
Hyntrospect: a fuzzer for Hyper-V devices

Diane Dubois
didu@google.com

Google

Abstract. Hypervisors are complex software which may require the
reimplementation of legacy stacks. On Microsoft Hyper-V virtual machines
(generation 1), some devices are emulated in the userland of its root
partition. To explore this attack surface, a specifically crafted open source
toolchain called Hyntrospect has been developed. It aims at helping find
vulnerabilities in a pragmatic way: by taking benefits of existing Hyper-V
and Windows capabilities and tools to perform coverage-guided fuzzing on
Hyper-V closed-source binaries. That approach was inspired by previous
experiences with libFuzzer, a publication by Microsoft on their fuzzing
campaign, and other research conducted on the topic. The specificity of
that tool is to rely on debugging and as a consequence to run in a real
environment. It was also written in the perspective of putting together
techniques that could be ported in the future to other Hyper-V root
partition’s userland targets.

After covering Hyper-V and the state of the art on its instrumentation
and research, this paper introduces Hyntrospect and its associated design
choices, and finally describes the outcome of the first runs and future
endeavors.

1 Introduction

Hyper-V is the hypervisor developed by Microsoft which runs Microsoft
Cloud Azure. Modern versions of Windows also run on top of Hyper-V
to enhance their virtualization-based security [36]. Defeating Hyper-V
security could lead to compromising local security policies, servers or
exposing customer data. Hyper-V is, as a consequence, a complex but also
interesting target for vulnerability researchers. A bug bounty is offered by
Microsoft, the rewards go up to $250,000.

On Hyper-V, the virtualization stack is mostly implemented in a
virtual machine called the root partition which has a different status than
the other virtual machines, and a good chunk of it “lives” in userland
such as the worker process which holds the VMs (cf first steps in Hyper-V
research and Hyper-V architecture and vulnerabilities [29, 41]). Having
execution in the root partition enables controlling the virtualization stack.
As a consequence, a “ret to the root partition” is an interesting target for

2 Hyntrospect: a fuzzer for Hyper-V devices

a bug hunter. Such an approach already enabled Joe Bialek to find a bug
in the IDE bus stack (CVE-2018-0959, BlackHat USA 2019) [11].

The peripherals of a virtual machine, such as the network interface
card, can be handled in different ways. One way is to mimic a real controller
in dedicated code which enables keeping the guest VM unaware of the
virtualization. This is called emulation. The implementation of those
controllers is common and not straight-forward, and has proven to be an
area prone to bugs (on Hyper-V: CVE-2018-0888, CVE-2018-0959, but
also in other hypervisors). On Hyper-V, the emulated devices’ controllers
are implemented in the root partition. They offer a great target that can
be reached from the VM. This technical stack has already been covered
in this blog post published by MSRC [42].

The goal of this paper is not to cover that topic again but instead to
cover how the following challenge was resolved: how to instrument Hyper-V
to test that attack surface? Or in more detail: how to do coverage-guided
fuzzing on components of the userland of the root partition of Hyper-V
VMs without having access to the source code? After introducing some
architectural concepts and some previous work done in the area, the
strategy deployed for this project and resulting tool will be presented here.
Finally, some results will be presented. The goal of open-sourcing the
fuzzer is rather to share and get contributions from the security community
as - with some adaptations - the use of the fuzzer can be broadened.

This project was done during my 20% project (an initiative where
Google employees can spend 20% of their time on a project of their
choosing) with the Project Zero team.

2 Hyper-V and the state of the art

2.1 What is Hyper-V?

Hypervisors are pieces of software that enable several operating systems
(the virtual machines) to run concurrently on the same machine (the
host) and manage the host’s resources in a process called virtualization.
Examples of uses for hypervisors are to maximize the usage of resources
or to containerize.

There are 2 types of hypervisors. Type 1 (or bare-metal) hypervisors
lie between the hardware layer and the operating systems, like Xen or
VMWare ESXi. Type 2 hypervisors are embedded within one operating
system to run other operating systems on top of that operating system like
any other program, such as VMWare Workstation or Oracle VirtualBox.
Hyper-V is a type 1 hypervisor.

D. Dubois 3

Hyper-V is Microsoft’s hypervisor. The Microsoft Cloud called Azure
runs Hyper-V. Modern versions of Windows also run on top of Hyper-V
as it enables enhancing their level of security through virtualization-based
security [36].

3 Overview of Hyper-V architecture

Figure 1 summarizes Hyper-V architecture (source: Microsoft docu-
ments [37]).

Fig. 1. Hyper-V architecture overview

Microsoft published a post about Hyper-V architecture [37]. The key
components for this analysis are the root partition and the VM worker
process, which will be introduced here.

The root partition is privileged compared to the other partitions and
is sometimes referred to as the parent partition. It is the only partition that
has direct access to physical memory and devices. VMs on Azure or VMs
started on a Windows machine inside Hyper-V Manager are children
partitions. They communicate with the root partition either through the
VMBus (logical communication channel) or through the hypervisor.

One VM worker process (vmwp) is spawned per child partition in
the root partition’s userland. It provides the virtual machine management
services.

In this paper, “guest”, “VM” and “virtual machine” will refer inter-
changeably to “virtual machine”. Host is more ambiguous on Hyper-V as

4 Hyntrospect: a fuzzer for Hyper-V devices

it could refer to either the hypervisor or the root partition (as a matter of
interpretation) so this term will be avoided unless it refers to both these
surfaces together.

3.1 VM generations

Hyper-V has 2 different generations of VMs: generation 1 (with more
legacy components, leaning towards compatibility) and generation 2 (next
generation, with a focus on performance and newer technologies). In this
post [32], Microsoft presents the differences between generation 1 and
generation 2 VMs. Among the numerous differences, the following ones
can be called out: UEFI versus BIOS, the introduction of SecureBoot
enabled by default, booting from SCSI instead of IDE, and the removal of
all the legacy emulated controllers.

3.2 Hyper-V attack surface

In the Microsoft MSRC blog post “First steps in Hyper-V research” [41],
the attack surface for guest-to-host escape is detailed as follows: the
hypercalls handlers, the faults (triple fault, EPT page faults, etc.), the
instruction emulation, the intercepts, and register access (control registers,
MSRs).

This is also a topic that was presented by Alisa Esage (slides 41 and
42 of her presentation on hypervisor security research [21]).

Microsoft has decided to push several components out of the hypervisor
layer to the root partition in order to reduce the attack surface and
complexity of the hypervisor layer. In the root partition, some components
such as the memory management run in the kernel, and some such as
the devices have been developed in userland. As a consequence, a good
portion of the attack surface such as virtualization code and VM memory
are in the root partition which makes it an interesting target. Across this
large attack surface, the emulated devices were chosen for this analysis.

3.3 The target: the emulated devices on generation 1 VMs

What is an emulated device? In a non virtualized environment, the
operating system can have direct access to the hardware. Virtualization
adds complexity as several operating systems can run in parallel, need
access to resources concurrently, and in the meantime should not be
granted the same level of privilege as the “master operating system” (the
hypervisor) for security reasons as well as stability. The hypervisor has

D. Dubois 5

to orchestrate and check the access to resources and operations on the
devices such as a disk write operation or sending packets over the network.
On virtualized platforms, there are three ways to deal with the access to
those devices: emulation, paravirtualization, and pass-through.

