
Protecting SSH authentication with TPM 2.0

Nicolas Iooss
nicolas.iooss@ledger.fr

Ledger Donjon

Abstract. For quite some time, desktop computers have been embedding
a security chip. This chip, named Trusted Platform Module (TPM),
provides many features including the ability to protect private keys used
in public-key cryptography. Such keys can be used to authenticate users
in network protocols such as Secure Shell (SSH).

Software stacks which enable using a TPM to secure the keys used in
SSH have been available for several years. Yet their use for practical
purposes is often documented only from a high-level perspective, which
does not help answering questions such as: can the security properties of
keys protected by a TPM be directly applied to SSH keys?

This is a non-trivial question as for example those properties do not
apply for disk encryption with sealed keys. Therefore this article fills the
documentation gap between the TPM specifications and the high-level
documentations about using a TPM to use SSH keys. It does so by
studying how SSH keys are stored when using tpm2-pkcs11 library on a
Linux system.

1 Introduction

1.1 SSH, TPM and how they can be used together

When using remote services, users need to be authenticated. Every
protocol relies on different mechanisms to implement user authentication:
a secret password, an RSA key pair on a smartcard, a shared secret
used with a TOTP (Time-based One-Time Password) application on a
smartphone, etc. Many authentication mechanisms are considered highly
secure nowadays (for example the ones relying on dedicated devices such
as smartcards). However when discussing habits with other people, it
seems that many still continue to use very weak mechanisms instead, even
for protocols such as SSH which can be considered as mainly used by
people interested in computer science (developers, system administrators,
researchers, etc.).

SSH (Secure Shell) is a network protocol which can be used to access
a remote command-line interface (“a shell”), transmit files to a server,

2 Protecting SSH authentication with TPM 2.0

forward other network protocols, etc. It is possible to use public-key cryp-
tography to authenticate to an SSH server, with an unencrypted private
key. Such a configuration can be reproduced by running ssh-keygen -t

rsa -N "" on the client. Doing so, a client RSA private key is generated
in .ssh/id_rsa and its matching public key is saved in .ssh/id_rsa.pub

(in the home directory of the user who ran this command). By copying the
content of .ssh/id_rsa.pub into the list of their authorized keys on an
SSH server (for example in remote file .ssh/authorized_keys),1 the user
can establish connections to the SSH server without entering any pass-
word. However, if someone gets access to the content of .ssh/id_rsa (for
example by executing malicious software on the victim’s computer or by
getting the hard drive while the computer is powered down), this attacker
can impersonate the victim and connect to the SSH server independently
of the victim.

In order to prevent this attack, it is recommended to protect the
private key with a secret password. Doing so prevents an attacker from
getting the key by directly copying the file, but this does not prevent
malicious software from stealing the private key. Indeed, such software can
record the keystrokes in order to steal the password, or dump the memory
of the SSH agent process while the private key is loaded.

To increase the protection of the private key even more, it is recom-
mended to use dedicated hardware to store it. Several manufacturers
have been building such hardware for more than ten years and nowadays
users can buy (in alphabetical order) a Ledger Nano, a Nitrokey, a PGP
smartcard, a Solo security key, a Titan security key, a Yubikey, or one
out of many other products. All these products work in a similar way:
they store a private key and they enable users to authenticate (which
usually consists in signing a randomly generated message with the private
key), possibly after users entered their password or PIN code, after they
pressed some buttons and after they verified something on the embedded
screen (depending on the product). Nevertheless all these products share
a drawback: they cost money.

Can SSH users rely on something more secure than a password-
protected file to store their private key for free? Yes, thanks to a component
called TPM (Trusted Platform Module) which is likely available on recent
computers.

1. The copy of the public key to .ssh/authorized_keys can be done using a tool
such as ssh-copy-id (https://manpages.debian.org/stretch/openssh-client/ssh-

copy-id.1.en.html).

https://manpages.debian.org/stretch/openssh-client/ssh-copy-id.1.en.html
https://manpages.debian.org/stretch/openssh-client/ssh-copy-id.1.en.html

N. Iooss 3

A TPM can perform many operations, including protecting a private
key, while implementing a specification published by the TCG (Trusted
Computing Group). Thanks to the Microsoft Logo Program [6], desktop
computers which come with Windows 10 (since July 2016) are required
to have a component which implements the TPM 2.0 specification. In
practice, this component is either a real chip or a firmware TPM that
runs on an existing chip. For example, some computers powered by Intel
processors use the CSME (Converged Security and Manageability Engine) 2

to implement a firmware TPM on the PCH (Platform Controller Hub),3 a
chip located on the motherboard.

On Linux, creating an SSH key stored on a TPM 2.0 can be achieved
thanks to software developed on https://github.com/tpm2-software

and thanks to the PKCS#11 4 interface of OpenSSH. For example, users
running Arch Linux can use the following commands (listing 1):

1 sudo pacman -S tpm2 - pkcs11

2 tpm2_ptool init

3 tpm2_ptool addtoken --pid =1 --label =ssh -- userpin = XXXX --sopin = YYYY

4 tpm2_ptool addkey --label =ssh -- userpin = XXXX -- algorithm = ecc256

Listing 1. Commands to create a key stored on a TPM, for Arch Linux users

These commands install the required software, create a PKCS#11
token authenticated by the user PIN XXXX and the SOPIN (Security
Officer PIN) YYYY, and make the TPM generate a private key on the
NIST P-256 curve. In PKCS#11 standard, Security Officer is a kind
of user who is responsible for administering the normal users and for
performing operations such as initially setting and changing passwords.
The Security Officers authenticate with a specific password, called SOPIN,
and have the power to modify the user PIN for example when it has been
lost.

The public key associated with this new key is available by running
(listing 2):

1 ssh - keygen -D /usr/lib/ pkcs11 / libtpm2_pkcs11 .so

Listing 2. Command to query the public parts of keys stored on a TPM

2. https://en.wikipedia.org/wiki/Intel_Management_Engine

3. https://en.wikipedia.org/wiki/Platform_Controller_Hub

4. Public-Key Cryptography Standards #11 is a standard which defines a program-
ming interface to create and manipulate cryptographic tokens, https://en.wikipedia.

org/wiki/PKCS_11

https://github.com/tpm2-software
https://en.wikipedia.org/wiki/Intel_Management_Engine
https://en.wikipedia.org/wiki/Platform_Controller_Hub
https://en.wikipedia.org/wiki/PKCS_11
https://en.wikipedia.org/wiki/PKCS_11

4 Protecting SSH authentication with TPM 2.0

In order to use the generated key when connecting to
a server, it is either possible to use a command-line op-
tion, ssh -I /usr/lib/pkcs11/libtpm2_pkcs11.so, or to add a
line in the configuration file of the client, PKCS11Provider

/usr/lib/pkcs11/libtpm2_pkcs11.so.
Doing so, the private key is no longer directly stored in a file. However

the documentation of tpm2-pkcs11 states that this key is stored in a
database, located in .tpm2_pkcs11/tpm2_pkcs11.sqlite3 in the home
directory of the user. Does this mean that stealing this file is enough to
impersonate the user? Is there any software (which could be compromised)
that sees the private key when the user uses it to connect to a server?
How is the TPM actually used to authenticate the user?

Surprisingly, answering these questions is not straightforward at all.
This document aims at studying these questions in order to provide concise
and precise answers which can be used to better understand how this
works.

1.2 TPM in the literature

TPM components are not new: the TPM specification was first stan-
dardized in 2009 as ISO/IEC 11889, even though it was possible to use
TPM before. The specifications for TPM 1.2 revision were published in
2011 and those for TPM 2.0 in 2014. These specifications include many
features.

First, a TPM contains some non-persistent memory which is called
PCR (Platform Configuration Registers). These registers hold crypto-
graphic digests computed from the boot code and the boot configuration
data. If any of this code or configuration changes, the digests change. In
order to prove that the content of the PCR really comes from the TPM,
the TPM is able to sign the content of the PCR using a special key which
is stored in it, called the AIK (Attestation Identity Key) in TPM 1.2 or
AK (Attestation Key) in TPM 2.0.

