows adding low-level countermeasures
such as side-channel attacks and fault attack resistance: beyond RTEs,
such attack contexts are relevant for many embedded use cases [30, 34, 43]
and a C code base allows fine grain checks handling.

Our volatile and non-volatile memory footprint expectations rule out
many existing large USB stacks. Various MCU manufacturers provide
open source stacks [2, 4] to support their hardware and boards. Efforts
are usually put on the portability side as they usually support various
MCU families with different architectures. Some embedded RTOS (Real
Time Operating Systems) also provide generic implementations of host
and device USB stacks, such as Zephyr Project [6]. A major drawback
of all these stacks though is the lack of defensive programming and
security oriented development: some public CVEs exhibit exploitable
buffer overflows [31,32,46], which implies too much work to converge to
security proofs.

Very few USB stacks combine both movability across platforms and
code simplicity, TinyUSB [7] is one of them. Although this could seem to
be a good candidate for provability, such projects suffer from two issues.
First, on the functionality side these stacks implement static interfaces
and classes instances: the control layer is instantiated using fixed elements
at compilation time (MSC, HID, DFU, etc.). The stack we bring provides
more flexibility with dynamic descriptors handling while still ensuring
memory-safety. Secondly, on the proof side many prevalent C coding
patterns are found in such projects with large use - or abuse - of macros
and undue volatile variables presence.5 Such patterns do not comply very
well with static analysis and formal methods assisted frameworks such as
Frama-C. All in all, starting from an existing code base usually implies
too much work when it comes to RTE guarantees. As we will develop it

5. The volatile related issues are thoroughly discussed in section 5.2.

14 From CVEs to proof:Make your USB device stack great again

in the next sections, intertwining functions implementations with their
formal properties and contracts incrementally during the development
process is the best strategy, with the benefit of progressively providing
feedback and patches.

5 Let’s prove the USB stack

Proving the USB stack using Frama-C requires many adaptations to
overcome both the complexity of the code as well as the limitations of the
framework regarding concurrency.

In the current section, we will expose our proving strategy (named
modular) allowing us to deal with the large size of the USB stack by
efficiently proving independent modules. We will also provide insights on
how we handle sequential versus parallel code adaptations, and what is the
divergence with the runtime code. Finally, we also discuss how entrypoints
and external dependencies of the stack have been dealt with.

5.1 The proving strategy: a modular bottom-up approach

In the light of the constraints previously exposed, and using a divide
and conquer logic, we have chosen a bottom-up approach for the proving
strategy (on the sequential code transformed from the original runtime
code) as it suits well with the vertical layers of the USB stack architecture.
Each layer is proven RTE-free under the hypothesis that the underlying
layer is also proven without RTE: the full stack is considered RTE-free
since hypothesis are exhibited true layer by layer, and WP functions
contracts are ensured on the APIs between layers. This is what we call
“modular”: it has the advantages of portability (modules hold their own
proofs and are transferable) as well as keeping computational resources
for running Frama-C reasonable (when compared to proving the whole
complex stack in a row).

Taking the numbering from Figure 2, the driver 2 is first proven to
be RTE-free. Then, using its APIs with contracts on the (already) proven
functions we perform proofs on the USB control module core 4 that sits
on top of the driver, and apply the same modular strategy on the MSC
mass storage, DFU and HID classes modules 5 .

The same strategy moving from one unit to another would self-evidently
hold for other classes, and for upper layer modules of the stack API 7 .
Although this part is a work in progress and is beyond the sheer scope
of this article, we stress out that the strategy we present alleviates the
proving efforts through an almost mechanical methodology.

R. Benadjila, C. Debergé, P. Mouy, P. Thierry 15

For each module, the steps to achieve a proof are described hereafter:

1. First of all, prepare the code to be analyzed by transforming it to
sequential code as described in 5.2.

2. Secondly, prepare all the entrypoints to maximize coverage of the
functions in the module, and deal with the external dependencies
as described in 5.3. Maximizing coverage means that most of the
code parts must be covered by the analysis (as reported by EVA).

3. Then, loop through the analysis of the code as described in detail
on Figure 3:

(a) Pre-process the source files with the Frama-C kernel to ensure
there is no parsing error and that all the files are present;

(b) Use EVA with default options, refine them to maximize code
coverage while keeping enough precision (i.e. minimize false
alarms for less manual analysis). Fix the found RTEs;

(c) Following EVA’s analysis, use WP to automatically check the
remaining properties using automatic annotations left by EVA;

(d) Add manual annotations (mainly function and loop contracts
and assertions in the code) and adapt WP options so that the
provers provide a result without any timeout.

5.2 Coding constraints and adaptations for the analysis

Making the code sequential: A first issue to tackle are polling loops
on asynchronous events that would never terminate without a parallel
execution. An easy way to handle this would be to remove the polling loop
in the Frama-C execution context. This naive approach brings major
drawbacks as the asynchronous event is still not executed and hence not
analyzed, and its side effects do not propagate to the global state used
after this waiting point. This is obviously diverging from the runtime
behavior.

Another way to handle this quirk is to synchronously execute the
asynchronous event instead of waiting for it. The perk of this solution is
that the side effects of the asynchronous events are properly propagated to
the current program execution context. On the downside though, we have
modified the effective program execution by locally calling a potentially
large routine, making the current function contract being modified in
consequence. Figure 4 shows a typical code substitution due to the Frama-

C constraints made in the USB MSC mass storage stack implementation.