Emulation is a technique that consists of imitating the behavior of a
real hardware controller through software within the hypervisor’s code.
The operating system of the virtual machine runs unmodified. With par-
avirtualization, the hypervisor exposes a modified version of the physical
hardware interface to the guest VM. Its operating system is as a conse-
quence modified, with the benefits of enhanced performance. Pass-through
gives direct access to the real hardware underneath.

Why this target? As emulation consists of rewriting the controllers’
logic at the hypervisor level, implementation is not straight-forward. It has
proven in the past to be an area prone to bugs (on Hyper-V: CVE-2018-
0888 [6], CVE-2018-0959 [7]; but also in other hypervisors, for example
QEMU with CVE-2015-3456 [5]).

Hyper-V supports emulated devices. They are only implemented on
generation 1 VMs in the userland of the root partition. Several of them are
legacy devices. They are implemented in C++ which is a memory unsafe
language. Gaining code execution from a VM would mean executing code
in the root partition which is an interesting target. Even if this area has
already been investigated by Microsoft and very likely by other researchers,
it looked like an interesting entry point.

Only the implementation for Windows VMs and for machines running
Intel CPUs will be covered in this analysis.

How are they implemented? The clients located in the guest and the
controllers located in the root partition need to communicate. This is done
through the use of IO ports and MMIOs. Specifically for the IO ports,
the virtual machines send Intel’s IN and OUT instructions in assembly
from privileged code. The handling of such instructions are deferred
to the worker process on the root partition (C:\Windows\vmwp.exe)
which transfers it to the relevant controller implemented in DLLs loaded
by vmwp.exe such as C:\Windows\System32\VmEmulatedStorage.dll

or C:\Windows\System32\vmemulateddevices.dll (more details
on the whole stack in this blog post [42]). The controllers con-
sume these requests in dedicated functions: NotifyIoPortRead
for IN operations and NotifyIoPortWrite for OUT operations,
which are implemented for each emulated device. For example:

6 Hyntrospect: a fuzzer for Hyper-V devices

vmemulatedstorage!IdeControllerDevice::NotifyIoPortWrite,

vmemulatedstorage!FloppyControllerDevice::NotifyIoPortRead.
When analyzing the emulated devices, these are the entry points that can
be looked at.

Reversing the binaries enabled understanding these entry points. Noti-
fyIoPortRead takes 3 arguments: the device (“this” in C++, in register
rcx), the IO port (uint16, stored in register dx) and the access size (uint16,
which should be equal to 1, 2 or 4, stored in register r8). NotifyIoPortWrite
takes 4 arguments: the same arguments as NotifyIOPortRead plus the
value (uint stored in register r9).

Figure 2 is a snapshot of the first block of
FloppyControllerDevice::NotifyIoPortWrite, in
vmemulatedstorage.dll.

Fig. 2. IDA screenshot of NotifyIOPortWrite

Those functions were key in the pre-analysis that was necessary to
fuzz each device.

3.4 Hyper-V tools and features

This section introduces the key features that are mentioned later in
this paper.

Debugging Windows Hyper-V is a component of Windows, which
offers some native debugging features. WinDbg is the API published
by Microsoft, which relies underneath on a debugger engine [34]. Those
debugging capabilities apply to Hyper-V: the hypervisor, the root partition
kernel and the worker process can be debugged. DbgShell [31] is an open
source project written by Microsoft which offers a PowerShell front-end
for the Windows debugger engine. It only applies to userland binaries.

D. Dubois 7

Availability of the symbols Hyper-V and Windows code is not available
but the analysis can be done by reversing the binaries using the symbols.
Those symbols can also be used when debugging.

The symbols of the root partition (such as
C:\Windows\System32\vmwp.exe and related DLLs like
C:\Windows\System32\vmemulateddevices.dll) are provided by
Microsoft. The symbols of the hypervisor layer are not available.

More details can be found on this page [38].

Hyper-V user capabilities Windows offers a wide range of capabilities
to manage the Hyper-V server and the VMs [39]. Some of these capabilities
will be presented here as they will be mentioned later.

Hyper-V management through scripts Hyper-V can be accessed and man-
aged via a UI but it can also be managed through PowerShell scripts.
In other words, there is a Windows feature called “Hyper-V Manage-
ment Tools” which has 2 subcomponents: “Hyper-V GUI Management
Tools” and “Hyper-V Module for Windows PowerShell”. Some additional
“VMIntegrationService” capabilities can also be enabled on top of that to
add options such as the ability to copy a file from the host to the VM.

Powershell direct Among the management capabilities offered by scripting,
PowerShell direct [33] enables sending commands from the root partition
to the guest through authenticated sessions. It relies on the Hyper-V
VMBus.

Snapshot Another interesting feature provided by the hypervisor is the
ability to take snapshots (in Hyper-V words “checkpoints”) of the VM
and revert it to a stable state.

State of the art on Hyper-V vulnerability research

Vulnerability research techniques There are several ways to approach
vulnerability research, the main techniques being either analyzing the
source code or assemblies, or instrumenting the target for dynamic analysis
or fuzzing. One way to instrument it is by writing a program to inject
user controlled input and test the robustness and correctness of the target.
That program is called a fuzzer.

Multiple implementations and concepts have already been developed.
One interesting technique is coverage-guided fuzzing: it consists in mon-
itoring the coverage of the target and updating the fuzzer input based

8 Hyntrospect: a fuzzer for Hyper-V devices

on that feedback loop. The goal is to reach more paths or focus on the
paths that are not often taken. This technique has been proved to sub-
stantially enhance the performance of the fuzzer [26]. It is implemented in
libFuzzer [30] for example.

Several well known fuzzers or binary instrumentations already exist
for Windows binaries as black boxes (this list is not exhaustive):

— WinAFL [22], a variant of AFL, which can be associated to Dy-
namoRIO to perform coverage analysis [23]

— Intel Pin [28]
— Intel Processor Tracing (“Intel PT”) [27]
— Jackalope [24]
— QDBI for Windows [43]
— Mesos [16]

Microsoft presented on their fuzzer [15]. It is coverage-guided. The
major difference is their access to sources.

Publications by MSRC Microsoft MSRC is a major actor for Hyper-V
vulnerability research.

They made available blog posts to help vulnerability researchers get
started on Hyper-V:

— First steps in Hyper-V research [41]: https://msrc-

blog.microsoft.com/2018/12/10/first-steps-in-hyper-

v-research/;
— Attacking the VM worker process [42]: https://msrc-

blog.microsoft.com/2019/09/11/attacking-the-vm-worker-

process/.

They also presented at conferences:

— A Dive in to Hyper-V Architecture and Vulnerabilities at BlackHat
USA 2018 [29];

— Exploiting the Hyper-V IDE Emulator to Escape the Virtual Ma-
chine at BlackHat USA 2019 [11];

— Breaking VSM by Attacking SecureKernel at BlackHat USA
2020 [8].

Previous external work and publications on Hyper-V The security commu-
nity has also published on Hyper-V:

— @gerhart_x is an active contributor. He posts content and resources
on his dedicated blog [17,18].