Second, a TPM contains some private key material which can be used
to decrypt or sign data, with public-key encryption schemes 5 (RSA,6

ECDSA,7 etc.). A TPM also contains secret key material used with sym-
metric encryption algorithms. This enables a TPM to work with a large
number of keys while having a limited amount of persistent memory: when

5. https://en.wikipedia.org/wiki/Public-key_cryptography#Examples

6. https://en.wikipedia.org/wiki/RSA_(cryptosystem)

7. https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_

Algorithm

https://en.wikipedia.org/wiki/Public-key_cryptography#Examples
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm

N. Iooss 5

a key pair is generated by the TPM, the private key is encrypted using
symmetric encryption and the result can be stored outside of the TPM.
To use such a key, the software first needs to load the encrypted private
key into the TPM, which decrypts it using a secret key which never leaves
the TPM.

Third, a TPM can encrypt some data in a way that the result can only
be decrypted when some conditions happen (for example “someone entered
some kind of password” or “some PCR hold some specific values”). This
function is called sealing data when the data is encrypted and unsealing
data when it is decrypted.

Fourth, a TPM contains some storage named NV Indexes (Non-
Volatile). This storage can contain certificates for the public keys associated
with the private keys held by the TPM, as well as other information. The
access to a NV Index can be restricted using several checks in a similar
way as the one used in sealing operations.

These features are represented in figure 1.

TPM

Platform Config.
Registers

Persistent Keys
(SRK, AK, etc.)

Non-Volatile
Indexes

Transient Keys

Main system

TPM driver

TPM tools

Fig. 1. Architecture of a system with a TPM

These features and many more (such as firmware upgrade, integration
with Intel SGX, etc.) have been well studied over the last decade.

For example several people used a TPM as a way to improve the
security of full-disk encryption by sealing a password used to decrypt
the disk (using the content of some PCRs and eventually a password

6 Protecting SSH authentication with TPM 2.0

called TPM PIN code to unseal the password). This is what Microsoft
implemented in BitLocker, which was presented at SSTIC in 2006 [10] and
in 2011 [2]. During the past two years, some people have been proposing
to perform something similar in cryptsetup for Linux 8 and there was
recent activity on this topic.9

It is possible to restrict some operations on a TPM 2.0 using an E/A
policy (Enhanced Authorization policy). This complex mechanism was
presented by Andreas Fuchs during Linux Security Europe 2020 [4].

Regarding the way TPM stores private keys, James Bottomley from
IBM gave a talk at the Kernel Recipes 2018 conference [3] and he repeatedly
sent patches in order to store GnuPG keys in the TPM.10 Such patches
also help using SSH, as SSH can be configured to use GnuPG keys for
authentication. However at the time of writing, none of these patches were
accepted by GnuPG’s developers, which is why this document will not
talk about GnuPG at all.

Regarding using a TPM to store SSH keys, several websites
already document the same commands as the one presented
in the introduction (for example https://medium.com/google-

cloud/google-cloud-ssh-with-os-login-with-yubikey-opensc-

pkcs11-and-trusted-platform-module-tpm-based-86fa22a30f8d,
https://incenp.org/notes/2020/tpm-based-ssh-key.html and
https://linuxfr.org/news/utilisation-d-un-tpm-pour-l-

authentification-ssh). But none of these websites dig into the
details on how the key is stored or how the SOPIN is actually
implemented.

Even though many websites document how to use a TPM with SSH,
only a few people seem to actually use this. One of the reasons could be
that tpm2-pkcs11 is a recent project which was not properly packaged in
Debian (and Ubuntu) before January 2021.11 The author of this document
helped fixing this and his contribution was acknowledged by the package
maintainer.12 Hopefully the future release of Debian 11 and Ubuntu 21.04

8. https://gitlab.com/cryptsetup/cryptsetup/-/merge_requests/51

9. https://gitlab.com/cryptsetup/cryptsetup/-/merge_requests/98

10. In 2018 https://lists.gnupg.org/pipermail/gnupg-devel/2018-January/

033350.html and in 2020 https://lists.gnupg.org/pipermail/gnupg-devel/2020-

June/034621.html

11. https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=968310

12. https://salsa.debian.org/debian/tpm2-pkcs11/-/commit/

f76eb1d484dea1a38d0ad3fbdca779f84d1d9248

https://medium.com/google-cloud/google-cloud-ssh-with-os-login-with-yubikey-opensc-pkcs11-and-trusted-platform-module-tpm-based-86fa22a30f8d
https://medium.com/google-cloud/google-cloud-ssh-with-os-login-with-yubikey-opensc-pkcs11-and-trusted-platform-module-tpm-based-86fa22a30f8d
https://medium.com/google-cloud/google-cloud-ssh-with-os-login-with-yubikey-opensc-pkcs11-and-trusted-platform-module-tpm-based-86fa22a30f8d
https://incenp.org/notes/2020/tpm-based-ssh-key.html
https://linuxfr.org/news/utilisation-d-un-tpm-pour-l-authentification-ssh
https://linuxfr.org/news/utilisation-d-un-tpm-pour-l-authentification-ssh
https://gitlab.com/cryptsetup/cryptsetup/-/merge_requests/51
https://gitlab.com/cryptsetup/cryptsetup/-/merge_requests/98
https://lists.gnupg.org/pipermail/gnupg-devel/2018-January/033350.html
https://lists.gnupg.org/pipermail/gnupg-devel/2018-January/033350.html
https://lists.gnupg.org/pipermail/gnupg-devel/2020-June/034621.html
https://lists.gnupg.org/pipermail/gnupg-devel/2020-June/034621.html
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=968310
https://salsa.debian.org/debian/tpm2-pkcs11/-/commit/f76eb1d484dea1a38d0ad3fbdca779f84d1d9248
https://salsa.debian.org/debian/tpm2-pkcs11/-/commit/f76eb1d484dea1a38d0ad3fbdca779f84d1d9248

N. Iooss 7

will provide usable packages. A list of Linux distributions which package
tpm2-pkcs11 can be found on Repology.13

On the hardware level, several people took a look at TPM chips
and their communication channels. At Black Hat DC 2010, Christopher
Tarnovsky presented how he managed to dump the code running on an
Infineon TPM through advanced hardware attacks [11]. Jeremy Boone
from NCC Group presented at CanSecWest 2018 how to build a device
which sits between some TPM and the CPU, called TPM Genie [1]. This
device enabled attackers to unseal the secrets used to encrypt a hard drive
encrypted with Microsoft’s BitLocker. This attack was reproduced in 2020
by F-Secure [9].

On the cryptographic level, several vulnerabilities were discovered
throughout the years. In 2017, it was discovered that some TPM from
Infineon were generating RSA keys with a bias that enabled cracking them
in a reasonable amount of time (The Return of Coppersmith’s Attack:
Practical Factorization of Widely Used RSA Moduli, ACM CCS 2017 [8]).
In 2019, it was discovered that the ECDSA implementations of some
TPM from Intel and STMicroelectronics were vulnerable to an attack
which enabled attackers to recover the private key [7]. These attacks
could compromise the SSH keys protected by the TPM. Nevertheless
these attacks do not mean that TPM and dedicated secure hardware are
worthless to store private keys: these attacks remain much more complex
to perform than stealing the private key stored in a file.

2 Configuring a system to use a TPM 2.0 to secure SSH

keys

2.1 Finding out whether a system has a TPM 2.0

In order to study how a TPM 2.0 is used for SSH authentication, it is
necessary to have a software layer which implements a TPM 2.0 interface.
There are several ways of doing this.

But first, how is it possible to determine whether a TPM is available?
The usual tools that enable enumerating hardware components can help:

— The BIOS user interface/setup menu (available at boot time) might
contain some configuration options related to the TPM, for example
to enable it.

— The filesystem might contain a device named /dev/tpm0 and a
non-empty directory /sys/class/tpm.