16 From CVEs to proof:Make your USB device stack great again

Frama-C
Kernel

C code to analyse

Parsing OK?

missing files
inclusion,

context precision
and/or headers

correction

No

Complete call
context defined?

Yes

Call context
inclusion or
specification

No

Frama-C
EVA

Yes

remaining
Warnings?

RTE
confirmed?

Yes

possibility to enhance
EVA precision?

Fix RTE in
source code

Yes

Frama-C
WP

No

Yes

No

adding EVA
options,

code annotations
and/or

context precision

Yes

remaining
Warnings?

RTE absence proof

No

No

options inclusion
in WP

and/or code
annotations :

functions/loops
contracts

Yes Legend:

in/out
Frama-C
automatic
analysis

manual
action
(user)

transitional
step

Fig. 3. Frama-C analysis strategy

R. Benadjila, C. Debergé, P. Mouy, P. Thierry 17

1 // Active wait for data to be sent. Here , we wait for an asynchronous execution of a

trigger setting the IN EP as ready . This trigger is scsi_data_sent () , which is

executed when all the previously data configured to be sent has been transmitted to

the host. Using FramaC , we cannot emulate multithreaded execution , so we

synchronously execute this trigger , instead of waiting for its asynchronous execution

.

2 # ifdef __FRAMAC__

3 if (! scsi_is_ready_for_data_send ()) {

4 scsi_data_sent (); /* async event exec by the core */

5 }

6 # else

7 while (! scsi_is_ready_for_data_send ()) {

8 request_data_membarrier ();

9 continue ;

10 }

11 # endif

Fig. 4. Handling asynchronous events in USB MSC class

Handling volatile globals: As Frama-C does not handle multithread-
ing, impacts of functions side effects (typically global variables updates)
during the execution of an asynchronous event cannot be taken into
account in a direct way.

A basic approach would be to declare all global variables as volatile

as most USB stacks do (like [7]). In this case, Frama-C automatically
considers that their values are unstable 6 taking into account Time of
Check Time of Use (TOCTOU) and race conditions risks.

Nonetheless, using volatile for all global variables (contexts, buffers
and so on) is problematic:

— Volatile access is not optimized by the compiler (caching, access
removed while optimizing, etc.), highly impacting the resulting
performance and footprint.

— For most of these globals, values are relatively stable (fixed in
time intervals) and their setting controlled, highly impacting the
RTE validation by over-approximating the dynamic of the value
(yielding uncontrolled computational time).

A better approach is to properly handle global variables by removing
the volatile keyword, using memory barriers instead. The counterpart is
that TOCTOU and race conditions are not highlighted by the framework.
Moreover, all asynchronous-based RTEs might not be detected in a fully
sequential analysis. A typical example is the usage of global buffers and
callbacks that can be updated by another thread. A race between two
threads may lead to an invalid behavior if a global variable is updated
between its value checking and its usage, leading to a local TOCTOU. A

6. Frama-C does not assume that the value read from a volatile variable is
identical to the last value written and all the possible values of these variables are
considered.

18 From CVEs to proof:Make your USB device stack great again

way to avoid such RTEs is to observe specific programming constraints
for global variables so that they can be updated concurrently:

— Any variable that is not polled for an event must be locally copied
using atomic read instruction set, memory barrier and using a
locking mechanism shared with other threads. These mechanisms
are also required to avoid compiler optimization that may lead to
threads desynchronization.

— Any check on a global variable must be performed solely on the
local safe copy.

— Any usage of the global variable content (dereference, calculation)
must be performed exclusively on the local copy.

— Any write back must be done with the hardware architecture
atomic write instruction set, memory barrier, and potential locking
mechanism shared with other threads.

Some specific cases exist though. Among all the globals, some of them
should stay volatile. This is the case of hardware registers, FIFOs and
so on, for which handling a local copy may lead to invalid functional
behavior in comparison to the initial algorithm. For these specific cases,
such variables are usually handled in a single function, reducing the risk
for concurrency errors, although keeping reentrancy risks.

Aware that these solutions are disputable and may not be satisfactory
from a formal point of view, we are seeking to reach higher guarantees
on the provided USB stack: beyond Frama-C, dedicated static analysis
tools could be of use. This is discussed in more details in 6.5.

5.3 Entrypoints and external dependencies

Entrypoints: The EVA plug-in needs an entrypoint to explore the code,
which can be tedious for libraries such as the USB stack where there is
no main function. Hence, an artificial .c file must be created for each
proven module, with a main routine containing calls to all the functions
that will activate the stack functionalities. It is important using these
calls to ensure the exploration of the nominal code paths (with correct
inputs) as well as the errors handling ones (with incorrect inputs). The
code coverage provided by Frama-C is a good indication of the entrypoint
completeness. The WP plug-in does not need entrypoints as the analysis
can be performed on each function using the dedicated function and loop
contracts to ensure proper behavior (pre/postconditions) and termination.
Asynchronous calls to functions such as interrupts, handlers and callbacks
can be executed at any point in time during the run time of another
function.

