
Confidential + ProprietaryConfidential + Proprietary

Hyntrospect: A Fuzzer for Hyper-V
Devices

Diane Dubois - didu@google.com - @0xdidu
SSTIC
June 2 2021

mailto:didu@google.com

Confidential + Proprietary

Whoami?

● Security Engineer at Google
● 20% with Project Zero

● Passionate about vulnerability research on systems
● @0xdidu

2

Confidential + Proprietary

Why Hyper-V?

● Project Zero mission: aims to reduce harm caused by targeted attacks on the
Internet

● Hyper-V
○ Hypervisor running Azure, Microsoft Cloud
○ Modern versions of Windows run it (Virtualization-based security)
○ Possibly a high impact if there are 0-days in the wild

● … and because virtualization is a fun topic
○ Spans multiple layers from hardware to high level software
○ Some complex implementations

3

Confidential + Proprietary

Goals

● Instrumenting Hyper-V for vulnerability research
○ A fuzzer called Hyntrospect was developed and open sourced

https://github.com/googleprojectzero/Hyntrospect
■ Coverage-guided
■ On closed-source binaries
■ Pragmatic approach, using existing Hyper-V features and Windows tools
■ In a real execution environment

○ Its internals and current results (coverage...) are presented

● Finding vulnerabilities and reporting them to Microsoft

4

https://github.com/googleprojectzero/Hyntrospect

Confidential + Proprietary

Agenda

● Background on Hyper-V
● The Research Target
● Hyntrospect fuzzer
● Current results
● Future endeavours

5

Confidential + ProprietaryConfidential + Proprietary

Current results

6

Background on
Hyper-V

Confidential + Proprietary

Hyper-V Architecture Overview

Source: Microsoft
7

Confidential + Proprietary

What is a “Guest to Host Escape”?

● Gaining code execution on
one of the hypervisor layers
from a virtual machine

● On Hyper-V: ambiguous
○ Hypervisor layer
○ Root partition (kernel / userland)

● Other type of attack:
host denial of service

8

Confidential + Proprietary

The Hypervisors’ Attack Surface

● As defined by Alisa Esage (Zer0Con 2020):

9

Confidential + Proprietary

… and in practice

10

Confidential + Proprietary

Hyper-V Attack Surface

● Hypervisor
○ Hypercall handlers
○ Faults
○ Instruction emulation
○ Intercepts
○ Register access (MSRs...)

● Root partition kernel attack surface
○ VMBus

● Root partition userland attack surface
○ Emulated devices
○ Integration components

● … and this list is not exhaustive
● MSRC: first-steps-in-hyper-v-research

11

https://msrc-blog.microsoft.com/2018/12/10/first-steps-in-hyper-v-research/

Confidential + Proprietary

State of the Art on the Research

● MSRC and Microsoft publish on Hyper-V
○ Blog posts to help vulnerability researchers

■ e.g. First Steps in Hyper-V research
○ Posts on Hyper-V components
○ Several presentations at conferences on vulnerabilities found internally

■ e.g. Breaking VSM by Attacking SecureKernel at BlackHatUSA 2020
○ Symbols provided for some key components

● Active external contributors
○ @gerhart_x and his dedicated blog
○ @alisaesage
○ Presentation by Damien Aumaitre on whvp at SSTIC 2020

● And many more (a list can be found on GitHub/gerhart01/Hyper-V-Internals)

12

Confidential + ProprietaryConfidential + Proprietary

Current results

13

 The Research Target

Confidential + Proprietary

The Emulated Devices Controllers

● Examples: floppy disks, IDE, PS2
● Called “virtual devices” or “VDEVs” at Microsoft
● Emulation of hardware controller by the

hypervisor
○ Real hardware controllers use and access control
○ Resources shared
○ Guest operating systems unmodified

● Implemented for Hyper-V generation 1 VMs
○ Azure mostly uses this generation

● Userland of the root partition
● In DLLs loaded by the worker process

14

Hypervisor

Kernel

Child partitionRoot partition

Kernel

vmwp.exe

Controllers
in DLLs

Clients

Confidential + Proprietary

Why Choosing the Emulated Devices?