13. https://repology.org/project/tpm2-pkcs11/versions

https://repology.org/project/tpm2-pkcs11/versions

8 Protecting SSH authentication with TPM 2.0

— The kernel logs (command dmesg) might contain a line such as:
tpm_tis NTC0702:00: 2.0 TPM (device-id 0xFC, rev-id 1).

— Commands such as fwupdmgr get-devices –show-all-devices

might give information about an existing TPM.
— The author of this document also created a tool for Linux

machines which represents in a graph the devices of a
computer (https://github.com/fishilico/home-files/blob/

master/bin/graph-hw). This tool was presented in a rump session
at SSTIC 2018 [5].

When a TPM is present, a file could be present (since Linux 5.5) to
request the major version of the specification which is used (listing 3):

1 $ cat /sys/ class /tpm/ tpm0 / tpm_version_major

2 2

Listing 3. Query the major version of the TPM used by the system, when using
TPM 2.0

Information such as the manufacturer of the TPM and product infor-
mation can be queried using TPM capabilities. A command provided by
project tpm2-tools can be used to perform such a query on a TPM 2.0
(listing 4):

1 $ tpm2_getcap --tcti device :/ dev/ tpmrm0 properties - fixed

2 TPM2_PT_FAMILY_INDICATOR :

3 raw: 0 x322E3000

4 value : "2.0"

5 TPM2_PT_LEVEL :

6 raw: 0

7 TPM2_PT_REVISION :

8 value : 1.38

9 TPM2_PT_DAY_OF_YEAR :

10 raw: 0x8

11 TPM2_PT_YEAR :

12 raw: 0 x7E2

13 TPM2_PT_MANUFACTURER :

14 raw: 0 x4E544300

15 value : "NTC"

16 TPM2_PT_VENDOR_STRING_1 :

17 raw: 0 x4E504354

18 value : "NPCT"

19 TPM2_PT_VENDOR_STRING_2 :

20 raw: 0 x37357800

21 value : "75x"

22 TPM2_PT_VENDOR_STRING_3 :

23 raw: 0 x2010024

24 value : ""

25 TPM2_PT_VENDOR_STRING_4 :

26 raw: 0 x726C7300

27 value : "rls"

28 TPM2_PT_VENDOR_TPM_TYPE :

https://github.com/fishilico/home-files/blob/master/bin/graph-hw
https://github.com/fishilico/home-files/blob/master/bin/graph-hw

N. Iooss 9

29 raw: 0x0

30 TPM2_PT_FIRMWARE_VERSION_1 :

31 raw: 0 x70002

32 TPM2_PT_FIRMWARE_VERSION_2 :

33 raw: 0 x10000

Listing 4. Query all fixed properties from a TPM 2.0

Why is /dev/tpmrm0 used in the command line? When issuing com-
mands to a TPM, it is recommended to use a TPM Resource Manager.
This is because a TPM has a very limited capacity which limits the number
of cryptographic keys it can hold in memory. The TPM Resource Manager
acts as a proxy to the TPM and enables using any number of keys. It works
by issuing ContextSave, ContextLoad and FlushContext commands to
export, restore and destroy data in its non-persistent memory. Doing so,
the TPM Resource Manager gives the impression of using a TPM without
any capacity limit.

In practice, since Linux 4.12 (released in 2017) the kernel has been
implementing a TPM Resource Manager which can be used through
device /dev/tpmrm0. Before, it was recommended to use a user-space TPM
Access Broker and Resource Manager Daemon (project tpm2-abrmd 14)
instead of communicating with the device through /dev/tpm0, but this
recommendation does not apply any more.15

In order to query all the information which is available with-
out authentication from a TPM, the author of this document wrote
a Python script (https://github.com/fishilico/home-files/blob/

master/bin/tpm-show).

2.2 Emulating a TPM 2.0

If the system does not have a TPM 2.0 chip or if the user wants to
perform tests on a development TPM without breaking their real TPM,
it is possible to use a simulator. At the time of writing, there are mainly
two projects that can be used to launch a software TPM:

— swtpm,16 which implements a front-end for libtpms,17 a library
which targets the integration of TPM functionality into hypervisors,
primarily into QEMU.

14. https://github.com/tpm2-software/tpm2-abrmd

15. cf. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.

git/commit/?id=fdc915f7f71939ad5a3dda3389b8d2d7a7c5ee66 for details
16. https://github.com/stefanberger/swtpm

17. https://github.com/stefanberger/libtpms

https://github.com/fishilico/home-files/blob/master/bin/tpm-show
https://github.com/fishilico/home-files/blob/master/bin/tpm-show
https://github.com/tpm2-software/tpm2-abrmd
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=fdc915f7f71939ad5a3dda3389b8d2d7a7c5ee66
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=fdc915f7f71939ad5a3dda3389b8d2d7a7c5ee66
https://github.com/stefanberger/swtpm
https://github.com/stefanberger/libtpms

10 Protecting SSH authentication with TPM 2.0

— tpm_server,18 which defines itself as an implementation of the
TCG Trusted Platform Module 2.0 specification.

Both simulators are maintained by IBM, and the second one is based on
the TPM specification source code donated by Microsoft (according to its
README). In order to be able to use complex commands with the simulators,
it is required to use a TPM Resource Manager such as tpm2-abrmd, which
provides a D-Bus service. Last but not least, each simulator uses a different
protocol to encapsulate TPM 2.0 commands. The protocol used by TPM
tools and libraries is configured through a mechanism called TCTI (TPM
Command Transmission Interface).

In short, launching a software TPM is quite complex but once all those
requirements are known, it is possible to document how it can be done.

Both simulators are packaged on several Linux distribution, including
Arch Linux. Readers who are interested in reproducing the instructions of
this section can start a container for example with podman run –rm -ti

docker.io/library/archlinux.19

— To use swtpm (with TCTI library
/usr/lib/libtss2-tcti-swtpm.so, listing 5):

1 pacman -Syu swtpm tpm2 - abrmd tpm2 - tools

2 swtpm socket --tpm2 --daemon \

3 --server port =2321 --ctrl type =tcp , port =2322 \

4 --flags not -need - init -- tpmstate dir =/ tmp \

5 --log file =/ tmp/ swtpm .log , level =5

6 mkdir -p /run/ dbus && dbus - daemon --system --fork

7 tpm2 - abrmd --allow - root --tcti swtpm : host =127.0.0.1 , port =2321 &

8 export TPM2TOOLS_TCTI = tabrmd : bus_type = system

Listing 5. Install and launch a TPM 2.0 simulator on Arch Linux, with swtpm

— To use tpm_server (with TCTI library
/usr/lib/libtss2-tcti-mssim.so,20 listing 6):

1 pacman -Syu ibm -sw - tpm2 tpm2 - abrmd tpm2 - tools

2 tpm_server -port 2321 > /tmp/ tpm_server .log &

3 mkdir -p /run/ dbus && dbus - daemon --system --fork

4 tpm2 - abrmd --allow - root --tcti mssim : host =127.0.0.1 , port =2321 &

5 export TPM2TOOLS_TCTI = tabrmd : bus_type = system

Listing 6. Install and launch a TPM 2.0 simulator on Arch Linux, with tpm_server

18. https://github.com/kgoldman/ibmswtpm2

19. Users more familiar with Docker can instead use: sudo docker run –rm -ti

docker.io/library/archlinux

20. MSSIM means Microsoft Simulator. A few years ago, Microsoft published the
source code of a TPM simulator and this code was modified to run on Linux in a
program which became tpm_server. libtss2-tcti-mssim.so implements the protocol
used by this simulator.

https://github.com/kgoldman/ibmswtpm2

N. Iooss 11

A third alternative consists in creating virtual devices very similar
to /dev/tpm0 and /dev/tpmrm0 using a module called the virtual TPM
proxy available since Linux 4.8 (listing 7):

