
Return of ECC dummy point additions:

Simple Power Analysis on efficient P-256

implementation

Andy Russon
andy.russon@orange.com

Orange

Abstract. This paper aims to show that the efficient implementation
of elliptic curve P-256 (also known as secp256r1), present in several
cryptographic libraries such as OpenSSL and its forks, is vulnerable to
Simple Power Analysis (SPA).

This is made possible by the use of dummy point additions to make to
the scalar multiplication constant-time with a regular behavior. However,
when not done carefully, those can be revealed on a power trace and
divulge the corresponding part of a secret scalar.

Combined with a lattice attack, it is then possible to recover a secret
ECDSA signing key.

1 Introduction

Elliptic Curve Cryptography (ECC) is an ensemble of public-key cryp-
tosystems that has become widely used for key-exchange or authentication.
The growing interest makes ECC a target for side-channel attacks. Those
rely on auxiliary data made available to an attacker with physical leakage
of implementations. The most common is Simple Power Analysis (SPA)
introduced by Kocher et al. [5] using the correlation between power con-
sumption and the manipulated data to deduce the type of operation and
eventually information on a secret key.

To prevent such attacks, several propositions have been given such as
using algorithms with a regular behavior. For elliptic curves, it means a
scalar multiplication algorithm that executes the same sequence of point
doublings and point additions regardless of the secret bits manipulated.
For example, this can be achieved with the introduction of dummy point
additions [1].

Nonetheless, it was shown that many protection mechanisms might
not prevent SPA. Indeed, the authors of [3] proposed to use special points
with a coordinate equal to zero implying a lower power consumption due
to low Hamming weight. With a chosen input, the special point appears
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during the calculation only under some assumption on secret bits which
can be confirmed with the power trace. This attack is called Refined Power
Analysis (RPA).

In SSTIC 2020 [8], we showed that the efficient P-256 curve implemen-
tation [4] (present in OpenSSL and its forks BoringSSL and LibreSSL)
could be targeted with fault injections to detect the presence of dummy
point additions. In this paper, we propose a different strategy based on
RPA to attack this implementation, combined with a lattice attack to
recover an ECDSA private key [6].

The outline is the following. In Sect. 2, we describe the model of
the attack, present a simulation of power traces and the results. Sect. 3
explains why the implementation is vulnerable to RPA, and finally, we
conclude in Sect. 4 with remarks on mitigations.

2 The attack

In this section, we present the target, model, and steps of the attack.
Then we give the results of our simulation of power traces capture and
ECDSA key recovery.

2.1 Target

The target is the implementation of the P-256 curve that has part of
the code written in assembly [4] that we found present in:

— OpenSSL (introduced in version 1.0.2 for x86_64, and later for x86,
ARMv4, ARMv8, PPC64 and SPARCv9);

— BoringSSL (introduced in commit 1895493 (november 2015) for
x86_64);

— LibreSSL (introduced in november 2016 in OpenBSD, but not
present in the re-packaged version for portable use as of version
3.3.1).

The particularity of this implementation is that the point addition
and big integer modular arithmetic are coded with efficient assembly code.
For ECDSA signature generation, the scalar multiplication algorithm uses
large precomputed tables to reduce considerably the number of point
additions to execute. These choices make the implementation one of the
fastest available.

This implementation is constant-time, and it is achieved with the
introduction of dummy point additions when necessary. In [8], it is shown
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that those could be detected with fault injections. We introduce a non-
invasive strategy in the following that also detects the presence of a dummy
point addition.

2.2 Model and steps

The attack is carried out in two steps. The first consists of the capture
of power consumption traces of many ECDSA signature generation with
an unknown identical private key. Therefore physical access to the target
device is necessary. The second step is the analysis of the traces to filter
signatures to be used in the lattice attack. Thus it is necessary to collect
the signatures and messages, alongside the public key (to match with
private key candidates).

We are looking for traces for which the beginning of the scalar mul-
tiplication during a signature generation has a noticeable lower power
consumption. This will indicate that a dummy point addition occurred
and reveal that the secret randomly generated secret nonce has its lowest
bits set to 0s.