— Jordan Rabet (Microsoft OSR) presented Hardening Hyper-V
through offensive security research [20]

https://msrc-blog.microsoft.com/2018/12/10/first-steps-in-hyper-v-research/
https://msrc-blog.microsoft.com/2018/12/10/first-steps-in-hyper-v-research/
https://msrc-blog.microsoft.com/2018/12/10/first-steps-in-hyper-v-research/
https://msrc-blog.microsoft.com/2019/09/11/attacking-the-vm-worker-process/
https://msrc-blog.microsoft.com/2019/09/11/attacking-the-vm-worker-process/
https://msrc-blog.microsoft.com/2019/09/11/attacking-the-vm-worker-process/

D. Dubois 9

— Alisa Esage is also active in the area, as reflected on her analysis
of the hypervisors’ attack surface and state of the art [21].

— Damien Aumaitre (Quarkslab) published a tool based on Windows
Hypervisor Platform [10] and presented it at SSTIC 2020 [9].

Based on the analysis of the state-of-the-art, the next section will cover
the motivations for a new approach.

4 Hyntrospect fuzzer

The source code is located in this repository [12]:
https://github.com/googleprojectzero/Hyntrospect.

4.1 So why another toolchain?

The goal was to reproduce a similar structure as Microsoft fuzzer [15]
from an outsider perspective. The major differences when assessing Hyper-
V as an outsider is not having access to the source code. Indeed, having the
source code enables recompiling the code with instrumentation for fuzzing
such as ASAN for memory error detection. The material in this case is
limited to the assembly - which offers less possibilities for coverage-guided
fuzzing.

As stated above, several tools already enable black-box fuzzing. The
motivation to rewrite a fuzzer came from different factors:

— The target can be either a DLL or an executable, which disqualifies
all the fuzzers instrumenting only executables.

— Hyper-V is a complex target. Running a module separately (through
emulation) may hide some side effects coming from real runs. Also,
emulating only the target functions outside of their context would
require providing relevant context for the execution, such as the
devices set in a correct state, which would have implied a lot
of reverse engineering and development. As a consequence, the
strategy of running a full VM and instrumenting the target binary
in an environment as close as possible to real runs was preferred.
This was done through debugging.

— Another option offered by several existing tools is starting the
target binary with the instrumentation set, which would mean
starting vmwp.exe which implies starting the VM itself at each
iteration. This technique would be slower as booting a VM is time
consuming. As a consequence, the fuzzer should attach to a running
instance.

https://github.com/googleprojectzero/Hyntrospect

10 Hyntrospect: a fuzzer for Hyper-V devices

— The possibility to port the fuzzer to other Hyper-V use cases
in the future, as some basics and core structure will already be
implemented.

— As the need is a bit specific (injecting IOs in a VM and monitoring
some specific APIs), none of the public tools seemed to match
the need without heavy modifications. Performing coverage-guided
fuzzing on specific input in this environment poses some challenges.
As many existing capabilities as possible were reused.

— Managing all the blocks with only one language makes interoper-
ability easier.

As a consequence, it was decided to tailor a fuzzer to this specific need.
Some previous work with libFuzzer [30] was a source of inspiration to

achieve coverage-guided fuzzing.

4.2 The challenges and high level overview

The main questions to answer were:
— How to instrument a VM? Where to position the fuzzer in Hyper-V

architecture?
— How to guide fuzzing with coverage (both structurally and content-

wise)?
— How much structure should be introduced to reach more paths?
— What should be the mutation strategy?
— How to trace without too much latency as single-step tracing is

slow?
— How to detect memory corruptions?
— How to monitor crashes and reproduce cases?
These questions will be answered in the following sections.

Design choices at a glance The key design choices of the fuzzer are
summarized here:

Emulation vs execution Execution of a VM through a debugger

Coverage Tracked with the int3 technique de-
scribed in this blogpost [14]

Memory corruption detection Pageheap (gflags) [35]

Environment reset Hyper-V checkpoints

Mutation strategy Custom

Existing tools and capabilities that were used: IDA [2], DbgShell [31],
CHIPSEC [1], LightHouse [25], gflags/pageheap [35], snapshot capabil-
ity on Hyper-V, PowerShell libraries for Hyper-V including PowerShell
direct [33].

D. Dubois 11

Overview of the architecture Figure 3 gives an overview of Hyntro-
spect architecture.

Fig. 3. Overview of Hyntrospect architecture

Workflow There are several goals that need to be dealt with in parallel:
— Instrumenting the VM to trigger the desired action (fuzzer-master)
— Running a debugger attached to the worker process (debugger)
— Monitoring the state (vm-monitoring)
— Adding meaningful input relying on the coverage update (fuzzer-

master and input-generator).
The fuzzer master deals with the overall logic and spawns different

processes to debug, monitor, and fill the input folder.
The overview of the Hyntrospect’s subcomponents is shared in figure 4.

4.3 Design choices in more detail

PowerShell as the implementation language Modern Windows sys-
tems are manageable through PowerShell which offers numerous benefits:

12 Hyntrospect: a fuzzer for Hyper-V devices

Root partition
running Hyper-V

Target VM

fuzzer-master.ps1 /
replay-case.ps1

vm-monitoring.ps1

helper.psm1

corpus
file

corpus
tmp file

input-generator.ps1

Uncovered bps

corpus
file

Main.ps1

debugger.ps1 /
debugger-replay.ps1

Vmwp.exe

config.json

Fig. 4. Hyntrospect workflow

— Hyper-V APIs
— Integration with other Windows components like the event logs
— Direct calls to .NET APIs or even embedding C#

— Plug-ins to Windows debugging engine.

This choice comes at the cost of speed.

Work environment

Overview of the working environment The fuzzer has been written to run
elevated in the root partition in userland: that enables injecting
commands in the debuggee VM and monitoring in real time what happens
in the userland of the root partition. The pitfalls of such an approach are
that the hypervisor layer is not monitored by the fuzzer. It is an accepted
risk: if the hypervisor crashes, the case is deemed interesting enough to be
worth a full case examination and wasting some cycles (as the machine
hence the fuzzer would be down). This can be partially mitigated by
running the hypervisor inside another hypervisor, which is called nested
virtualization, and by attaching a debugger to it.

Nested virtualization The current implementation of the fuzzer lets it run
either from a nested root partition (level 1) or directly in the
root partition of the machine (level 0).

D. Dubois 13

When nesting Hyper-V, Hyper-V runs on a Windows machine (level
0), which contains the targeted Hyper-V server and root partition (level
1), which runs a debug VM (level 2), as illustrated on figure 5. This
infrastructure and debugging method are described by MSRC [41] and
@gerhart_x [18].

Fig. 5. Nested hypervisor setup

With this representation, the fuzzer runs in level 1 and monitors a
level 2 VM.

The benefits of nesting the fuzzing environment is:
— In the case of a root partition corruption or hypervisor failure, to

be able to take a snapshot of that state thanks to the checkpoint
capability, and after the analysis the possibility to restart easily
from a clean state without needing to reimage the machine.