1 pacman -Syu swtpm tpm2 - tools

2 modprobe tpm_vtpm_proxy

3 swtpm chardev --tpm2 --vtpm - proxy -- tpmstate dir =/ var/lib/ swtpm

Listing 7. Install and launch a TPM 2.0 simulator on Arch Linux, with swtpm

and the virtual TPM proxy

In order to check that the software TPM launched by any of these
alternatives works fine, it is possible to query the TPM with tpm2_getcap

properties-fixed, tpm2_pcrread, etc.
The TPM Software Stack (TSS) includes a high-level interface called

FAPI (TSS 2.0 Feature Application Programming Interface). It is not
possible to directly use it with a software TPM because the default
configuration requires the presence of an Endorsement Key Certificate. In
order to use FAPI, a specific configuration file can be written to remove
this requirement (listing 8):

1 echo > /etc/tpm2 -tss/ stpm_fapi_config . json \

2 ’{" profile_name ": " P_ECCP256SHA256 ",’ \

3 ’" profile_dir ": "/ etc/tpm2 -tss/fapi - profiles /",’ \

4 ’" user_dir ": "~/. local / share /tpm2 -tss/user/ keystore ",’ \

5 ’" system_dir ": "/ var/lib/tpm2 -tss/ system / keystore ",’ \

6 ’" log_dir ": "/ run/ tpm2_tss ",’ \

7 ’"tcti ": "’"${ TPM2TOOLS_TCTI }"’",’ \

8 ’" system_pcrs ": [],’ \

9 ’" ek_cert_less ": "yes "} ’

10 export TSS2_FAPICONF =/ etc/tpm2 -tss/ stpm_fapi_config . json

11 tss2_provision

Listing 8. Configure FAPI with a software TPM 2.0

The last command creates a SRK (Storage Root Key) usable by
tpm2-pkcs11, at the handle 0x81000001. This key is used to store private
keys and secrets in the TPM, in a way which guarantees some secu-
rity properties. Its public key can be read with tpm2_readpublic -c

0x81000001.

3 tpm2-pkcs11 storage of the SSH key

3.1 Storage of the public key

Back to tpm2-pkcs11: where is the private SSH key stored and how is
it decrypted?

12 Protecting SSH authentication with TPM 2.0

The readers who are familiar with how TPMs are used in disk encryp-
tion are likely to make the guess that the private key is simply unsealed
from the TPM. That would mean that the key is known by the software
(the SSH client or one of its libraries) and that the TPM is only used to
store a passphrase for a private key file. However a TPM can also directly
load a private key and use it, without exposing it to the software. Using
this feature would strengthen the security of the key storage. Therefore
there appears to be a contradiction between some intuition (that keys
could be unsealed) and the features of TPMs. How is the private key
processed?

The analysis of tpm2-pkcs11 source code reveals that private keys
are indeed used by the TPM when performing signature operations (us-
ing function Esys_Sign in https://github.com/tpm2-software/tpm2-

pkcs11/blob/1.5.0/src/lib/tpm.c#L1190).

Nevertheless another file, src/lib/utils.c contains calls to soft-
ware implementation of AES-GCM, in function aes256_gcm_encrypt and
aes256_gcm_decrypt. These functions appear to be used to wrap and
unwrap (which mean encrypt and decrypt) some data named objauth,
using the AES key which is unsealed from the TPM. In order to under-
stand what this objauth is, the persistent storage of tpm2-pkcs11 can
be analyzed after the three previous tpm2_ptool commands from listing 1
are issued.

This storage consists in a SQLite database which by default is created
in the home directory of the current user. It contains 5 tables when using
tpm2-pkcs11 version 1.5.0 (listing 9):

1 $ sqlite3 " $HOME /. tpm2_pkcs11 / tpm2_pkcs11 . sqlite3 "

2 sqlite > . tables

3 pobjects schema sealobjects tobjects tokens

Listing 9. Tables in tpm2-pkcs11 database

These tables are used to link PKCS#11 concepts to the TPM world.

In PKCS#11, a slot may contain a token, which contains several
objects such as keys and certificates. Information about slots, tokens and
objects can be queried using command pkcs11-tool from package opensc

(listing 10):

1 $ pkcs11 - tool --module /usr/lib/ pkcs11 / libtpm2_pkcs11 .so \

2 --show - info

3 Cryptoki version 2.40

4 Manufacturer tpm2 - software . github .io

5 Library TPM2 .0 Cryptoki (ver 0.0)

6 Using slot 0 with a present token (0 x1)

https://github.com/tpm2-software/tpm2-pkcs11/blob/1.5.0/src/lib/tpm.c#L1190
https://github.com/tpm2-software/tpm2-pkcs11/blob/1.5.0/src/lib/tpm.c#L1190

N. Iooss 13

7

8 $ pkcs11 - tool --module /usr/lib/ pkcs11 / libtpm2_pkcs11 .so \

9 --list -token - slots

10 Available slots :

11 Slot 0 (0 x1): ssh IBM

12 token label : ssh

13 token manufacturer : IBM

14 token model : SW TPM

15 token flags : login required , rng , token initialized ,

16 PIN initialized

17 hardware version : 1.50

18 firmware version : 23.25

19 serial num : 0000000000000000

20 pin min/max : 0/128

21 Slot 1 (0 x2): IBM

22 token state : uninitialized

23

24 $ pkcs11 - tool --module /usr/lib/ pkcs11 / libtpm2_pkcs11 .so \

25 --list - objects

26 Using slot 0 with a present token (0 x1)

27 Public Key Object ; EC EC_POINT 256 bits

28 EC_POINT : 0441043 eef05ada9dc42f69ffca066adfc374ec94aaba63bfa

29 9383 c2a563d847f31ac250702adc8e1081d1b633a1e1d6278b4613ba20cf5fd8

30 af0b8c3c8b4a765b9387

31 EC_PARAMS : 06082 a8648ce3d030107

32 label :

33 ID: 35386461383061353363366536643935

34 Usage : encrypt , verify

35 Access : local

Listing 10. Output of pkcs11-tool on a system using a software TPM

These commands did not interact with the TPM, even though the
content of the generated public key was displayed.21 This information is
indeed stored in the SQLite database. More precisely, the tobjects table
contains information about transient objects, including all their associated
PKCS#11 attributes. These attributes can be decoded using constants
defined in tpm2-pkcs11’s code 22 and for example the elliptic curve public
key is stored in attribute CKA_EC_POINT = 0x181.

tpm2-pkcs11 defines three vendor attributes: CKA_TPM2_OBJAUTH_ENC,
CKA_TPM2_PUB_BLOB and CKA_TPM2_PRIV_BLOB. In the SQLite database
used for tests, there are 2 objects:

— One with attribute 0 set to 3, which means that its CKA_CLASS is
CKO_PRIVATE_KEY: it is a private key. This object also contains the
three vendor attributes of tpm2-pkcs11.

21. This was observed by recording the system calls issued by the commands using
strace. The commands did not interact with any device related to TPM.

22. https://github.com/tpm2-software/tpm2-pkcs11/blob/1.5.0/tools/tpm2_

pkcs11/pkcs11t.py#L39-L97

https://github.com/tpm2-software/tpm2-pkcs11/blob/1.5.0/tools/tpm2_pkcs11/pkcs11t.py#L39-L97
https://github.com/tpm2-software/tpm2-pkcs11/blob/1.5.0/tools/tpm2_pkcs11/pkcs11t.py#L39-L97

14 Protecting SSH authentication with TPM 2.0

— The other one with attribute 0 set to 2, which means that its
CKA_CLASS is CKO_PUBLIC_KEY: it is a public key. This object only
has CKA_TPM2_PUB_BLOB as vendor attribute.