R. Benadjila, C. Debergé, P. Mouy, P. Thierry 19

External dependencies (assumptions): Although most of the USB
stack code is self-contained, we use some functions that are external
dependencies and that we consider as valid under hypothesis: we suppose
that a RTE-free implementation of such functions is provided and used at
link time in concrete projects. Such functions are classical and mainly taken
from the standard library or compiler built-ins APIs: memcpy, memset,
basic string manipulations with strlen, malloc and free. While the
copy and string related functions are straightforward and quite easy to
implement, we are well aware that proving the memory-safety of some
complex algorithms (e.g. allocators) is not an easy task. Nonetheless, we
underline the fact that such projects are side work, and some even already
exist [28, 41] and can be used almost as is with our USB stack while
inheriting from the proofs using modularity. Tuning the memory footprint
and performance of such proven algorithms is out-of-scope of this article,
and considered as future work.

WP cannot handle heterogeneous casts due to its memory model:
functions with void* parameters have to be locally specialized with the
type used by the callee with the associated function annotations to be
efficiently used by WP. This means that functions with void* parameters
and more precisely their contracts were locally specialized with the used
type to be verified at each call site. We have to say that Frama-C has a
dedicated plug-in, Instantiate [18] to do this work on the standard library
(but only on it for now).

6 Results and discussion

6.1 Security gains

RTE and RCE related security gains: A first feedback is that devel-
oping the USB stack in parallel of using Frama-C 7 to prove it allowed us
to find and patch vulnerabilities (and not only RTEs) in an incremental
manner. This shows that our methodology thwarts many classical human
mistakes when it comes to develop an error prone complex software stack.
As examples of interesting findings, 10 RTEs have been discovered in the
USB control core library, and 8 RTEs in the USB HS driver. Here is an
overview of such bugs:

— Invalid memory access: Frama-C allowed to catch overflows when
accessing interfaces descriptors and endpoints static tables in mem-
ory, possibly leading to memory leak (read sensitive areas) or RCE.

7. The term “Frama-C” is a shortcut for the described combination of EVA and
WP.

20 From CVEs to proof:Make your USB device stack great again

— Unsigned integer overflows and unsigned integer downcasts: such
RTEs can lead to incorrect behavior, or memory leaks and RCEs
when the integers are used as access indexes in tables.

— Uninitialized variables: read and use an uninitialized memory area,
leading to memory leak or unknown and incorrect behavior.

— Division by zero: divide by a variable that can be zero, leading to
a denial of service.

1 mbed_error_t usbctrl_handle_class_requests (usbctrl_setup_pkt_t *pkt ,

2 usbctrl_context_t *ctx)

3 {

4 ...

5 /* Get interface from the packet index */

6 iface_idx = (((pkt -> wIndex) & 0xff) - 1);

7 ...

8 /* Call our interface handler */

9 usbctrl_ctx [ctxh]. ifaces [iface_idx]();

10 ...

11 }

Fig. 5. Detected RTE leading to RCE

In order to emphasize the benefits of programming with Frama-C, we
provide a practical example of an unsigned integer downcast that has been
detected by EVA and patched during the USB control library development
cycle. This example is of particular interest as it could have led to a
concrete RCE. In the USB stack, the wIndex field of control requests
contains a target interface identifier strictly greater than 0 per USB
specifications. The interface descriptors are stored in a C table with index
starting from 0, and hence the addressing in the table was previously made
using the formula computing iface_idx shown on Figure 5 and without
boundary check at access time: a simple check on wIndex compared to
the number of interfaces is not enough.

As one can see, a downcast is possible due to the minus one opera-
tion, producing iface_idx=0xFF when pkt->wIndex=0. The bad index-
ing will then call a function pointer in a corrupted interface structure
usbctrl_ctx[ctxh].ifaces[0xff]() possibly controlled by the attacker,
achieving the RCE. Although this particular case would have been caught
by our defense-in-depth handlers sanitizers, catching such a RTE with
potentially disastrous effects using Frama-C is gratifying. The patched
code using the appropriate check and ACSL assertions on pkt->wIndex

and iface_idx is shown on Figure 6.
Using Frama-C iteratively allows to naturally introduce defensive

programming assertions when each alarm is treated, checked as truly
positive RTE and fixed (as shown on the wIndex field example). When
compared to known existing CVEs, immediate and straightforward RTEs

R. Benadjila, C. Debergé, P. Mouy, P. Thierry 21

1 mbed_error_t usbctrl_handle_class_requests (usbctrl_setup_pkt_t *pkt ,

2 usbctrl_context_t *ctx)

3 {

4 ...

5 /* Get interface from the packet index with check */

6 if (((uint8_t)((pkt -> wIndex) & 0xff)) == 0)

7 /*@ assert ((pkt -> wIndex) & 0xff) == 0 ; */

8 errcode = MBED_ERROR_INVPARAM ;

9 goto err ;

10 }

11 /*@ assert ((pkt -> wIndex) & 0xff) > 0 ; */

12 iface_idx = (((pkt -> wIndex) & 0xff) - 1);

13 if (iface_idx > usbctrl_ctx [ctxh]. num_ifaces) { ... }

14 /*@ assert (iface_idx < usbctrl_ctx [ctxh]. num_ifaces ; */

15 ...

16 /* Call our interface handler */

17 usbctrl_ctx [ctxh]. ifaces [iface_idx]();

18 ...