● Complex (state machines)
○ For example: enabling / disabling ports, updating a status register, waiting for a command

● Several bugs on several hypervisors
● Azure mostly uses Generation 1 VMs
● Hyper-V is developed in C++
● Potential “guest to root partition” escapes

15

Confidential + Proprietary

Life of a Request

● Communication through IO ports
○ CPU instructions: IN / OUT
○ “IN EAX, DX”: input from I/O port in DX into EAX
○ “OUT DX, EAX”: output in EAX to I/O port address in DX
○ More details and versions in Intel manuals

● Communication through the hypervisor, the VID, and
callbacks

● More on MSRC blogpost “Attacking the VM worker
process”

● Some VDEVs are more complex with MMIO handling
for instance, or the use of the VMBus

Hypervisor

Kernel

Child partitionRoot partition

Kernel
vid.sys

vid.dll

vmwp.exe

IO

16

Confidential + Proprietary

Some Reverse Engineering

● DLL implementing the controllers
● Typical IO handlers

○ $Device::NotifyIOPortRead
○ $Device::NotifyIOPortWrite

● + : Symbols available, no particular difficulty (no obfuscation...)
● - : Reversing C++ and its indirect calls
● Example with VmEmulatedStorage.dll

17

Confidential + ProprietaryConfidential + Proprietary

Current results

18

Hyntrospect:
A Fuzzer for the

Emulated Devices

https://github.com/googleprojectzero/Hyntrospect

Confidential + Proprietary

Inspiration

● libFuzzer: coverage-guided approach
● Microsoft publication on their coverage (Keeping Windows Secure - Bluehat IL

2019)
● CVE-2018-0959 +

Dedicated MSRC
blogpost

How to do the
same, closed
source?

19

Confidential + Proprietary

Existing Tools for Windows Binaries Fuzzing

● Gathering Coverage
○ DynamoRIO
○ Intel Pin
○ Intel PT (though this is not a tool like previous two)
○ Mesos
○ QDBI for Windows
○ TinyInst

● Fuzzers
○ WinAFL + DynamoRIO
○ Jackalope
○ whvp

● Memory Corruption Detection
○ PageHeap

20

Confidential + Proprietary

So Why Another Toolchain?

● The target is a DLL
○ This disqualifies all the fuzzers that only apply to executables

● Emulating only the relevant functions is hard
○ All the VM context would be needed

● vmwp binary and the DLL cannot be restarted with instrumentation
○ That would mean restarting the whole VM for each run

● The runtime operations are specific
○ Injecting / mocking the injection of IOs

● Some tools were developed during Hyntrospect development
● Managing all the blocks with a minimal set of languages is hard
● The fuzzer will be ported to similar use cases

○ vSMB, or with some architectural changes the network stack...

21

Confidential + Proprietary

Scope

● Windows guest VM
● Intel CPU
● Generation 1VMs
● Binaries (DLLs/EXEs) in the userland of the root partition

22

Confidential + Proprietary

Design Choices at a Glance

Emulation vs execution Execution of a VM through a debugger
(DbgShell) at runtime

Coverage Tracked with the int3 technique
described by @5aelo for TrapFuzz /
@gamozolabs mesos

Memory corruption detection Pageheap (gflags)

Type of bugs Memory corruption
State machine logic errors
[Use after free]
Race conditions

23

https://googleprojectzero.blogspot.com/2020/04/fuzzing-imageio.html
https://googleprojectzero.blogspot.com/2020/04/fuzzing-imageio.html

Confidential + Proprietary

Environment reset Hyper-V checkpoints = snapshots

Mutation strategy Custom

Language PowerShell (except for the IDA scripts)

External dependencies DbgShell, CHIPSEC,
[pageheap], [LightHouse], [IDA]

Design Choices at a Glance (2)

24

Confidential + Proprietary

Overview of Hyntrospect

25

Confidential + Proprietary

Workflow

Main.ps1

config.json

Blocks’
addresses

26

Confidential + Proprietary

Workflow

Main.ps1

config.json

Blocks’
addresses

fuzzer-master.ps1

27

Confidential + Proprietary

Workflow

Main.ps1

config.json

Blocks’
addresses

fuzzer-master.ps1

input-generator.ps1

helper.psm1

corpus input

28

Confidential + Proprietary

Workflow

Main.ps1

config.json

Blocks’
addresses

fuzzer-master.ps1

debugger.ps1

input-generator.ps1

vmwp.exe

VM

helper.psm1

debugs

corpus input

29

Confidential + Proprietary

Workflow

Main.ps1

config.json

Blocks’
addresses

fuzzer-master.ps1

debugger.ps1

vm-monitoring.ps1

input-generator.ps1

vmwp.exe

VM

helper.psm1

debugs

monitors

corpus input

30

Confidential + Proprietary

Coverage collection and guidance

● Block coverage
A B

CD

31

Confidential + Proprietary

Coverage collection and guidance

● Block coverage
A B

CD

32

Confidential + Proprietary

Coverage collection and guidance

● Block coverage
A B

CD

33

Confidential + Proprietary

Coverage collection and guidance

● Block coverage
○ Versus edge coverage: easier to implement but does not

promote rare paths
A B

CD

34

Edge 1 Edge 2
Edge 3

Confidential + Proprietary

Coverage collection and guidance

● Block coverage
○ Versus edge coverage: easier to implement but does not

promote rare paths
○ No counter

A B

CD

35

Edge 1 Edge 2
Edge 3

Confidential + Proprietary

Coverage collection and guidance

● Block coverage
○ Versus edge coverage: easier to implement but does not

promote rare paths
○ No counter

● int3 technique
○ Pre-compute the list of targeted blocks’ addresses
○ Set int3 at the beginning of each block
○ Each int3 reached = coverage increase
○ The int3 is removed, input file handled, execution resumes
○ Faster over time