For both objects, attribute CKA_TPM2_PUB_BLOB contains hexadecimal-
encoded data which includes the elliptic curve public key. In fact,
this attribute stores data encoded according to a structure which
is defined in TPM 2.0 specification as TPM2B_PUBLIC (listing 11,
from https://github.com/stefanberger/libtpms/blob/v0.7.5/src/

tpm2/TpmTypes.h#L1682-L1695):

1 typedef struct {

2 TPMI_ALG_PUBLIC type ;

3 TPMI_ALG_HASH nameAlg ;

4 TPMA_OBJECT objectAttributes ;

5 TPM2B_DIGEST authPolicy ;

6 TPMU_PUBLIC_PARMS parameters ;

7 TPMU_PUBLIC_ID unique ;

8 } TPMT_PUBLIC ;

9 typedef struct {

10 UINT16 size ;

11 TPMT_PUBLIC publicArea ;

12 } TPM2B_PUBLIC ;

Listing 11. Structures TPMT_PUBLIC and TPM2B_PUBLIC from TPM 2.0
specification

For example, when the content of attribute CKA_TPM2_PUB_BLOB is
(listing 12):

1 00560023000 b000600720000001000100003001000203eef05ada9dc42f69ffc

2 a066adfc374ec94aaba63bfa9383c2a563d847f31ac2002050702adc8e1081d1

3 b633a1e1d6278b4613ba20cf5fd8af0b8c3c8b4a765b9387

Listing 12. Example of generated public key blob

This content can be decoded as (listing 13):

1 struct TPM2B_PUBLIC {

2 size = 0x0056 ,

3 publicArea = {

4 type = 0x0023 , // = TPM_ALG_ECC

5 nameAlg = 0x000b , // = TPM_ALG_SHA256

6 objectAttributes = 0 x00060072 ,

7 authPolicy = { size = 0 x0000 },

8 parameters . eccDetail = {

9 symmetric = 0x0010 , // = TPM_ALG_NULL

10 scheme = 0x0010 , // = TPM_ALG_NULL

11 curveID = 0x0003 , // = TPM_ECC_NIST_P256

12 kdf = 0 x0010 // = TPM_ALG_NULL

13 },

14 unique .ecc = {

15 x = {

https://github.com/stefanberger/libtpms/blob/v0.7.5/src/tpm2/TpmTypes.h#L1682-L1695
https://github.com/stefanberger/libtpms/blob/v0.7.5/src/tpm2/TpmTypes.h#L1682-L1695

N. Iooss 15

16 size = 0x0020 ,

17 bytes = "3 eef05ada9dc42f69ffca066adfc374e "

18 " c94aaba63bfa9383c2a563d847f31ac2 "

19 },

20 y = {

21 size = 0x0020 ,

22 bytes = " 50702 adc8e1081d1b633a1e1d6278b46 "

23 "13 ba20cf5fd8af0b8c3c8b4a765b9387 "

24 }

25 }

26 }

27 }

Listing 13. Deserialization of an example of generated public key blob

So attribute CKA_TPM2_PUB_BLOB directly consists in the public key
generated with tpm2_ptool addkey, serialized for the TPM. Does at-
tribute CKA_TPM2_PRIV_BLOB directly contains the associated private key?
The answer should of course be negative, and some further analysis was
conducted in order to understand why something related to the private
key is stored in the database.

3.2 Storage of the private key

From a functional point of view, a TPM only has a limited amount of
persistent memory but it is able to use many keys. This is made possible
because the private keys are stored outside of the TPM and are encrypted
with a secret which never leaves the TPM. When a private key is used
for example to perform some signing operations, the key first needs to be
loaded into the TPM. The TPM decrypts the private key before loading
it.

In practice, the encrypted private key is serialized with a structure
defined in TPM 2.0 specification as TPM2B_PRIVATE, which only states “a
size and some bytes”. When using the TPM simulator swtpm, it is possible
to retrieve the encryption key and to decrypt the private key.

In the tests, the content of attribute CKA_TPM2_PRIV_BLOB is (list-
ing 14):

1 007 e002093b2e33a7ff39879229e35afeb86ec61bca0aaee057c0d56bee354bc

2 41 cc01f50010627e422444e01671fe6b2e3a771634d64d64599bc3129fb57f10

3 2 bb89244e6d7c6c029a9a53b27bddbb0ba5b5fa0497c3286364b50fce3757615

4 c895de4fce053c4793a4b39b35007fb7d2a29557b9b318b15ecbd4f7c70908a8

Listing 14. Example of generated private key blob

This can be decoded as (listing 15):

16 Protecting SSH authentication with TPM 2.0

1 struct TPM2B_PRIVATE {

2 size = 0x007e ,

3 buffer = {

4 integrity = {

5 size = 0x0020 ,

6 bytes = "93 b2e33a7ff39879229e35afeb86ec61 "

7 " bca0aaee057c0d56bee354bc41cc01f5 "

8 },

9 iv = {

10 size = 0x0010 ,

11 bytes = "627 e422444e01671fe6b2e3a771634d6 "

12 },

13 encrypted =

14 "4 d64599bc3129fb57f102bb89244e6d7c6c029a9a53b27bd "

15 " dbb0ba5b5fa0497c3286364b50fce3757615c895de4fce05 "

16 "3 c4793a4b39b35007fb7d2a29557b9b318b15ecbd4f7c709 "

17 "08 a8"

18 }

19 }

Listing 15. Deserialization of an example of generated private key blob

In order to decrypt the data, the persistent storage of the software
TPM needs to be analyzed. This storage is located in a file named
tpm2-00.permall in the directory specified by option –tpmstate when
launching swtpm. This file contains the public and sensitive structures
(TPMT_PUBLIC and TPMT_SENSITIVE in TPM specification) related to the
SRK (Storage Root Key) used by tpm2-pkcs11 and defined by handle
0x81000000. A sensitive structure contains the following fields (listing 16):

1 typedef struct {

2 TPMI_ALG_PUBLIC sensitiveType ;

3 TPM2B_AUTH authValue ;

4 TPM2B_DIGEST seedValue ;

5 TPMU_SENSITIVE_COMPOSITE sensitive ;

6 } TPMT_SENSITIVE ;

Listing 16. Structure TPMT_SENSITIVE from TPM 2.0 specification

In the file used in the tests, the content of seedValue is in hexadecimal
(listing 17):

1 07 f5b590a03d66e2225274698323ccfe59a7356e9cc14436091fe9d49b3e577c

Listing 17. seedValue of the SRK used in tests

Using this value, it is possible to derive a HMAC key and an AES key,
to verify the integrity tag and to decrypt the data.

Here is a Python 3.8 session showing how to compute those values
(listing 18):

N. Iooss 17

1 >>> import hashlib , hmac

2

3 >>> pub_blob = bytes . fromhex ("""

4 ... 00560023000 b000600720000001000100003001000203eef05ada9dc42f69ffc

5 ... a066adfc374ec94aaba63bfa9383c2a563d847f31ac2002050702adc8e1081d1

6 ... b633a1e1d6278b4613ba20cf5fd8af0b8c3c8b4a765b9387

7 ... """)

8 >>> priv_blob = bytes . fromhex ("""

9 ... 007 e002093b2e33a7ff39879229e35afeb86ec61bca0aaee057c0d56bee354bc

10 ... 41 cc01f50010627e422444e01671fe6b2e3a771634d64d64599bc3129fb57f10

11 ... 2 bb89244e6d7c6c029a9a53b27bddbb0ba5b5fa0497c3286364b50fce3757615

12 ... c895de4fce053c4793a4b39b35007fb7d2a29557b9b318b15ecbd4f7c70908a8

13 ... """)

14 >>> srk_seed = bytes . fromhex ("""

15 ... 07 f5b590a03d66e2225274698323ccfe59a7356e9cc14436091fe9d49b3e577c

16 ... """)

17

18 # Compute the public name , prefixed by TPM_ALG_SHA256 = 0 x000b

19 >>> pub_name = b’\x00\x0b ’ + hashlib . sha256 (pub_blob [2:]) . digest ()

20 >>> pub_name .hex ()

21 ’000 bcac322c64b1a31d7806bc84570090949f898cea8c2c9a258761659dfb1de ’

22 ’713d’

23

24 # Compute HMAC key with KDFa

25 >>> hashstate = hmac .new(srk_seed , None , " sha256 ")