19 }

Fig. 6. Fixing the RTE

on the 16-bit field wLength of control requests [31, 32, 46, 46] (exploiting a
buffer overflow for RCE) are trivially caught, and consequently prevented,
by using our approach hence confirming its security gains.

As we have previously stated, elaborate RTEs that are consequences of
TOCTOU, race conditions and concurrency are not captured at all using
our current methodology with Frama-C, and our proofs of RTE absence
on sequential code do not capture all runtime errors. Nonetheless, the
observed results-oriented feedback reassures us on the practical usefulness
of our approach. Many of the classical and dangerous bugs leading to RCE
should be covered (with formal guarantees) which represents a notable
positive leap toward a fully immune and bug-free USB stack.

Additional security gains: In addition to RTE findings and fixing,
some common programming mistakes have been caught using Frama-

C. Collateral RTE detection (bad goto labels usage) allowed to exhibit
incorrect labels or missing break in functions. EVA code coverage feature
allowed to detect dead code 8 or redundant tests, and hence perform
optimization and code cleaning passes. As a side note, EVA coverage does
not reach 100% of the library modules source code. There are multiple
reasons for this. Some dead code is kept due to compiler’s constraints:
default fallback for switch/case structures must be present even though
a previous piece of code inherently discards it (or else warnings are usually
emitted by the compiler). Additionally to this, defensive programming
against hardware fault injection contexts [43] inclined us to use code
patterns that are legitimately considered as unreachable in nominal and
safe execution paths of the program.

8. The term dead code is used here to refer to code which can never be executed.

22 From CVEs to proof:Make your USB device stack great again

6.2 Beyond RTE: functional verifications

Although RTE on sequential code is our major focus in the current
article, we also seek some functional guarantees through elaborate function
contracts for high level USB specifications conformity. In order to achieve
this, we use the ACSL annotations to write function contracts that cover
the functional elements we want to prove. We have first started doing it
opportunistically on a few functions with simple specifications and then
we have extended this process more systematically.

1 /*@ ...

2 // NOTE: USB 2.0 conformity : chap. 9.4.6

3 @ behavior invalid_pkt_windex :

4 @ assumes pkt -> wIndex != 0;

5 @ ensures ctx -> address == \old(ctx -> address);

6 @ ensures \ result == ERROR_INVPARAM ;

7 @ behavior invalid_pkt_wlength : [...]

8 @ behavior std_requests_not_allowed : [...]

9 @ behavior invalid_addr : [...]

10 [...]

11 @ complete behaviors ;

12 @ disjoint behaviors ; */

13 mbed_error_t

14 usbctrl_std_req_handle_set_address (usbctrl_setup_pkt_t

15 const * const pkt ,

16 usbctrl_context_t *ctx)

Fig. 7. usbctrl_std_handle_set_address function contract

Since many of our functions, e.g. in the USB control module, im-
plement the core USB specifications [19], we want assurance that the
implementation does not diverge from our high level understanding of it.
ACSL introduces the behaviors keyword that expresses possible execu-
tions of a function. Precise function contracts with various behaviors can
be of great use and provide confidence that a logical ACSL description
meets the C code. It is possible to form precise descriptions of each func-
tional behavior of a function based on conditions for input and output
values (pre/postconditions). An example of such a contract is shown on
Figure 7 for the function handling the set_address phase of the enu-
meration between host and device, described in [19] chapter 9.4.6. Many
behaviors are defined, each one providing a possible state depending on
preconditions on the inputs, and leading to a deterministic postcondition
result dictated by the specification. The first one reads (lines 3 to 6):
when pkt->wIndex is not zero, this is considered as a request with invalid
parameters and ctx->address must not be changed (equal to the previ-
ous old value before entering the function) while the returned result

must be ERROR_INVPARAM. The notions of complete and disjoint behaviors
are crucial: the statement complete behaviors means that our defined
behaviors intend to cover all the possible states of the function so there is

R. Benadjila, C. Debergé, P. Mouy, P. Thierry 23

no missing behavior, while the disjoint behaviors means that they do
not share potential common states in function entry.

We are working on the systematic use of advanced contracts on critical
parts of the modules that are strongly related to the USB specifications
(other internal or simple functions usually do not need them).

Moreover, we have also began to add proofs on the finite state automa-
tons by proving that the USB 2.0 control state automaton implementation
is conforming to the specifications [19]: transition functions contracts map
the automaton transitions model, proving the implementation adequacy.
This work implies to locally verify all the transition functions by adding
ACSL annotations where needed. For this purpose, we have used an ad-
ditional Frama-C plug-in, MetACSL [37], that automatically generates
all ACSL annotations corresponding to a high-level property (here the
correct control state automaton implementation). This work is inspired
by the results presented by the CEA-List team on proving the WooKey
platform Bootloader correctness [38].

6.3 Overview of the proofs

We provide on Table 1 some statistics about our work on the USB
stack with Frama-C (we use the same numbering for the modules as in
the architectural view of Figure 2). The Table shows the modules that are
already proven RTE-free.

For each proven module, we provide the C code sloc count as well
as the manual ACSL annotations count: the ratio between them is an
interesting metric to exhibit the necessary work on the Frama-C side
to achieve the RTE-freeness. Another metric that we provide is a rough
estimate of the amount of function contracts (WP columns in Table 1):
simple contracts are those helping the RTE-freeness proofs on sequential
code, while more elaborated ones provide functional guarantees on some
of the modules sub parts. These amounts are obviously correlated to the
ACSL annotation ratio.