— To attach a debugger in the host to the level 1 hypervisor as
presented in MSRC blog post - which partially mitigates the fact
that the hypervisor layer is not monitored by the fuzzer (but would
still require manual investigation in case of a crash).

14 Hyntrospect: a fuzzer for Hyper-V devices

The drawbacks of nesting are mostly tied to performance as it adds
one more level of indirection, but it could also possibly impact the behavior
of the hypervisor (virtualized hypervisor versus running on real hardware).

For the current analysis, the hypervisor was run nested.

An entire process orchestration initiated by a fuzzer master The fuzzer
master deals with the overall logic and spawns different processes to debug,
monitor, and fill the input folder. Each process then follows its own logic
and execution. This design raised some challenges:

— Implementing a state machine is needed in case of crashes to halt
the execution, but the code is split in between different processes.
The solution was to send signals through the creation and the
deletion of temporary files.

— Monitoring the state of the VM is not trivial as it may change
and resume too fast to be detected by the monitoring process. The
solution was to monitor the uptime of the VM: it should only grow
after the snapshot is reapplied until the end of each case.

Sending VM commands through PowerShell direct and using CHIPSEC

PowerShell direct [33] is used to send IOs directly from the VM and extract
data from the VM.

As the communication between the devices and their controllers hap-
pens through IO ports, the VM has to simply issue IO ports IN [3] and
OUT [4] operations. This needs to be done from the kernel. Reimplement-
ing a specific driver would have been an option. For ease, CHIPSEC [1]
drivers and wrappers were used. Indeed, CHIPSEC is a framework for
analyzing the security of PC platforms including low level layers which
provides APIs to interact with those layers.

By default with PowerShell Direct, the commands are executed in an
unelevated shell. As the CHIPSEC IO commands need to be sent from an
elevated shell, the default configuration raises issues and a registry key
has to be modified to enable elevated execution by default [40].

Reset of the initial state of the VM Starting every new iteration in a clean
state is critical. To achieve that, the checkpoint feature of Hyper-V was
leveraged. Every single run starts after resetting the image and restarting
the instrumentation on it. Time-wise, that choice is costly. Consistency
was favored.

This also implies that the user needs to prepare a VM snapshot before
running the fuzzer. That VM snapshot requires a certain state described
in the README file of Hyntrospect’s source repository.

D. Dubois 15

Concurrent runs The behavior of a fuzzer needs to be deterministic in
order to be reproducible. Fuzzing the same VM with different threads
may prevent that. As a consequence, each process created by the fuzzer is
single-threaded for now. Multi-threading the fuzzer to have it concurrently
deal with several VMs will not be implemented: those multiple VMs would
be too heavy for most environments. However, it is possible to start several
instances of the fuzzer on the same machine against different VMs.

The target’s instrumentation

Fuzzing through the debugger Different approaches have been considered:
emulating the code or monitoring existing running code. For the latter,
the follow up question is whether a VM should be started on purpose or
be monitored while running.

As the virtualization stack is complex, it was chosen to try to get as
close as possible to a real execution context and attach to that running
environment. This led to an instrumentation based on debugging.

Windows offers debugging engines that could be leveraged.
Binaries can act differently when attached to a debugger. This was

taken into account but the target binaries do not seem to implement
anti-debug features.

By design, as the fuzzer is positioned in userland, this restricts the
debugging capabilities to the userland of the root partition. Porting it to
kernel monitoring would require a modification of the fuzzer architecture
(by adding components to the L0 layer, then injecting into the L1 layer
which would then inject into the L2 layer).

DbgShell at the core and technical problems solved The code of the fuzzer
relies on DbgShell [31] to instrument the target binaries.

Several difficulties were encountered (only the main ones are listed
here):

— Some DbgShell commands are blocking (“g”): it is not possible
to take over the debugger execution in an automated way until it
reaches a breakpoint. The commands of the script after “g” will
only be executed once a breakpoint is reached. The code had to
be designed around that constraint. The debugger is a script on
its own, launched in a separate process by the fuzzer master which
deals with the overall logic and kills the debugger after use. The
flow is like a ping pong game between the master which forces the
VMs into sending IO commands and the debugger which handles
breakpoints and lets the VM go.

16 Hyntrospect: a fuzzer for Hyper-V devices

— DbgShell is not a real shell: not all PowerShell commands can be
used. The blockers during the implementation were Start-Job and
Get-Credential. These had to be externalized and dealt with by the
fuzzer main. Also, Write-Host and Write-Output are not printed
at the same time: Write-Host had to be used.

— Launching a script in DbgShell which takes arguments required
some experimentation. The arguments cannot be PowerShell ob-
jects, only strings that will be interpreted or numerals. Also,
DbgShell needs to receive fullpaths.

— Restore-VMSnapshot is blocked (and blocking) when the VM is
being debugged. This led to killing the debugger process (after
killing the monitoring process) before applying the snapshot.

The approach to perform coverage-guided fuzzing In the first implementa-
tion, the trace was recorded for every instruction (“t” on WinDbg). This
was extremely slow and the mutations needed to be computed post runs
to not slow it down even more. Also, with that first naive approach, the
fuzzer created a random file in real time and consumes it for each iteration,
with no feedback loop.

On a second implementation, conditional breakpoints were set. This
also massively slowed down the flow.

A more refined strategy has then been implemented, which was inspired
by Samuel Groß (@5aelo) technique on ImageIO [14], also developed by
Brandon Falk (@gamozolabs) for mesos [16]. The current schema is already
leveraging a debugger so a shadow mapping of int3 is already “available
for free”.

The approach:

— If the corpus is empty, a seed made of a record of legitimate
traffic for that device is generated.

— If the breakpoint list does not exist yet, all basic blocks’ ad-
dresses are precomputed through IDA [2]. That list can be
consumed and updated in the script.

— The fuzzer master starts the input generator, consumes the un-
reached addresses, sets static breakpoints (with Intel assembly
instruction “int3”) on those, and consumes the oldest temporary
file among all temporary files in the corpus directory. Every time
the debugger engine reaches one of the int3 instructions, the script:
— updates the corpus with the input file truncated at the largest

offset triggering a breakpoint; it copies that truncated file to

D. Dubois 17

a permanent file in that same corpus, and as a consequence
guides the fuzzer towards that new coverage

— removes the breakpoint from the breakpoints list
— removes the breakpoint in the debugger and completes the run

(in case something interesting comes out of it). When reaching
the end of an input file, that file is deleted.

— Input generator: the script is started at each iteration (which is
less resource intensive than a while loop). It feeds the corpus folder
with up to n new samples labelled as tmp files. It applies different
strategies to diversify the input.

— Coverage: the coverage can be computed by subtracting the un-
reached breakpoints to the list of blocks addresses that were re-
trieved from IDA. The coverage is LightHouse [25] compliant. That
operation is done offline in a dedicated script.

The input files are a sequence of IO operations. They are made of
sequences of bytes that are translated into an operation (read or write), a
compatible IO port, length, and IO value (in case of a write operation).
The list of acceptable values for each of the parameters is listed in the
configuration file. For each of them, the raw byte of the input file is read,
reduced modulo the number of possible parameter values and used as an
index to get the value. For example, if [0x60, 0x61, 0x62] are the possible
values for the IO ports, and 5 is read, it will point to the index 5 % 3 = 2,
which is port 0x62. When reaching the end of the input file, the current
input is padded with zeros to cover all the arguments needed.