A summary of the attack:

1. Capture power consumption of an ECDSA signature generation;

2. Collect the signature and the corresponding signed message;

3. Keep the signature and message if there is a lower power consump-
tion during the first point addition;

4. Repeat steps 1-3 until at least 37 signatures are collected;

5. Apply the lattice attack to attempt a recovery of the private key;

6. Go back to step 1 to add signatures in case the recovery failed.

Lattice attack. Nonce bias is a critical vulnerability in ECDSA. It can
be rewritten as a problem of finding a short vector in a lattice, and
efficient algorithms are available with the library fplll and its Python
wrapper [2]. The stronger the bias, the fewer signatures we need for the
attack to succeed. In our case, we identify signatures where the 7 least
significant bits of the secret nonces are null, and the number of such
signatures to recover a 256-bit private key is at least 37 in general.
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2.3 Simulation

We experimented on OpenSSL version 1.1.1k to validate the model
of the attack. The tools to reproduce the results of the simulation are
available on GitHub.1

Power trace simulation. To simulate power traces, we used the Trac-
erGrind tool of Side-Channel Marvels.2 This tool is a Valgrind plugin that
can record executed instructions, memory read (or written) of a running
process.

To obtain a power trace, we used the tool to record the values read
from memory during a signature generation with a command such as:

1 valgrind --tool = tracergrind --output = memread . trace --trace - instr =no

--trace - memread =yes --trace - memwrite =no openssl dgst -sha256

-sign privkey .pem -out sig.bin msg.txt

Listing 1. Command line to capture memory trace with the TracerGrind tool.

Then we applied the Hamming weight model to the values. An example
of a simulated power trace is given in Fig. 1.
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Fig. 1. Power trace simulation of a signature generation in OpenSSL with the
efficient P-256 implementation in assembly.

Analysis. The simulation was run to get 6000 power traces. In this
particular setup, the part related to the first point addition is easy to
extract from the traces since it occurs at the same position. We give in
Fig. 2 two traces representing the first 4 point additions of the signature
generation.

1. https://github.com/orangecertcc/ecdummyrpa

2. https://github.com/SideChannelMarvels/Tracer

https://github.com/orangecertcc/ecdummyrpa
https://github.com/SideChannelMarvels/Tracer
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Fig. 2. Zoom on the beginning of power trace simulation of the scalar multiplication
of two signature generation in OpenSSL with the efficient P-256 implementation
in assembly (highlight: first point addition).

As can be seen, the first point addition on the second trace has a valley
considerably lower than the others indicating a dummy point addition
and a nonce that has its 7 least significant bits set to 0.

To distinguish the traces in two classes, we used the GaussianMixture

class from the Scikit-learn machine learning Python library [7]. The
tool was able to identify a cluster of 50 traces and another with the
remaining traces. The ratio between the two cluster sizes is consistent
with the expectation, since the probability that the 7 least significant bits
of a nonce are simultaneously 0 is 1/128.

Private key recovery. We ran the lattice attack using the function
findkey in the Python tool of our SSTIC 2020 paper.

1 key = findkey ( secp256r1 , pubkey , signatures , msb=False , 7)

Listing 2. Attempt to find the private key from a list of signatures.

The parameters of the function are
— secp256r1: the elliptic curve P-256 (predefined in the tool);
— pubkey: the public key point in the form (x, y);
— signatures: list of filtered signatures in the form (m, r, s) where

m is the hashed message, and the couple (r, s) the signatures;
— msb=False and l=7 to indicate that the 7 least significant bits of

the nonces are 0s.
We note that the first 38 signatures out of the 50 were enough to

recover the private key.

3 Details of P-256 implementation

In this section, we describe how the dummy point addition is managed
in the scalar multiplication algorithm and why the attack works.
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3.1 Scalar multiplication algorithm

The implementation makes use of large precomputed tables to reduce
the whole calculation as only 36 elliptic curve point additions (those can
be counted in Fig. 1).

The secret scalar k of size at most 256 bits is rewritten as 37 windows
K0, . . . , K36, each calculated from consecutive bits of k. An accumulator
is initialized with a precomputed point P0 selected in a table from the
value K0. Then, for each subsequent Ki a point addition occurs between
the accumulator and a point Pi. Therefore the whole scalar multiplication
is calculated as only 36 point additions:

(· · · ((P0 + P1) + P2) + · · · ) + P36.

The formulas for the point addition 3 have exceptions, and those are
handled with dummy point additions to make the execution constant-time.
Our interest is how the dummy point addition is done.

3.2 Dummy point addition

The point addition is executed as presented in Algorithm 1. It uses
two different point representations:

— The first entry is the accumulator represented by three coordinates
X1, Y1 and Z1; when Z1 is null, it is the infinity point (the null
point of the elliptic curve), otherwise (X1/Z1

2, Y1/Z1
3) is the affine

representation;
— The second entry is a point from the precomputed table given by

two coordinates x2 and y2 which is the affine representation; in
this situation, the infinity point is represented by (0, 0) (not a valid
affine point).