26 >>> hashstate . update (int. to_bytes (1, 4, "big")) # counter

27 >>> hashstate . update (b’INTEGRITY \0 ’) # label

28 >>> hashstate . update (int. to_bytes (256 , 4, "big")) # sizeInBits

29 >>> hmac_key = hashstate . digest ()

30 >>> hmac_key .hex ()

31 ’7 f861102ab2854de213e6ffa9ae2a2521c73abf49b697618736d85615d27389b ’

32

33 # Compute the integrity tag

34 >>> hashstate = hmac .new(hmac_key , None , " sha256 ")

35 >>> hashstate . update (priv_blob [0 x24 :])

36 >>> hashstate . update (pub_name)

37 >>> computed_integrity = hashstate . digest ()

38 >>> computed_integrity .hex ()

39 ’93 b2e33a7ff39879229e35afeb86ec61bca0aaee057c0d56bee354bc41cc01f5 ’

40

41 # Check the integrity

42 >>> computed_integrity == priv_blob [4:0 x24]

43 True

44

45 # Compute the AES key with KDFa

46 >>> hashstate = hmac .new(srk_seed , None , " sha256 ")

47 >>> hashstate . update (int. to_bytes (1, 4, "big")) # counter

48 >>> hashstate . update (b’STORAGE \0 ’) # label

49 >>> hashstate . update (pub_name) # contextU = name

50 >>> hashstate . update (int. to_bytes (128 , 4, "big")) # sizeInBits

51 >>> aes_key = hashstate . digest () [:16]

52 >>> aes_key .hex ()

53 ’9052599459 c554ee409ffdba6311b2ce ’

54

55 # Decrypt private blob using library cryptography .io

56 >>> from cryptography . hazmat . primitives . ciphers import \

57 ... Cipher , algorithms , modes

18 Protecting SSH authentication with TPM 2.0

58 >>> from cryptography . hazmat . backends import default_backend

59 >>> iv = priv_blob [0 x26 :0 x36]

60 >>> cipher = Cipher (algorithms .AES(aes_key), modes .CFB(iv),

61 ... backend = default_backend ())

62 >>> sensitive = cipher . decryptor (). update (priv_blob [0 x36 :])

63 >>> sensitive .hex ()

64 ’ 0048002300203036343132623637616663383763303765626132366334653031 ’

65 ’61653662353000000020 e136a90d627a7b2ea404ed671a7717cb04b13f54f9df ’

66 ’478 ff54ced6fd3275048 ’

Listing 18. Python session which decrypts a private key blob using the seedValue

of the SRK and the public name associated with the key

The decrypted sensitive structure can be decoded as (listing 19):

1 struct TPM2B_SENSITIVE {

2 size = 0x0048 ,

3 sensitiveArea = {

4 sensitiveType = 0x0023 , // = TPM_ALG_ECC

5 authValue = {

6 size = 0x0020 ,

7 buffer = " 30363431326236376166633837633037 "

8 " 65626132366334653031616536623530 "

9 },

10 seedValue = { size = 0 x0000 },

11 sensitive .ecc = {

12 size = 0x0020 ,

13 buffer = " e136a90d627a7b2ea404ed671a7717cb "

14 "04 b13f54f9df478ff54ced6fd3275048 "

15 }

16 }

17 }

Listing 19. Deserialization of the decryption of a generated private key blob

The last buffer, sensitive.ecc, contains the private key associated
with the elliptic curve public key (listing 20):

1 >>> from cryptography . hazmat . primitives . asymmetric import ec

2 >>> from cryptography . hazmat . backends import default_backend

3 >>> sensitive_ecc_buffer = bytes . fromhex (

4 ... " e136a90d627a7b2ea404ed671a7717cb "

5 ... "04 b13f54f9df478ff54ced6fd3275048 ")

6 >>> privkey = ec. derive_private_key (

7 ... int. from_bytes (sensitive_ecc_buffer , "big"),

8 ... curve =ec. SECP256R1 () ,

9 ... backend = default_backend ())

10 >>> pubkey = privkey . public_key ()

11 >>> hex(pubkey . public_numbers ().x)

12 ’0 x3eef05ada9dc42f69ffca066adfc374ec94aaba63bfa9383c2a563d847f31ac2 ’

13 >>> hex(pubkey . public_numbers ().y)

14 ’0 x50702adc8e1081d1b633a1e1d6278b4613ba20cf5fd8af0b8c3c8b4a765b9387 ’

Listing 20. Python session which computes the public key associated with the
recovered private key

N. Iooss 19

This confirms that tpm2-pkcs11’s database contains an encrypted
version of the private key, stored in attribute CKA_TPM2_PRIV_BLOB of
the PKCS#11 object associated with the private key. This attribute
is encrypted using the seedValue of the used SRK, which is a secret
supposed to never leave the TPM. Therefore this analysis also confirms
that only the TPM itself can decrypt this attribute.

Now, there is something strange with this analysis: neither the user
PIN nor the SOPIN were used to decrypt the private key. And indeed
they are not needed to load the key (listing 21):

1 # Load the key with file " pub_blob " containing the content

2 # of CKA_TPM2_PUB_BLOB and " priv_blob " the content of

3 # CKA_TPM2_PRIV_BLOB

4 $ tpm2_load -c /tmp/ context -C 0 x81000000 \

5 -u pub_blob -r priv_blob

6 name : 000 bcac322c64b1a31d7806bc84570090949f898cea8c2c9a2587

7 61659 dfb1de713d

Listing 21. Loading private key blob and public key blob in the TPM

But using this key does not directly work to sign data (listing 22):

1 $ echo hello | tpm2_sign -c /tmp/ context \

2 -g sha256 -s ecdsa -o signature .out

3 WARNING : esys :src/tss2 - esys /api/ Esys_Sign .c :311: Esys_Sign_Finish ()

4 Received TPM Error

5 ERROR : esys :src/tss2 - esys /api/ Esys_Sign .c :105: Esys_Sign ()

6 Esys Finish ErrorCode (0 x0000098e)

7 ERROR : Eys_Sign (0 x98E) - tpm: session (1):the authorization

8 HMAC check failed and DA counter incremented

9 ERROR : Unable to run tpm2_sign

Listing 22. Trying to use the key to sign a message produces errors

The error suggests an authentication failure, with the DA counter
(Dictionary Attack) of the TPM being incremented.23

In the decrypted sensitive structure associated with the private key
(listing 19), the authValue contains 32 bytes which are represented in
hexadecimal. In practice these bytes consist in 32 hexadecimal characters:
06412b67afc87c07eba26c4e01ae6b50. This value can be directly used
with command tpm2_sign to sign a message without any error (listing 23):

1 $ echo hello | tpm2_sign -c /tmp/ context \

2 -g sha256 -s ecdsa -o signature \

3 -p 06412 b67afc87c07eba26c4e01ae6b50

23. The Dictionary Attack counter is a mechanism which prevents brute-force attacks
on TPM. After some number of authentication failures, the TPM becomes locked and
rejects any further authentication try.

20 Protecting SSH authentication with TPM 2.0

4 $ xxd -p -c32 signature

5 0018000 b00201f076fa127366b9d9cc36155652751545115e4ce35749ed75638

6 7 e68f058d35d00203bd83b9086a7876948fcc4728c4141b30a0fe94cada03147

7 76052933888802 a8

8

9 # Verifying the signature does not require the authValue

10 $ echo hello > msg

11 $ tpm2_verifysignature -c /tmp/ context -s signature -m msg

Listing 23. Trying to use the key to sign a message with the authValue (parameter
-p succeeds

Therefore the private key generated with tpm2_ptool addkey is pro-
tected by an authorization value. In the presented tests, this authorization
value was retrieved by decrypting the private blob exported by the TPM.
Doing so was possible only because a software TPM was used and the
decryption key could be retrieved. With a hardware TPM, this should
not be possible. There should be another way to retrieve it, tpm2-pkcs11

needs to be able to use the key.