After each coverage increase, the file is truncated to the offset following
the operation responsible for the increase and added to the corpus file.
This means that the new corpus file is a sequence of IO operations which
increased the coverage and which is used as a base for future file generation.

Pre-generation of block’s addresses This point raises one design choice:
edge coverage (monitoring the different possible paths in the binary) versus
block coverage (independently of the caller). For instance, AFL checks
information about the origin and the destination (edge) in the flow graphs
(as expressed in this whitepaper [19]).

The problem of only breaking on the beginning of blocks is to get
there through a given edge (certain IO), remove the breakpoint, expand
the corpus, and ignore edges to that address from different origins (which
would have been interesting to add to the corpus). Finding a bug through
an undiscovered edge to a known block would still be possible when

18 Hyntrospect: a fuzzer for Hyper-V devices

elaborating on top of existing samples but less likely as it would not be
seen as a new case (marked and added to the corpus).

Both approaches could be implemented here, covering edges is more
complex. Covering blocks was chosen for ease.

As a consequence, the addresses of all targeted basic blocks have to
be extracted from the target binary using IDA. A helper already written
by Samuel Groß (@5aelo) for TrapFuzz [13] was modified to be runnable
on Windows and from the script. It can be either called from the script or
called standalone by the user.

This led to an intriguing technical issue: when running a python script
in IDA from the command line, the list of breakpoints was different from
the one computed when running the same script from IDA GUI. The
explanation is IDA autoanalysis which needs to be complete before starting
any code analysis. This can be done using: Ida auto_wait().

Input generation For coverage-guided fuzzing, the input generation
strategy is a key component.

Strategy for the new input files’ generation Samples from the corpus are
picked and modified in the following ways:

— Append: n bytes are appended at the end of the sample.
— Mutation: random bits of the sample are flipped with a notion

of density. The first mutations can be done at minimal density,
starting with only 1 bit per sample. The density can then be
increased once the coverage plateaus.

— Introduction of new input: once in a while, some new input is
created from scratch. New random input files can be interesting to
find edge cases.

The maximal mutation rate is controlled by the user. The weight of
each of these 3 alternatives has been defined empirically, is hard-coded,
and may need to be adjusted.

Strategy for the seeds’ generation Having meaningful seeds can speed up
the discovery process of the coverage guided fuzzer as the first sets of input
are mostly derived from these seeds. A script enables the user to record
legitimate traffic on the device of interest. That traffic is then converted
to consumable input.

This requires access by the script to the symbols to put breakpoints
on the entry points (NotifyIOPortRead and NotifyIOPortWrite of the
relevant controller). Some prior reversing work is needed to know the exact

D. Dubois 19

device handler’s name, and to get an approximate understanding of the
used IO ports. The unexpected IO port reads / writes on the device are
signaled as errors and blocking during the seed generation.

Crash qualification Another key component of coverage-guided fuzzers
is the qualification of unexpected behaviors.

Classes of vulnerabilities considered The classes of vulnerabilities consid-
ered are memory corruption bugs (through pageheap), state machine logic
errors, and parsing errors. Use-after-frees may get detected if the VM
crashes. Race conditions can not be detected in most cases.

Memory corruption detection Ideally, the goal would be to reproduce
ASAN behavior. However, this is not a feature that is directly available
through the fuzzer. A workaround is to set pageheap through gflags on the
target DLL prior to runs. No crash has been reported so far, so there is no
evidence this strategy works. An initial idea was to add DR breakpoints
around sensitive buffers, if any - but that does not scale.

Crash handling When there is a crash or a VM reset, 2 different mecha-
nisms handle it:

— DbgShell catches an exception
— And/Or the monitoring process detects that the VM has stopped

running.

In both cases, it triggers a timestamped crash folder containing:

— The configuration file
— The input file(s)
— The host event logs (channels: "Microsoft-Windows-Hyper-V-

Hypervisor-Admin", "Microsoft-Windows-Hyper-V-Hypervisor-
Analytic", "Microsoft-Windows-Hyper-V-Hypervisor-Operational",
"Microsoft-Windows-Hyper-V-Worker-Admin", "Microsoft-
Windows-Hyper-V-Worker-Analytic", "Microsoft-Windows-Hyper-
V-Worker-Operational")

— The Error and Critical logs from the System event log of the guest
— The latest error.

The main script can then be started in repro mode with the crash
folder as an argument. Figure 6 shows a typical crash folder.

The oldest file from the input file is always the first one consumed. In
the unlikely case where both DbgShell and the monitoring process would
crash, the input responsible for that crash could be retrieved as the oldest

20 Hyntrospect: a fuzzer for Hyper-V devices

Fig. 6. Screenshot of a crash folder

temporary file in the input folder. That case would need to be handled by
hand.

Some perturbations to that flow could be added by pageheap. That
case has not been witnessed yet.

At this point, all the core components needed for Hyntrospect’s
coverage-guided fuzzing have been presented.

Additional features

Visualization of the coverage in IDA Pro IDA Pro or Binary Ninja are
needed to use that feature as it relies on Lighthouse [25]. Generally
speaking, IDA was arbitrarily chosen for this project (the breakpoint list
initialization script is also written for IDA specifically).

The helper Create-CoverageFile.ps1 creates a Lighthouse compatible
coverage file to display the coverage from the initial breakpoint list (saved
by the fuzzer) and the updated breakpoint list.

Syntax: vmemulateddevices+offset

Figure 7 shows a screen capture of IDA (when all instructions are
traced).

Additional helpers 4 more helpers are available for the user:

— Create-CorpusSeed.ps1: it prepares a seed in the fuzzer compliant
format for the targeted emulated device.

D. Dubois 21

Fig. 7. Screenshot of coverage in IDA

— Translate-InputBytesToFulltext.ps1: it translates an input file in
the transcript of the corresponding IO operations.

— findPatchPoints.py: IDA script that outputs a list of the blocks’
addresses of the binary.

— findPatchPointsWithKeyword.py: this is the same IDA script as
findPatchPoints.py except that it filters the function names on a
given keyword (to restrict the basic blocks to a relevant subset).
The keyword is currently hardcoded.

The last 2 files are written in Python to be executable on IDA Pro.

5 Current results

This section exposes the results obtained by running Hyntrospect
against some first targets. As of today, no security bugs have been found,
though one guest VM crash was discussed with MSRC.

5.1 The first targets, runtime environment and performance

The very first implementation of the fuzzer was tested against the
i8042 device which handles for example PS/2 mouse and keyboard. There
was no particular reason to pick that specific device except that it was a
legacy feature, so there was hope that some legacy code could have been
simply ported. Once the fuzzer was implemented, some more devices were

22 Hyntrospect: a fuzzer for Hyper-V devices

tested: the floppy controller, the IDE controller, and the VideoS3 device.
Fuzzing each of these targets required locating the code responsible for
these controllers, and then reversing it to find the entry points and the
expected IO values.

The fuzzer so far has only been run locally on a dedicated machine.
That machine is a 32 GB RAM workstation equipped with an Intel Core
i9 CPU. 2 VMs (with 8 GB RAM each) ran concurrently on it for the
tests.