When K0 is null (this happens only when the 7 least significant bits
of the scalar are 0s), the accumulator is initialized with (X1, Y1, Z1) =
(0, 0, 0), then the boolean in1infty is true and all calculations are dis-
carded in line 22. However, almost all operands in the point addition are
null (see highlights in Algorithm 1). Each of these operations is composed
of dozens of instructions to perform big integer modular arithmetic with
machine words of zero Hamming weight for most of them.

The goal of Refined Power Analysis is to find such computation on a
trace and explains why we observe lower valleys on the simulated power
traces in the small cluster.

3. In the function ecp_nistz256_point_add_affine.



A. Russon 7

Require: P1 = (X1, Y1, Z1),
P2 = (x2, y2)

Ensure: P1 + P2 = (X3, Y3, Z3)
1: in1infty← (Z1 == 0)
2: in2infty← (x2, y2) == (0, 0)
3: t0 ← Z1

2

4: t1 ← x2 · t0

5: t2 ← t1 −X1

6: t3 ← t0 · Z1

7: Z3 ← t2 · Z1

8: t3 ← t3 · y2

9: t4 ← t3 −Y1

10: t5 ← t2
2

11: t6 ← t4
2

12: t7 ← t5 · t2

13: t1 ← X1 · t5

14: t5 ← 2 · t1

15: X3 ← t6 − t5

16: X3 ← X3 − t7

17: t2 ← t1 −X3

18: t3 ← Y1 · t7

19: t2 ← t2 · t4

20: Y3 ← t2 − t3

21: if in1infty then
22: (X3, Y3, Z3)← (x2, y2, 1)

23: if in2infty then
24: (X3, Y3, Z3)← (X1, Y1, Z1)

25: return (X3, Y3, Z3)

Algorithm 1. Mixed point addition with projective Jacobian coordinates (high-
lights: zero values when P1 = (0, 0, 0)).

Remarks. When K1 is null, it means (x2, y2) = (0, 0), and the point
addition is also dummy. However, only four operations involve a zero
operand (two multiplications and two subtractions) out of the 18 big
integer arithmetic operations. So we can expect that this case is harder
to distinguish from the normal case and cannot be misinterpreted as the
case K0 = 0.

A final remark is that for the accumulator to be (0, 0, 0) during the
processing of window Ki, it would be necessary that all the previous
windows be null which happens for very few scalars: K0 is null if the 7
least significant bits are 0s, but for K1 to also be null would need 7 more
bits set to 0s, and so on. Hence why we focus only on the first point
addition.

4 Mitigations and conclusion

In this paper, we have shown that the efficient implementation of the
popular elliptic curve P-256 in OpenSSL and its forks is vulnerable to
Refined Power Analysis (RPA), a particular power analysis attack that
relies on the correlation between a power trace and zero operands.

We have simulated power traces for a few thousand ECDSA signature
generations under an identical private key, and have shown that RPA
reveals when the 7 least significant bits of the secret nonce are 0s due to
the use of a dummy point addition. A lattice attack is successful in these
conditions to reconstruct the private key.
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One possibility to mitigate the attack would be to perform the dummy
point addition with nonzero coordinates. The proposition in our SSTIC
2020 paper also mitigates this attack as it avoids the introduction of
dummy point additions.
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A Appendix

Algorithm 2 presents how a window of consecutive bits of the scalar k
is encoded as a relative integer (one sign bit and the absolute value), and
Algorithm 3 is the complete scalar multiplication algorithm.

Every window is calculated from 8 consecutive bits of the scalar k at
most (including one bit from the previous window), and is encoded as a
null window in two cases: the bits are all 0s or all 1s. For the first window,
since there is no previous window, a bit 0 is added, so it is encoded as a
null window if and only if the 7 least significant bits are 0s.

https://github.com/fplll/fplll
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Require: d with 0 ≤ d < 256
Ensure: encoding of d
1: if d ≥ 128 then
2: d← 255− d
3: s← 1
4: else
5: s← 0

return s, ⌊(d + 1)/2⌋

Algorithm 2. Window encoding for scalar multiplication algorithm in the efficient
P-256 implementation.

Require: k = (k255, . . . , k0)2, P
Ensure: [k]P

Precomputation phase (offline)
1: for i← 0 to 36 do
2: for j ← 0 to 64 do
3: Tab[i][j] = [j27i]P

Evaluation phase
4: s0, K0 ← Encoding((k6, . . . , k0, 0)2)
5: R← (−1)s0 Tab[0][K0]
6: for i← 1 to 36 do
7: si, Ki ← Encoding((k7i+6, . . . , k7i, k7i−1)2)
8: R← R + (−1)si Tab[i][Ki]

return R

Algorithm 3. Single scalar multiplication with the generator of the efficient P-256
implementation.
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