4 Linking the PIN of the PKCS#11 token with the

authorization value of the key

4.1 Unsealing a wrapping key from the PIN or the SOPIN

The previous section presented that the private SSH key gener-
ated with tpm2_ptool addkey was stored in a PKCS#11 attribute
(named CKA_TPM2_PRIV_BLOB) in table tobjects of tpm2-pkcs11’s
SQLite database. This private key was (of course) encrypted by the
TPM and in order to use it, the software has to provide an authorization
value to the TPM.

Taking a step back, the PIN and the SOPIN should be linked to this
authorization value: both are some kind of secret that the user is required
to enter in order to use the key. But the PIN and the SOPIN are two
independent secrets: the PIN can be used without the SOPIN when using
the key and if the PIN is forgotten, the SOPIN can be used to reset the
PIN.

In order to help understanding how this works, tpm2-pkcs11 provides
a command, tpm2_ptool verify. This command checks the PIN or the
SOPIN (or both) and displays some hexadecimal values such as seal-auth

and wrappingkey. None of these values match the authorization value
which was found in the previous section. While investigating why, the
author of this document found a bug in the Python code of the tool (a
variable was not initialized when some options were provided) and fixed

N. Iooss 21

it.24 But this fix did not change the fact that tpm2_ptool verify did not
show the authorization value, so it was necessary to dig a little bit more.

The SQLite database used by tpm2-pkcs11 includes a table named
sealobjects which is used to store information for the PIN and SOPIN
(listing 24):

1 $ sqlite3 " $HOME /. tpm2_pkcs11 / tpm2_pkcs11 . sqlite3 "

2 sqlite > . dump sealobjects

3 PRAGMA foreign_keys =OFF;

4 BEGIN TRANSACTION ;

5 CREATE TABLE sealobjects (

6 id INTEGER PRIMARY KEY ,

7 tokid INTEGER NOT NULL ,

8 userpub BLOB ,

9 userpriv BLOB ,

10 userauthsalt TEXT ,

11 sopub BLOB NOT NULL ,

12 sopriv BLOB NOT NULL ,

13 soauthsalt TEXT NOT NULL ,

14 FOREIGN KEY (tokid) REFERENCES tokens (id) ON DELETE CASCADE

15);

16 INSERT INTO sealobjects VALUES (1,1,

17 X’002 e0008000b00000052000000100020b0c383025b2418e95f530707ba7f28

18 a29b4bf55d65f004c8365c68400ae3cc60 ’,

19 X’00 be0020835e6bbbc97ff76714b0b9cc7352d823cc250741ecb2817c7ad28b

20 44 d958cfc3001084d9eb99781ba29b9e2dfc601ae5bec4fdcbce5055be161244

21 5 f67e390b54328ae4b47f126746393ba7dcc9dc7b93b766f761473d68d581dfd

22 aed3d6a365ce9bb90d7d2cb1118363f4416b1770dbdbfa726b480c760f113b69

23 6556 b064ebce1b05ac8d80511c83f753f5aeb342257b5b561ba746dc2ccafd0f

24 5 e2824c3f7838c235115b75d1665c7938a0a50999990a1399194ee9aa0eb03f8

25 36 ’,

26 X’ 37323832653632346561643164656331613761653539386234363065656336

27 6335663736633730646562623234663335376664613531313437653937333365

28 34 ’,

29 X’002 e0008000b00000052000000100020df41af69b73d88f829c60fe0e27687

30 62 f43be4e831cc0a5d0af5508b1752cecf ’,

31 X’00 be002013579162beec11b58bbd5ac9d4db3b1f2de8a70f276f75b1925111

32 06 ad76ff100010f937771c1214098ad9a19d49a211757f2d1f9d48195624e87c

33 526 ad8ccb229479a474aa7ba3b010058ad64f33560aad3529c6e4a1c10092304

34 5 cddd249fec9d565bb037712ffc267c9837d8ca561f6d720d84ddf019dc8fe45

35 c059e34dc20b258f0f2c959aca09cb580eadecc1f3fdae44587d51f9028f50b4

36 6 b9e7007538751508d49f52a21426357c72671f4915562ab9cd7b18cb28a77ac

37 6c’,

38 X’ 62633235333163643434633466333166313239663437613738636664333834

39 6563636538363533343662633936623263633239623135306262306462646362

40 38 ’);

Listing 24. Content of sealobjects database in tpm2-pkcs11 database

Columns userpub and sopub both store a TPM2B_PUBLIC structure
(listing 25):

24. https://github.com/tpm2-software/tpm2-pkcs11/pull/635

https://github.com/tpm2-software/tpm2-pkcs11/pull/635

22 Protecting SSH authentication with TPM 2.0

1 struct TPM2B_PUBLIC {

2 size = 0x002e ,

3 publicArea = {

4 type = 0x0008 , // = TPM_ALG_KEYEDHASH

5 nameAlg = 0x000b , // = TPM_ALG_SHA256

6 objectAttributes = 0 x00000052 ,

7 authPolicy = { size = 0 x0000 },

8 parameters . keyedHashDetail = {

9 scheme = 0 x0010 // = TPM_ALG_NULL

10 },

11 unique . keyedHash = {

12 size = 0x0020 ,

13 bytes = "..."

14 }

15 }

16 }

Listing 25. Extract of the deserialization of the content of userpub and sopub

columns

This structure is a Keyed Hash object, which is in theory a way to
store a secret key to perform a HMAC-based authentication. In practice,
this object is used here to store a sealed secret (it cannot be used as a
HMAC authentication because parameters.keyedHashDetail.scheme is
TPM_ALG_NULL), in the private parts which are in columns userpriv and
sopriv. In order to unseal the secret, the public and private parts need
to be loaded in the TPM, and then tpm2_unseal can be used with an
authorization value derived from the PIN (when using userpub/userpriv)
or the SOPIN (when using sopub/sopriv). This authorization value only
consists in the SHA256 digest of the PIN concatenated with the value in
column userauthsalt or soauthsalt, truncated to 16 bytes (listings 26
and 27):

1 >>> from hashlib import sha256

2 >>> userpin = b"XXXX"

3 >>> userauthsalt = bytes . fromhex ("""

4 ... 3732383265363234656164316465633161376165353938623436306565633663

5 ... 3566373663373064656262323466333537666461353131343765393733336534

6 ... """)

7 >>> usersealauth = sha256 (userpin + userauthsalt). digest () [:16]

8 >>> usersealauth .hex ()

9 ’c3402eac59ae76a86317d9b34811ca3d ’

Listing 26. Python session which computes the authorization value of the userpub

field, from the user PIN and userauthsalt

1 $ tpm2_load -c /tmp/ context -C 0 x81000000 \

2 -u userpub -r userpriv

3 $ tpm2_unseal -c /tmp/ context -p c3402eac59ae76a86317d9b34811ca3d

N. Iooss 23

4 9 d7854e46e3e8816070697c9770fbc2ed4297dea669bebbe2c22a52421df63cd

Listing 27. Using the derived authorization value to unseal the userpriv field

If the authorization value is wrong or missing, tpm2_unseal fails and
returns the error message “the authorization HMAC check failed and DA
counter incremented”. This indicates that the sealed secret is protected by
the TPM’s Dictionary Attack counter which prevents brute-force attacks.

Moreover, repeating the commands with the SOPIN and its associated
fields leads to the same secret being unsealed. This secret (encoded in
hexadecimal) is also displayed by command tpm2_ptool verify using
the name wrappingkey.

4.2 Decrypting an authorization value from the wrapping key

The previous sections presented that:

— the SSH key generated with tpm2_ptool addkey was protected by
an authorization value,

— and the PIN and or SOPIN of a token enabled unsealing a wrapping
key which was not this authorization value.

Something is missing to establish a link between wrapping key and the
authorization value. Studying how tpm2-pkcs11 works enabled bridging
the gap: the wrapping key is an AES key which is used to encrypt the
authorization value using AES-GCM. The encrypted value and the pa-
rameters of the GCM mode (a nonce and a tag) are stored in attribute
CKA_TPM2_OBJAUTH_ENC of each private key, in table tobjects of the
SQLite database.