Figure 8 is a snapshot of a run.

Fig. 8. Screenshot of a run

The main focus when designing the fuzzer was the execution in a
native context with minor modification, and the first runs highlighted
that it comes at the cost of performance (speed first but also memory and
CPU consumption) - which was accepted in this analysis as long runtime
on Cloud architectures are doable.

Regarding speed, three factors and bottlenecks have been identified:

— The reset of the VM and other setup on the order of 10 seconds,
constant

— The number of breakpoints given and set within DbgShell: highly
variable, decreasing over time when the coverage expands. It im-
pacts both the setup and the run (when the breakpoints are re-
moved).

D. Dubois 23

— The size of the input file: the more operations, the longer it takes.
Files below 4 KB are advised.

These 3 factors apply for each new input case.

The runtime per case depends on the number of breakpoints hit
and on the size of the input file: it spans from a few seconds for 1 KB
input files with no breakpoint removed to several minutes for the first
run on large seed files. (For example, for a first run with a 6 KB seed
which removed about 450 breakpoints, the execution time went up to 28.5
minutes.)

The most important factor is the size of the list of breakpoints. Here
are figures retrieved from the local setup:

Breakpoints file
size

Number of break-
points

Time to set up the
breakpoints in DbgShell
at each iteration

2 KB 150 immediate
5 KB 500 6 seconds
9 KB 1000 20 seconds
18 KB 2000 1 minute 15 seconds
42 KB 4751 ˜ 9.5 minutes
46 KB 5175 ˜ 13.5 minutes

The reader will notice that the ratio time / number of break-
points is not linear. This is why it is highly recommended to provide
a minimized list of breakpoints (focusing on one device or a subset of
functions of interest). An additional helper script filtering IDA functions
on a keyword was created.

As a note, the original size of the DLL used for this test was 611
KB which resulted in a breakpoints list of 132 KB containing 15242
breakpoints. It was shrunk to 5175 breakpoints to only cover some of the
code (a third of the DLL).

Also, the longer the fuzzer runs, the faster the runs are as
there are fewer breakpoints set and fewer breakpoints reached during
execution.

Setting a maximum for the size of the input file is also an
efficient technique to keep the runs short.

Size of the input file Duration of the run (with no bp removed)

480 bytes 30 seconds
960 bytes 1 minute
1900 bytes 2 minutes
3840 bytes 3 minutes and 15 seconds

24 Hyntrospect: a fuzzer for Hyper-V devices

Unlike the number of breakpoints, the size of the input seems to have
an almost linear impact on the time it takes to run the case.

For the current version of Hyntrospect, speed is as a consequence
the major drawback. Some optimizations in future versions of
the tool could enhance its speed and enable the use of a larger input.
The most promising idea would be to replace DbgShell by either another
solution or to reimplement a minimal debugger that would insert the
int3 instructions and keep a shadow table of the addresses and initial
instructions.

5.2 Coverage of these targets

The coverage displayed here is defined per basic blocks covered. First,
the breakpoint list of the DLLs has been trimmed to keep only the
breakpoints that are related to the device and the coverage was calculated
on that subset.

It has been computed on the local runtime environment. The fuzzer
has run a maximum of 3 days for each case. Porting it to Google Cloud
Platform is currently work in progress.

vmemulateddevices.dll Access with NotifyIO-
PortRead/Write

Current cover-
age

I8042Device
Ps2Keyboard IO ports 0x60, 0x61,

0x62, 0x64
40%

Ps2Mouse

VideoS3Device
VideoDevice IO port 0x3B0 ->

0x3DF, 0x4AE0->
0x4AEF

42.7%

VideoDirt

VmEmulatedStorage.dll Access with NotifyIO-
PortRead/Write

Current cover-
age

FloppyControllerDevice IO ports 0x3F0 ->
0x3F5, 0x3F7

43.3%

IdeControllerDevice IO ports 0x1F0->0x1F7,
0x170->0x177, 0x3F6,
0x376 + for write:
0x1E0->0x1EF, 0x160-
>0x16F

28.8%

A certain number of blocks were not reached for 2 reasons:

D. Dubois 25

— the setup functions are not called as the fuzzer attaches to an
already running VM.

— the debug strings blocks are skipped.

Porting the code to Cloud is the next goal to enhance that coverage.

In parallel, Microsoft has published their own coverage of Hyper-
V [15, slide 24].

5.3 Guest VM crash caused by memory mapping

This first short fuzzing campaign discovered one bug. That issue was
found when testing the very first device: the I8042 device. This was not
considered as a security bug or a usable primitive.

The fuzzer reported several input files that led to crashes. The behavior
could be reproduced consistently for these files. Every run led to a BSOD
of the VM, and even more interestingly to different error messages and
stacks at each run:

— SYSTEM_SERVICE_EXCEPTION (0x3b);
— PFN_LIST_CORRUPT (4e);
— PAGE_FAULT_IN_NONPAGED_AREA (0x50);
— ATTEMPTED_WRITE_TO_READONLY_MEMORY (0xbe);
— KERNEL_SECURITY_CHECK_FAILURE (0x139);
— . . .

When analyzing the set and minimizing the input, 2 instructions
seemed responsible: OUT 0x64 0xd1 followed (not necessarily immediately)
by OUT 0x60 <value>.

Isolating those 2 instructions enabled more targeted debugging using
WinDbg by attaching it to vmwp.exe and running the commands from the
guest. This also enabled in parallel understanding the root cause better in
IDA.

When passing OUT 0x64 0xd1 and then OUT 0x60 <value with bit
0 set to 1 and bit 1 set to 0>, the execution flow leads to “PciBusDe-
vice::HandleA20GateChange” which updates the memory addressing and
thus mapping on the host, but does not seem to update the guest with
that information.

This has not been investigated in much depth after that point. Indeed,
as the commands on the VM are executed as administrator, this could
not lead to an elevation inside the VM. The host is not affected by the
bug. A potential interest in remapping the memory would have been
to circumvent virtualization-based security measures by leaking memory
information that should not be readable by the VM kernel. This however

26 Hyntrospect: a fuzzer for Hyper-V devices

seems extremely hard to accomplish as the first mis-allocation makes the
kernel panic when the VM execution resumes. In theory, the only way to
work around this would be to set beforehand a bunch of samples of kernel
code that would dump memory executing in high priority (. . . but dump
where? disk accesses are too slow). And even if it were to work, it would
be extremely unstable. All in all: this does not seem doable.

This was shared with Saar Amar from MSRC in January 2021.
Even if the outcome cannot be used, this validates the behavior of the

fuzzer, crash handling and reproduction scripts.

6 Future endeavours

6.1 Fuzzer internals

Some trade-offs were mentioned when explaining the design choices.
The main ideas for future improvements are:

— Refining the mutation strategy, possibly by leveraging existing
engines or their logic. Machine learning could help. Here [44] is a
paper focusing on that topic.