First, the USB OTG HS driver in device mode shows a ratio of 0.24
annotation per C code line, the ACSL code mainly consists of contracts
helping the RTE-freeness and ensuring that the hardware FIFOs and
registers are correctly handled without touching other regions. This 0.24
ratio is on par with the annotations of the X.509 parser (as such annota-
tions were also prioritizing the absence of RTE). The specifications related
contracts are marked as Not Available (N.A.) since we do not have a
specification per se for the driver: even if the datasheet [5] contains state
automatons that could be translated to contracts, the hardware adherence

24 From CVEs to proof:Make your USB device stack great again

makes it impossible to formally check the state of memory and registers
that are modified by the underlying IP.

Module SLOC ACSL
EVA

coverage
EVA

(RTE)
Functional

simple (WP)
Functional
spec (WP)

Proof
time

2 USB OTG HS driver 2,900 700 97% 100% 70% N.A. 20m02

4 USB control (DCI) 3,000 1,088 98.92% 100% 70% 50% 24m52

5 USB MSC 2,900 614 98.95% 100% 50% 0% 18m17

5 USB DFU 1,700 532 96% 100% 50% 0% 2h15

5 USB HID 1,595 500 95.31% 100% 40% 10% 7m17

Total
12,095 3,434

Table 1. Overview of the current state of proofs on the USB stack

The USB control module presents a rather high ratio of 0.36 annotation
per C line: this shows a particular focus on functional contracts on par
with the USB core specification [19] similar to the example provided
in 6.2. An important element to note here is that this module being purely

synchronous by design (it fully runs in interrupt mode), the proof of the
absence of RTE is immediately transferable to the runtime code. USB
mass storage MSC, DFU and HID classes currently have lower ratios since
the ACSL conformance to specifications [9, 22, 33] is to be refined. Our
modules show a code coverage of nearly 100% (collected using EVA’s
coverage feature providing reached code lines percentage over all the
analyzed modules), showing that almost all the functions and their corner
cases are analyzed (with the limitations of legitimately unreachable code
described in 6.1).

Finally, we provide for each module the total proof time using Frama-

C version 22/Titanium. These proofs are performed on github’s cloud
computing resources as we have integrated our stack development cycle to
the github actions CI. The rather large computation time for DFU comes
from its asynchronous automaton (when compared to the synchronous
MSC one) and an external dependency to a memory allocator.

6.4 Performance and runtime tests of the USB stack

A statically proven USB stack with Frama-C would obviously be
useless if it does not have a run time usage. In order to validate our device
stack against various host stacks (Linux, FreeBSD, Windows, Mac OS), we
have materialized it in concrete devices through the WooKey project [13].
This project aims at providing a SDK for applications development on
top of a microkernel with defense-in-depth mechanisms. Since it natively
provides mass storage and DFU features, it has been a natural playground

R. Benadjila, C. Debergé, P. Mouy, P. Thierry 25

to replace the project’s original and limited USB stack with ours. We have
also integrated the newly developed USB HID and CTAP HID classes to
the U2F2 FIDO token project [14].

Class OS support
Throughput
(Mbits/s)

ROM footprint a

(Kbytes)
RAM footprint b

(Kbytes)
Dynamic

(reset, suspend, VM)

Original USB stack from the WooKey SDK

MSC
Windows7+

Linux
Mac OS

read: 52
write: 36

23
stack: 6
data: 25

DFU
Windows7+

Linux
Mac OS

∼1.6 c 26
stack: 4
data: 12

No

This work’s USB stack compiled with the WooKey SDK

MSC
Windows7+

Linux
Mac OS

read: 50
write: 34.4

28
stack: 6
data: 30

DFU
Windows7+

Linux
Mac OS

∼1.6 c 32
stack: 4
data: 16

Yes

Table 2. Comparison: RTE-free stack versus original WooKey’s stack

An interesting element to notice is that performance are preserved
using our new USB stack integration, showing that defensive programming
and Frama-C proofs do not noticeably impact CPU cycles and memory
footprints. Table 2 summarizes some figures for both stacks with regard to
the MSC and DFU classes. Throughput for MSC is measured in read and
write directions using the dd tool under Linux, and using the dfu-util

utility with 4096 bytes chunks size for DFU. Nominal functionality is
stressed through harness file systems access (MSC), and multiple firmware
updates (DFU). We want to emphasize the fact that figures provided
here are not “absolute” but relative to the platform: they must be used
to compare the two stacks, no more (some WooKey SDK elements and
libraries beyond the mere USB stack are included in the footprints, etc.).

All the tests have been performed on the same WooKey hardware board,
with the same SDK version and compiler. As we can see, the two stacks
are both compatible with various OS hosts. The throughput is almost the
same between them: RTE-freeness proof with Frama-C does not really
have big impacts here. On the memory footprint side, we can observe
that there are some differences: the one with proofs uses slightly more
non-volatile flash memory and volatile SRAM memory. This is actually
mainly due to increased features of the RTE-free stack (and not to extra

a. Mainly size in read only memory, could be flash or BootROM.
b. Size in RAM or SRAM, composed of the stack usage (local variables, functions

frames) as well as writable data (initialized and uninitialized global and static variables).
c. Download mode only: throughput limited by the cryptographic tasks of WooKey.