36

Confidential + Proprietary

Generation of the Input File

● Record of seeds at the beginning [optional]
○ Record of legitimate traffic

● Corpus of “interesting files”
○ Corpus files = permanent residents
○ Input files = temporary residents to be tested

● Coverage increase -> truncated input file added to the corpus
○ Will influence future runs

● 3 strategies: mutate, append, generate randomly

● Format of input files
○ Byte 0 % 2 -> IN / OUT operation
○ Byte 1 % (number of ports) -> selected IO port
○ Byte 2 % 3 -> length
○ If OUT and based on length -> value

37

Confidential + Proprietary

Crash Qualification

● 2 levels of monitoring:
debugger level + monitoring process

○ Tip: the monitoring process can track the VM
uptime
-> avoid while(true)
-> avoid missing quick status change
(up-down-up again) … as if it was blinking

● Crash folder created with logs and
artefacts to re-run the case

38

Confidential + Proprietary

Coverage visualization in IDA

● Optionally, using a helper and IDA+LightHouse

39

Confidential + ProprietaryConfidential + Proprietary

Current results

40

 Current Results

Confidential + Proprietary

Local Runs

● First targets: i8042 (PS/2), videoS3, floppy, IDE
○ Example: I8042 device with IO ports 0x60, 0x61, 0x62, 0x64

● Local setup: dedicated workstation with 32 GB RAM and Intel Core i9 CPU
○ 8 GB per VM, 1 or 2 vCPUs

● Speed limitation
○ Main factor: number of breakpoints
○ Time to set them / update them in DbgShell
○ Not linear

● Next goal: port the fuzzer to GCP

Number of
breakpoints

Time to set up the
breakpoints in

DbgShell at each
iteration

150 immediate

500 6 seconds

1000 20 seconds

2000 1 minute 15
seconds

41

Confidential + Proprietary

Coverage (3 days run)
● Start / init / stop functions

not called
○ Attaching to a running VM

● Debug strings blocks skipped

vmemulateddevices.dll Current coverage

VideoS3Device 42.7%

i8042Device 40%

VmEmulatedStorage.dll Current coverage

FloppyControllerDevice 43.3%

IdeControllerDevice 28.8%

42

Confidential + Proprietary

Guest VM Crash Found

● On i8042 device
● Reproducible
● BSOD of the VM with different error messages at each run

○ SYSTEM_SERVICE_EXCEPTION (0x3b)
○ PFN_LIST_CORRUPT (4e)
○ ATTEMPTED_WRITE_TO_READONLY_MEMORY (0xbe)
○ KERNEL_SECURITY_CHECK_FAILURE (0x139)

● Memory corruption error

43

Confidential + Proprietary

Some More Investigation

● Narrowed down the case
○ Sequence of 2 OUT operations

● State machine, path accessible in 2 steps

● PciBusDevice::HandleA20GateChange
○ Legacy A20 device
○ Updates the memory mapping on the host
○ … but the guest keeps the same mapping

● Question: possible compromission of VBS?

44

Confidential + Proprietary

Follow-up

● In practice, impossible to exploit
● Not a security bug
● Shared with MSRC

● Validates the behavior of the fuzzer, crash handling and reproduction scripts

45

Confidential + ProprietaryConfidential + Proprietary

Current results

46

 Future endeavours

Confidential + Proprietary

Design Limitations

● Restricted to the userland of the root partition
○ Limits the attack surface as parts of the virtualized stack are in the root partition kernel and

hypervisor
● Not optimized for speed

○ More expensive in Cloud as more cycles are needed

47

Confidential + Proprietary

Future Work

● Development of the fuzzer internals
○ Mutation strategy
○ Userland vs kernel
○ Speed-related updates: minimal debugger?

● Porting to GCP
○ Port to new devices
○ Run faster and longer

● Adapting to other root partition targets
○ Keeping the frame and “basic blocks”
○ Changing the commands and input consumption

48

Confidential + ProprietaryConfidential + Proprietary

Current results

49

 Conclusion

Confidential + ProprietaryConfidential + Proprietary 50

https://github.com/googleprojectzero/Hyntrospect

https://github.com/googleprojectzero/Hyntrospect