— The fuzzer is currently targeting only userland, not the kernel of the
root partition. DbgShell cannot do kernel debugging. A workaround
is doing nested virtualization and debugging the VM kernel and
hypervisor with WinDbg instances for the fuzzer lifetime. If any of
those happened to crash, it would be non automated but certainly
worth the investigation. The material is saved before being used so
the latest state when rebooting would reflect what led to the crash.
A heavier modification to adapt the fuzzer would be to monitor
level 0 which would inject into level 1 which would inject into level
2.

— Speed-wise, as expressed before, two main factors reduce the perfor-
mance of the fuzzer: the restoration of a snapshot for the debuggee
VM, and the number of breakpoints set within DbgShell. It is
strongly recommended to sanitize the list of breakpoints’ addresses
manually before running the fuzzer for large targets by only keeping
the sections of interest. The next step would be to replace DbgShell.

— Minimization of the cases.

6.2 Porting to GCP

The goal of porting to Google Cloud Platform is to scale in 2 different
ways:

D. Dubois 27

— Port the fuzzer to new devices and have more fuzzers run in parallel.
— Run the fuzzers faster and for a longer time, which will very likely

result in extending the coverage.

This is currently work in progress. The environment as defined before
can be pushed to GCP.

6.3 Porting the fuzzer to other userland targets

The first goal will be to keep covering IO-based targets that are in
userland.

6.4 Broader cases with some PowerShell development

Beyond that, the goal will be to port the fuzzer to other targets in
userland by passing different sets of commands than the IO port commands.
This part can be achieved by modifying the expected configuration file
and the fuzzer engine (mostly Main.ps1 and fuzzer-master.ps1). Some
additional files would also require adjustments. The goal would be to keep
the structure of the fuzzer with a Main calling a fuzzer master which
spawns input generators, VM monitoring. . . and use it as a frame for a
whole range of commands that could be executed within the VM.

7 Conclusion

Hyntrospect is a new tool that enables fuzzing Hyper-V emulated
devices’ controllers using code coverage to guide the generation of the
fuzzer input. The motivation was to get code coverage in a similar way
as Microsoft did with their fuzzer, but without access to the sources.
The core of its design is based on running the binaries in their real
environment through debugging to preserve all the aspects and side effects
of this complex stack, the main drawback being performance (speed). The
coverage results presented here and the guest VM crash found during
the runs validated its behavior. No security vulnerability has been found
yet on local runs (up to 3 days per run on 4 different devices). Porting
it to Cloud might enhance the results. The fuzzer was opened to the
community to share and get contributions. One of the main goals for
future development will be to port it to broader use cases in the userland
of the root partition.

28 Hyntrospect: a fuzzer for Hyper-V devices

References

1. CHIPSEC GitHub repository. https://github.com/chipsec/chipsec.

2. IDA Pro page. https://www.hex-rays.com/products/ida/.

3. x86 Instruction Set Reference IN.
https://c9x.me/x86/html/file_module_x86_id_139.html.

4. x86 Instruction Set Reference OUT.
https://c9x.me/x86/html/file_module_x86_id_222.html.

5. CVE-2015-3456, 2015.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2015-3456.

6. CVE-2018-0888, 2018.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-0888.

7. CVE-2018-0959, 2018.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-0959.

8. Saar Amar and Daniel King. Breaking VSM by Attacking SecureKernel -
BlackHat USA 2020, 2020. https://github.com/microsoft/MSRC-Security-

Research/blob/master/presentations/2020_08_BlackHatUSA/Breaking_VSM_

by_Attacking_SecureKernel.pdf.

9. Damien Aumaitre. Fuzz and Profit with WHVP - SSTIC 2020, 2020.
https://www.sstic.org/2020/presentation/fuzz_and_profit_with_whvp/.

10. Damien Aumaitre. WHVP GitHub repository, 2020.
https://github.com/quarkslab/whvp.

11. Joe Bialek. Exploiting the Hyper-V IDE Emulator to Escape the Virtual Machine
- BlackHat USA 2019, 2019. https://github.com/microsoft/MSRC-Security-

Research/blob/master/presentations/2019_08_BlackHatUSA/BHUSA19_

Exploiting_the_Hyper-V_IDE_Emulator_to_Escape_the_Virtual_Machine.pdf.

12. Diane Dubois. Hyntrospect GitHub repository, 2021.
https://github.com/googleprojectzero/Hyntrospect.

13. Samuel Groß (5aelo). TrapFuzz GitHub repository.
https://github.com/googleprojectzero/p0tools/tree/master/TrapFuzz.

14. Samuel Groß (5aelo). Fuzzing ImageIO, 2020.
https://googleprojectzero.blogspot.com/2020/04/fuzzing-imageio.html.

15. David dwizzzle Weston. Keeping Windows Secure - Bluehat IL 2019, 2019.
https://github.com/dwizzzle/Presentations/blob/master/David%20Weston%

20-%20Keeping%20Windows%20Secure%20-%20Bluehat%20IL%202019.pdf.

16. Brandon Falk (gamozolabs). mesos GitHub repository.
https://github.com/gamozolabs/mesos.

17. Arthur Khudyaev (gerhart_x). gerhart_x GitHub page.
https://github.com/gerhart01.

18. Arthur Khudyaev (gerhart_x). Hyper-V Internals blog by gerhart_x, 2021.
https://hvinternals.blogspot.com/.

19. Michał Zalewski (lcamtuf). Technical "whitepaper" for afl-fuzz.
https://lcamtuf.coredump.cx/afl/technical_details.txt.

20. Jordan Rabet (smealum). Hardening Hyper-V through offensive security research
- BlackHat USA 2018, 2018. https://i.blackhat.com/us-18/Thu-August-9/us-

18-Rabet-Hardening-Hyper-V-Through-Offensive-Security-Research.pdf.

https://github.com/chipsec/chipsec
https://www.hex-rays.com/products/ida/
https://c9x.me/x86/html/file_module_x86_id_139.html
https://c9x.me/x86/html/file_module_x86_id_222.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2015-3456
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-0888
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-0959
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2020_08_BlackHatUSA/Breaking_VSM_by_Attacking_SecureKernel.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2020_08_BlackHatUSA/Breaking_VSM_by_Attacking_SecureKernel.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2020_08_BlackHatUSA/Breaking_VSM_by_Attacking_SecureKernel.pdf
https://www.sstic.org/2020/presentation/fuzz_and_profit_with_whvp/
https://github.com/quarkslab/whvp
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_08_BlackHatUSA/BHUSA19_Exploiting_the_Hyper-V_IDE_Emulator_to_Escape_the_Virtual_Machine.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_08_BlackHatUSA/BHUSA19_Exploiting_the_Hyper-V_IDE_Emulator_to_Escape_the_Virtual_Machine.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_08_BlackHatUSA/BHUSA19_Exploiting_the_Hyper-V_IDE_Emulator_to_Escape_the_Virtual_Machine.pdf
https://github.com/googleprojectzero/Hyntrospect
https://github.com/googleprojectzero/p0tools/tree/master/TrapFuzz
https://googleprojectzero.blogspot.com/2020/04/fuzzing-imageio.html
https://github.com/dwizzzle/Presentations/blob/master/David%20Weston%20-%20Keeping%20Windows%20Secure%20-%20Bluehat%20IL%202019.pdf
https://github.com/dwizzzle/Presentations/blob/master/David%20Weston%20-%20Keeping%20Windows%20Secure%20-%20Bluehat%20IL%202019.pdf
https://github.com/gamozolabs/mesos
https://github.com/gerhart01
https://hvinternals.blogspot.com/
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://i.blackhat.com/us-18/Thu-August-9/us-18-Rabet-Hardening-Hyper-V-Through-Offensive-Security-Research.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Rabet-Hardening-Hyper-V-Through-Offensive-Security-Research.pdf

D. Dubois 29

21. Alisa Esage. Hypervisor Vulnerability Research State of the Art - Zer0Con 2020,
2020. https://alisa.sh/slides/HypervisorVulnerabilityResearch2020.pdf.