26 From CVEs to proof:Make your USB device stack great again

code induced by proofs): more requests types and more automaton states
are supported, producing a larger code and slightly decreased throughput.
This work’s stack also supports new features: properly handling USB
reset and suspend events as well as Virtual Machines hot plugging and
unplugging, dynamically configuring new classes, etc.

6.5 Limitations and future work

The path towards the RTE-freeness on runtime code: As we have
seen, the proof done with Frama-C is somehow limited by two factors:
the fact that the running code slightly diverges from the code parsed by
Frama-C, and the fact that EVA and WP do not handle multithreading,
concurrency and race conditions. This means that we cannot claim that
our stack is absolutely proved, although our methodology paves the way
for this goal and brings strong guarantees against Remote Code Execution
(and against unexpected behaviors). As a matter of fact, our RTE-freeness
proofs are on an equivalent sequential code that diverges from the runtime
code, except for the USB control module that is purely sequential by
nature. For the other modules, we have tried to heavily limit the code
divergence between the part analyzed by Frama-C and the runtime code.

All the globals handling uses strict coding constraints detailed in 5.2
to limit too much usage of the volatile keyword. This coding pattern
immediately transfers to runtime and does not incur a divergence on
the absence of RTE proofs: concurrency issues are limited by protected
accesses to variables, but reentrancy issues must be considered.

Regarding the divergence from runtime code, the only problematic
patterns are those replacing polling loops on external events. Using syn-
chronous calls as a replacement in the Frama-C version (see 5.2) are
handled with care in each specific situation in the USB stack layers. We
always try to ensure that no side effect (on a variable) could occur in
the runtime version when compared to the analyzed one. This is usu-
ally easy since our polling loops are very simple. Table 3 presents such
transformations per module: as we can see, this number remains controlled.

HS driver USB control MSC DFU HID

#Transformed loops 3 0 9 6 4

Table 3. Number of analyzed versus runtime code divergence per module

These elements with their rationale provide a sound basis for transfer-
ring the proofs, although we are well aware of the (error prone) human

R. Benadjila, C. Debergé, P. Mouy, P. Thierry 27

factor when dealing with them. Bringing proofs on a one to one code equiv-
alent USB stack with the Frama-C framework, dealing with concurrency
and reentrancy issues for all the modules (at least from a RTE-freeness
perspective), is a non trivial yet very interesting subsequent work. Beyond
the Frama-C framework, and in order to pragmatically deal with these
limitations, we explore at least three complementary paths:

— Use fuzzing (e.g. using [47, 48]). Although this empirical approach
has no formal foundations, it allows to dynamically stress software
stacks and quickly detect bugs.

— Try to use other sound tools on the proven stack that could detect
other kinds of bugs than RTEs, and/or deal with concurrency
issues.

— Try to use other unsound tools to detect other bug classes.

Beyond RTE – functional proofs with Frama-C: Our (long term)
ambition is to increase the ratio of functional proofs on our USB stack by
using complete and detailed function contracts with WP. This will help to
increase insurance in the implementation of the specifications. Beyond the
work already performed on the USB control automaton, we seek to improve
modeling and proofs on the class automatons such as MSC, HID or DFU.
We are however well aware that the amount of necessary work is very
variable depending on the considered USB class: while MSC automatons
remain quite simple, DFU ones can be very tricky to apprehend.

Future development: On the development side, we seek to extend
the USB control stack up to USB 3.2 specifications [11]. We are also in
the process of increasing the supported classes (to CDC, CCID) with
(sequential) RTE-freeness and functional proofs using the same modular
methodology that has been exposed in this article. Beyond classes, we
want to ideally expand this strategy to upper class modules, e.g. with
CTAP-HID on top of HID for FIDO two factors authentication tokens.
Also, our work has mainly focused on a device stack: an incipient host

mode is already present in the driver and will hopefully be expanded to
other layers. On the portability side, we seek to transfer the USB-centric
layers (control plane and classes) on top of existing third party drivers
(e.g. Linux kernel OTG and so on, despite their lack of proofs).

Finally, we also want to put some efforts to render the stack more
robust against fault injections and glitch attacks, as hybrid (hardware and
software) adversaries have recently proved efficient and relatively easy to
achieve using cheap material [30, 34,43].

28 From CVEs to proof:Make your USB device stack great again

7 Conclusion

This article presents how we provide an open source C implementation
of a versatile USB 2.0 device stack with RTE-freeness proofs in a sequential
context and some functional guarantees. The proof methodology uses a
novel (as far as we know) composition tactic that became a necessity due
to the complexity of the code, with a bottom-up (from hardware drivers
to high level software) strategy.

We stress out that RTE-freeness is an important goal to achieve on
crucial software stacks such as the USB one: this prevents dangerous
CVEs [31, 32, 46] potentially leading to Remote Code Execution at the
highest privilege level on vulnerable platforms. Our RTE-freeness proofs
have been achieved on C code using the Frama-C framework EVA and
WP plug-ins [36,39] combination: this approach paves the way to a generic
usage of the methodology on other projects, specifically those implementing
advanced protocols stacks on embedded platforms. We also expose how
we deal with Frama-C limitations regarding asynchronous events and
strong hardware interactions such as interrupts.