In the tests, this attribute contains (listing 28):

1 3638333330346435336435306134376466356666383530333 a33313632626439

2 366639313431656463323265613836663664666137396466653 a663036323866

3 3066353661373637656261316361393631376239396234613162643561653666

4 3662653863323664623966383932373765666531393137343234

Listing 28. Attribute CKA_TPM2_OBJAUTH_ENC of the generated SSH key

Here is a Python 3.8 session showing how to decode this data, using
the wrapping key unsealed in listing 27 (listing 29):

1 >>> from cryptography . hazmat . primitives . ciphers . aead import AESGCM

2 >>> objauth_enc_unhex = bytes . fromhex ("""

3 ... 3638333330346435336435306134376466356666383530333 a33313632626439

4 ... 366639313431656463323265613836663664666137396466653 a663036323866

5 ... 3066353661373637656261316361393631376239396234613162643561653666

6 ... 3662653863323664623966383932373765666531393137343234

24 Protecting SSH authentication with TPM 2.0

7 ... """)

8 >>> fields = objauth_enc_unhex . decode (" ascii "). split (":")

9 >>> nonce , tag , ciphertext = map(bytes . fromhex , fields)

10

11 >>> wrappingkey = bytes . fromhex ("""

12 ... 9 d7854e46e3e8816070697c9770fbc2ed4297dea669bebbe2c22a52421df63cd

13 ... """)

14 >>> aesgcm = AESGCM (wrappingkey)

15 >>> authval = aesgcm . decrypt (nonce , ciphertext + tag , b’’)

16 >>> authval

17 b’06412 b67afc87c07eba26c4e01ae6b50 ’

Listing 29. Python session which computes the authorization value of a key from
the wrapping key

This last value is indeed the authorization value embedded in the
sensitive structure of the private key which was generated (listing 19).

In short, the PIN and the SOPIN are used by tpm2-pkcs11 to unseal
an AES key which is used to decrypt (without using the TPM) the
authorization value which is necessary to use keys, for example to sign
data or to perform SSH authentication.

5 Conclusion

When using tpm2-pkcs11 1.5.0 to generate and handle SSH keys with
a TPM 2.0, the software never sees the private keys. They are exported
by the TPM in private blobs that tpm2-pkcs11 stores in a database. To
use these keys, an authorization value needs to be provided to the TPM
and tpm2-pkcs11 stores an encrypted copy of this value which relies on a
complex derivation scheme.

This enables to answer the questions which were asked in the intro-
duction:

— Is stealing the SQLite database enough to impersonate the user?
No, as the keys it contains are encrypted using the TPM’s SRK.

— Is there any software (which could be compromised) that sees the
private key when the user uses it to connect to a server? No.

— How is the TPM actually used to authenticate the user? The key
is loaded into the TPM, the software computes an authorization
value using the PIN or the SOPIN. It then requests the TPM to use
the key to perform a signature operation used in the authentication
protocol.

Moreover, even though this article focused on SSH, the software
stack provides a compatibility layer with many other protocols through a
PKCS#11 interface. For example this enables transposing the questions

N. Iooss 25

and their answers to VPN software (Virtual Private Network), TLS stacks
(Transport Layer Security), etc.

Knowing how tpm2-pkcs11 works in detail would enable assessing its
security. This could be done in some future work.

References

1. Jeremy Boone. TPM genie: Attacking the hardware root of trust for less than $50.
CanSecWest, 2018. https://cansecwest.com/csw18archive.html.

2. Aurélien Bordes. Bitlocker. SSTIC, June 2011. https://www.sstic.org/2011/

presentation/bitlocker/.

3. James Bottomley. TPM enabling the crypto ecosystem for enhanced security.
Kernel Recipes, September 2018. https://kernel-recipes.org/en/2018/talks/

tpm-enabling-the-crypto-ecosystem-for-enhanced-security/.

4. Andreas Fuchs. Introducing TPM NV storage with E/A policies and TSS-FAPI.
Linux Security Europe, November 2020. https://www.youtube.com/watch?v=

JckONn4h6pQ.

5. Nicolas Iooss. Représenter l’arborescence matérielle. SSTIC Rump Sessions, June
2018. https://www.sstic.org/2018/presentation/2018_rumps/.

6. Microsoft. Minimum hardware requirements, section 3.7 trusted plat-
form module (TPM), 2016. https://docs.microsoft.com/en-us/windows-

hardware/design/minimum/minimum-hardware-requirements-overview#37-

trusted-platform-module-tpm.

7. Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, and Nadia Heninger. TPM-
FAIL:TPM meets timing and lattice attacks. In 29th USENIX Security Symposium
(USENIX Security 20), pages 2057–2073, 2020. https://tpm.fail, CVE-2019-
11090 and CVE-2019-16863.

8. Matus Nemec, Marek Sys, Petr Svenda, Dusan Klinec, and Vashek Matyas. The
return of coppersmith’s attack: Practical factorization of widely used RSA moduli.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 1631–1648, 2017.

9. Henri Nurmi. Sniff, there leaks my bitlocker key, December 2020. https://labs.f-

secure.com/blog/sniff-there-leaks-my-bitlocker-key/.

10. Bernard Ourghanlian. L’implémentation des spécifications du TCG au sein de
la plateforme windows : un aperçu de bitlocker. SSTIC, June 2006. https:

//www.sstic.org/2006/presentation/Les_evolutions_de_l_implementation_

des_specifications_du_TCG_au_sein_de_la_plateforme_Windows/.

11. Christopher Tarnovsky. Deconstructing a ‘secure’ processor. Black Hat DC, 2010.
https://www.youtube.com/watch?v=62DGIUpscnY.

https://cansecwest.com/csw18archive.html
https://www.sstic.org/2011/presentation/bitlocker/
https://www.sstic.org/2011/presentation/bitlocker/
https://kernel-recipes.org/en/2018/talks/tpm-enabling-the-crypto-ecosystem-for-enhanced-security/
https://kernel-recipes.org/en/2018/talks/tpm-enabling-the-crypto-ecosystem-for-enhanced-security/
https://www.youtube.com/watch?v=JckONn4h6pQ
https://www.youtube.com/watch?v=JckONn4h6pQ
https://www.sstic.org/2018/presentation/2018_rumps/
https://docs.microsoft.com/en-us/windows-hardware/design/minimum/minimum-hardware-requirements-overview#37-trusted-platform-module-tpm
https://docs.microsoft.com/en-us/windows-hardware/design/minimum/minimum-hardware-requirements-overview#37-trusted-platform-module-tpm
https://docs.microsoft.com/en-us/windows-hardware/design/minimum/minimum-hardware-requirements-overview#37-trusted-platform-module-tpm
https://tpm.fail
https://labs.f-secure.com/blog/sniff-there-leaks-my-bitlocker-key/
https://labs.f-secure.com/blog/sniff-there-leaks-my-bitlocker-key/
https://www.sstic.org/2006/presentation/Les_evolutions_de_l_implementation_des_specifications_du_TCG_au_sein_de_la_plateforme_Windows/
https://www.sstic.org/2006/presentation/Les_evolutions_de_l_implementation_des_specifications_du_TCG_au_sein_de_la_plateforme_Windows/
https://www.sstic.org/2006/presentation/Les_evolutions_de_l_implementation_des_specifications_du_TCG_au_sein_de_la_plateforme_Windows/
https://www.youtube.com/watch?v=62DGIUpscnY

	Protecting SSH authentication with TPM 2.0
	Introduction
	SSH, TPM and how they can be used together
	TPM in the literature

	Configuring a system to use a TPM 2.0 to secure SSH keys
	Finding out whether a system has a TPM 2.0
	Emulating a TPM 2.0

	tpm2-pkcs11 storage of the SSH key
	Storage of the public key
	Storage of the private key

	Linking the PIN of the PKCS#11 token with the authorization value of the key
	Unsealing a wrapping key from the PIN or the SOPIN
	Decrypting an authorization value from the wrapping key

	Conclusion