22. Ivan Fratric. winafl GitHub repository.
https://github.com/googleprojectzero/winafl.

23. Ivan Fratric. winafl with Dynamorio Instrumentation mode.
https://github.com/googleprojectzero/winafl/blob/master/readme_dr.md.

24. Ivan Fratric. Jackalope GitHub repositoty, 2020.
https://github.com/googleprojectzero/Jackalope.

25. gaasedelen. Lighthouse GitHub repository.
https://github.com/gaasedelen/lighthouse.

26. Google. Coverage guided vs blackbox fuzzing. https://google.github.io/

clusterfuzz/reference/coverage-guided-vs-blackbox/.

27. Intel. Processor Tracing, 2013. https://software.intel.com/content/www/us/

en/develop/blogs/processor-tracing.html.

28. Intel. Pin - A Dynamic Binary Instrumentation Tool, 2018. https:

//software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-

binary-instrumentation-tool.html.

29. Nicolas Joly and Joe Bialek. A Dive in to Hyper-V Architecture and Vulnerabilities
- BlackHat USA 2018, 2018. https://github.com/microsoft/MSRC-Security-

Research/blob/master/presentations/2018_08_BlackHatUSA/A%20Dive%20in%

20to%20Hyper-V%20Architecture%20and%20Vulnerabilities.pdf.

30. LLVM. libFuzzer. https://llvm.org/docs/LibFuzzer.html.

31. Microsoft. DbgShell GitHub repository.
https://github.com/microsoft/DbgShell.

32. Microsoft. Generation 2 Virtual Machine Overview, 2016. https:

//docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-

server-2012-r2-and-2012/dn282285(v=ws.11).

33. Microsoft. Virtual Machine automation and management using Power-
Shell, 2016. https://docs.microsoft.com/en-us/virtualization/hyper-v-on-

windows/user-guide/powershell-direct.

34. Microsoft. Debugger Engine Introduction, 2017. https://docs.microsoft.com/en-

us/windows-hardware/drivers/debugger/introduction.

35. Microsoft. GFlags and PageHeap, 2017. https://docs.microsoft.com/en-us/

windows-hardware/drivers/debugger/gflags-and-pageheap.

36. Microsoft. Virtualization-based Security (VBS), 2017. https://docs.microsoft.

com/en-us/windows-hardware/design/device-experiences/oem-vbs.

37. Microsoft. Hyper-V Architecture, 2018. https://docs.microsoft.com/en-us/

virtualization/hyper-v-on-windows/reference/hyper-v-architecture.

38. Microsoft. Hyper-V symbols for debugging, 2018. https://docs.microsoft.

com/en-us/virtualization/community/team-blog/2018/20180425-hyper-v-

symbols-for-debugging.

39. Microsoft. Manage Hyper-V on Windows Server, 2018. https://docs.microsoft.

com/en-us/windows-server/virtualization/hyper-v/manage/manage-hyper-

v-on-windows-server.

https://alisa.sh/slides/HypervisorVulnerabilityResearch2020.pdf
https://github.com/googleprojectzero/winafl
https://github.com/googleprojectzero/winafl/blob/master/readme_dr.md
https://github.com/googleprojectzero/Jackalope
https://github.com/gaasedelen/lighthouse
https://google.github.io/clusterfuzz/reference/coverage-guided-vs-blackbox/
https://google.github.io/clusterfuzz/reference/coverage-guided-vs-blackbox/
https://software.intel.com/content/www/us/en/develop/blogs/processor-tracing.html
https://software.intel.com/content/www/us/en/develop/blogs/processor-tracing.html
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2018_08_BlackHatUSA/A%20Dive%20in%20to%20Hyper-V%20Architecture%20and%20Vulnerabilities.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2018_08_BlackHatUSA/A%20Dive%20in%20to%20Hyper-V%20Architecture%20and%20Vulnerabilities.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2018_08_BlackHatUSA/A%20Dive%20in%20to%20Hyper-V%20Architecture%20and%20Vulnerabilities.pdf
https://llvm.org/docs/LibFuzzer.html
https://github.com/microsoft/DbgShell
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn282285(v=ws.11)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn282285(v=ws.11)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn282285(v=ws.11)
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/introduction
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/introduction
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/gflags-and-pageheap
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/gflags-and-pageheap
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/hyper-v-architecture
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/hyper-v-architecture
https://docs.microsoft.com/en-us/virtualization/community/team-blog/2018/20180425-hyper-v-symbols-for-debugging
https://docs.microsoft.com/en-us/virtualization/community/team-blog/2018/20180425-hyper-v-symbols-for-debugging
https://docs.microsoft.com/en-us/virtualization/community/team-blog/2018/20180425-hyper-v-symbols-for-debugging
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/manage/manage-hyper-v-on-windows-server
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/manage/manage-hyper-v-on-windows-server
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/manage/manage-hyper-v-on-windows-server

30 Hyntrospect: a fuzzer for Hyper-V devices

40. Microsoft. Description of User Account Control and remote restrictions in Win-
dows Vista, 2020. https://docs.microsoft.com/en-US/troubleshoot/windows-

server/windows-security/user-account-control-and-remote-restriction.

41. MSRC. First Steps in Hyper-V Research, 2018. https://msrc-blog.microsoft.

com/2018/12/10/first-steps-in-hyper-v-research/.

42. MSRC. Attacking the VM Worker Process, 2019. https://msrc-blog.microsoft.

com/2019/09/11/attacking-the-vm-worker-process/.

43. Quarkslab. QuarkslaB Dynamic binary Instrumentation.
https://qbdi.quarkslab.com/.

44. Luping Liu Cheng Huang Yan Wang, Peng Jia and Zhonglin Liu. A systematic
review of fuzzing based on machine learning techniques. PloS one, 15(8):e0237749,
2020.

https://docs.microsoft.com/en-US/troubleshoot/windows-server/windows-security/user-account-control-and-remote-restriction
https://docs.microsoft.com/en-US/troubleshoot/windows-server/windows-security/user-account-control-and-remote-restriction
https://msrc-blog.microsoft.com/2018/12/10/first-steps-in-hyper-v-research/
https://msrc-blog.microsoft.com/2018/12/10/first-steps-in-hyper-v-research/
https://msrc-blog.microsoft.com/2019/09/11/attacking-the-vm-worker-process/
https://msrc-blog.microsoft.com/2019/09/11/attacking-the-vm-worker-process/
https://qbdi.quarkslab.com/

	Hyntrospect: a fuzzer for Hyper-V devices