To validate our results, we have ported the proven USB stack on the
WooKey platform [13] that uses a STM32F4 MCU. Our tests expose
similar performance and memory footprint when compared to the original
USB stack of the project, showing an almost zero-cost effect of the RTE-
freeness proofs and defensive programming. We have focused our efforts
on the mass storage MSC, HID and DFU classes, but our future work
in short term will consist in expanding this endeavor to proofs on the
CDC, CCID and other USB classes, top layers, as well as integrating
more functional properties with regard to the USB specifications. Other
work in progress concerns the host mode development, portability to other
hardware platforms, and compatibility with the USB 3 standard.

The limitations of using Frama-C in an asynchronous context with
hardware interactions make the analyzed code diverge from the compiled
one running on the target. This arises a legitimate question regarding
the foundations of our absence of RTE guarantees when it comes to
concurrency, race conditions and reentrancy in the multithreading runtime
model. Section 5.2 provides key insights on how we try to empirically
address these issues using simple and controlled code rewriting. Anyhow,
the feedback on the concrete RTEs fixed during our development cycle
indicates that many classical exploitable bugs have been caught. Fully
bridging the gap between the proved and the executed code with Frama-C

is a challenging task that we reflect on for future improvements.

R. Benadjila, C. Debergé, P. Mouy, P. Thierry 29

References

1. Linux XHCI source code. https://github.com/torvalds/linux/blob/

d8c849037d9398abe6a5f5d065eafc777eb3bdaf/drivers/usb/host/xhci.c.

2. MQX USB Stack. https://www.nxp.com/design/software/embedded-software/

mqx-software-solutions/mqx-usb-host-device-stack:MQXUSB.

3. SoK: "Plug & Pray" Today – Understanding USB Insecurity in Versions 1 Through
C. In 2018 IEEE, San Francisco, CA.

4. STM32Cube USB library. https://www.st.com/resource/en/user_manual/

dm00108129-stm32cube-usb-device-library-stmicroelectronics.pdf.

5. STM32F429/439. https://www.st.com/resource/en/reference_manual/.

6. The Zephyr Project. https://zephyrproject.org/.

7. TinyUSB. https://github.com/hathach/tinyusb.

8. AbsInt. Astrée. https://www.absint.com/astree/index.htm.

9. DEC Alps, Cybernet et al. Universal serial bus Device Class Definition for HID
1.11. In USB Implementers’ Forum. sn, 2011.

10. ANSSI. Guide C. https://www.ssi.gouv.fr/guide/regles-de-programmation-

pour-le-developpement-securise-de-logiciels-en-langage-c/.

11. Hewlett-Packard Apple Inq., Intel Corporation, et al. Universal serial bus 3.2
specification. In USB Implementers’ Forum. sn, 2017.

12. Axi0mx. Apple iBoot BootROM DFU exploit, 2019.
https://habr.com/en/company/dsec/blog/472762/.

13. Ryad Benadjila et al. WooKey: designing a trusted and efficient USB device. In
Proceedings of the 35th Annual Computer Security Applications Conference.

14. Ryad Benadjila and Philippe Thierry. U2F2 : Prévenir la menace fantôme sur
FIDO/U2F. In SSTIC, 2021.

15. Abderrahmane Brahmi et al. Formalise to automate: deployment of a safe and
cost-efficient process for avionics software. In EERTS 2018.

16. G. Brat et al. IKOS: A Framework for Static Analysis Based on Abstract Interpre-
tation. Springer, 2014.

17. CEA. RTE — Runtime Error Annotation Generation.
https://frama-c.com/fc-plugins/rte.html.

18. CEA-List. Instantiate description page.
https://frama-c.com/fc-plugins/instantiate.html.

19. Hewlett-Packard Compaq, Lucent Intel, et al. Universal serial bus specification
revision 2.0. In USB Implementers’ Forum. sn, 2000.

20. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints.

21. Patrick Cousot et al. Varieties of static analyzers: A comparison with astree. In
TASE 2007.

22. Ellisys Cypress, Intel Hagiwara, et al. Universal serial bus Mass storage class
specification overview revision 1.4. In USB Implementers’ Forum. sn, 2010.

23. E.W. Dijkstra. “Guarded Commands, Nondeterminacy and Formal Derivation of
Programs”. ACM, 1975.

https://github.com/torvalds/linux/blob/d8c849037d9398abe6a5f5d065eafc777eb3bdaf/drivers/usb/host/xhci.c
https://github.com/torvalds/linux/blob/d8c849037d9398abe6a5f5d065eafc777eb3bdaf/drivers/usb/host/xhci.c
https://www.nxp.com/design/software/embedded-software/mqx-software-solutions/mqx-usb-host-device-stack:MQXUSB
https://www.nxp.com/design/software/embedded-software/mqx-software-solutions/mqx-usb-host-device-stack:MQXUSB
https://www.st.com/resource/en/user_manual/dm00108129-stm32cube-usb-device-library-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/dm00108129-stm32cube-usb-device-library-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/
https://zephyrproject.org/
https://github.com/hathach/tinyusb
https://www.absint.com/astree/index.htm
https://www.ssi.gouv.fr/guide/regles-de-programmation-pour-le-developpement-securise-de-logiciels-en-langage-c/
https://www.ssi.gouv.fr/guide/regles-de-programmation-pour-le-developpement-securise-de-logiciels-en-langage-c/
https://habr.com/en/company/dsec/blog/472762/
https://frama-c.com/fc-plugins/rte.html
https://frama-c.com/fc-plugins/instantiate.html

30 From CVEs to proof:Make your USB device stack great again

24. Loïc Duflot et al. What if you can’t trust your network card? In RAID 2011.

25. Arnaud Ebalard et al. Journey to a RTE-free X.509 parser. https://www.sstic.

org/2019/presentation/journey-to-a-rte-free-x509-parser/.

26. International Organization for Standardization (ISO). The ANSI C standard (C99).
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1124.pdf.

27. Matheus E. Garbelini et al. Sweyntooth: Unleashing mayhem over bluetooth low
energy. In 2020 USENIX Annual Technical Conference (USENIX ATC 20), 2020.

28. Jens Gerlach. ACSL by Example. https://github.com/fraunhoferfokus/acsl-

by-example/blob/master/ACSL-by-Example.pdf.

29. NCC Group. Lessons learned from 50 bugs: Common USB driver vulner-
abilities. https://research.nccgroup.com/wp-content/uploads/2020/07/usb_

driver_vulnerabilities_whitepaper_v2.pdf.

30. NCC Group. There’s A Hole In Your SoC: Glitching The MediaTek BootROM,
2020. https://research.nccgroup.com/2020/10/15/theres-a-hole-in-your-

soc-glitching-the-mediatek-bootrom/.

31. NCC Group. Zephyr Project USB DFU buffer overflow, 2020.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10019.

32. NCC Group. Zephyr Project USB MSC buffer overflow, 2020.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10021.

33. Trenton Henry et al. Universal Serial Bus Device Class Specification for Device
Firmware Upgrade. Aug, 5:47, 2004.

34. ITSEFs and ANSSI. Inter-CESTI: Methodological and Technical Feedbacks on
Hardware Devices Evaluations. In SSTIC, 2020.

35. Florent Kirchner et al. Frama-C: A software analysis perspective. Formal Aspects
of Computing, 27(3):573–609, 2015.

36. CEA LIST. EVA. https://frama-c.com/download/frama-c-eva-manual.pdf.

37. CEA LIST. MetACSL. https://frama-c.com/fc-plugins/metacsl.html.

38. CEA LIST. MetACSL Gitlab.
https://git.frama-c.com/pub/meta/-/tree/master/case_studies/wookey.

39. CEA LIST. WP. https://frama-c.com/download/frama-c-wp-manual.pdf.

40. CEAL LIST. ACSL. https://frama-c.com/html/acsl.html.

41. Frédéric Mangano et al. Formal Verification of a Memory Allocation Module of
Contiki with Frama-C: a Case Study. In CRiSIS 2016 , 2016.

42. MathWorks. Polyspace Code Prover.
https://fr.mathworks.com/products/polyspace-code-prover.html.

43. Colin O’Flynn. MIN()imum Failure: EMFI Attacks against USB Stacks. In 13th
USENIX (WOOT 19), Santa Clara, CA, 2019.

44. Alain Ourghanlian. Evaluation of Static Analysis Tools used to Assess Software
Important to Nuclear Power Plant Safety. Nuclear Engineering and Technology.

45. Kate Temkin. CVE-2018-6242. https://github.com/Qyriad/fusee-launcher.

46. Grzegorz Wypych. CVE-2020-15808: STM32FCubeMX exploit in CDC implemen-
tation. https://twitter.com/horac341/status/1311911734572208129.

47. Grzegorz Wypych. usb-tester. https://github.com/h0rac/usb-tester.

48. Michał Zalewski. American fuzzy lop. http://lcamtuf.coredump.cx/afl.

https://www.sstic.org/2019/presentation/journey-to-a-rte-free-x509-parser/
https://www.sstic.org/2019/presentation/journey-to-a-rte-free-x509-parser/
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1124.pdf
https://github.com/fraunhoferfokus/acsl-by-example/blob/master/ACSL-by-Example.pdf
https://github.com/fraunhoferfokus/acsl-by-example/blob/master/ACSL-by-Example.pdf
https://research.nccgroup.com/wp-content/uploads/2020/07/usb_driver_vulnerabilities_whitepaper_v2.pdf
https://research.nccgroup.com/wp-content/uploads/2020/07/usb_driver_vulnerabilities_whitepaper_v2.pdf
https://research.nccgroup.com/2020/10/15/theres-a-hole-in-your-soc-glitching-the-mediatek-bootrom/
https://research.nccgroup.com/2020/10/15/theres-a-hole-in-your-soc-glitching-the-mediatek-bootrom/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10019
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10021
https://frama-c.com/download/frama-c-eva-manual.pdf
https://frama-c.com/fc-plugins/metacsl.html
https://git.frama-c.com/pub/meta/-/tree/master/case_studies/wookey
https://frama-c.com/download/frama-c-wp-manual.pdf
https://frama-c.com/html/acsl.html
https://fr.mathworks.com/products/polyspace-code-prover.html
https://github.com/Qyriad/fusee-launcher
https://twitter.com/horac341/status/1311911734572208129
https://github.com/h0rac/usb-tester
http://lcamtuf.coredump.cx/afl

	From CVEs to proof: Make your USB device stack great again

