An Apple a Day Keeps the Exploiter Away

Eloi Benoist-Vanderbeken and Fabien Perigaud
eloi.benoist-vanderbeken@synacktiv.com
fabien.perigaud@synacktiv.com

Synacktiv

Abstract. Three years ago, we presented all the difficulties an attacker
has to face when exploiting a state-of-the-art iPhone device. Back in the
days, the amount of defense-in-depth was already quite impressive, and a
public price for a full exploitation chain was 2MS$.

There have since been 3 new major iOS versions and as many generations
of iPhones, coming with their new software and hardware mitigation.
This article aims at describing how Apple significantly raised the bar for
an attacker to be able to gain a privileged access to an up-to-date iPhone
13 (the latest model when writing this article).

1 Introduction

This article is a follow-up of a previous one we presented back in 2019 [7].
In three years, a lot of things have changed. Multiple O-click vulnerabilities
have been discovered and patched in iOS [4,6,8], a bootrom exploit [2] and
a takeover of Apple secure processor [12] have been released, Zerodium
now pays more for an Android zero click full chain with persistence than
for an iOS one. . .

Is Apple losing the security game? In this paper we will see that
this is quite the opposite. In the recent years, Apple actually accelerated
the security hardening of their operating systems and phones. They also
learned a lot from their vulnerabilities and from the attackers which gave
them the ability to eliminate whole classes of vulnerabilities and exploits
strategies.

This article does not reintroduce all i0S security mechanisms and it is
highly recommended to (re)read the 2019 one before diving into this one.

2 Pointer Authentication Codes

Pointer authentication is supported since the iPhone XS and XR
with the A12 SoC and iOS 12. Since then, Pointer Authentication Codes
(PAC) have been bypassed numerous times, both in userland [8,9] and

2 An Apple a Day Keeps the Exploiter Away

kernelland [3,9]. In our previous paper [7] we insisted that the technology
was still young and that Apple could sign more things and use different
keys. It turns out that it’s exactly what they did.

The obvious attack against PAC pointers is to modify unsigned pointers
and to swap pointers that are signed with the same key and context. Apple
is well aware of that and made this significantly harder.

2.1 More Signed Pointers

First of all, more and more data pointers are now signed. This includes
both sensitive pointers like the sandbox label but also data structures
known to be used by attackers to build full exploits. For instance, after
multiple jailbreaks and exploits using pipes to build an arbitrary read /write
primitive in the kernel [11], Apple started in iOS 14.2 to sign pipes data
pointers.

The userland is not left out. For example, after being used by Samuel
GroB in his iMessage exploit [8], the ISA (as in this object IS A box/-
cat/apple) pointer, a very important pointer at the beginning of every
Objective-C object, is signed since iOS 14 (but only checked since i0S
14.5... [13]). Some other pointers that weren’t correctly signed by the
compiler or in assembly sources are now also protected. For example, the
function __chkstk_darwin, used to check that dynamic stack allocations
don’t overflow the stack, was not signed in the global offset table.

Probably to simplify pointer test handling, null pointers are not signed.
This can be sometimes used to exploit logic flaws. The most famous one
is the sandbox label pointer. When this pointer is null, the process is only
restricted by the system sandbox, which only restricts access to sensitive
APIs (like access to the host special ports) and is permissive by default.
To escape the application or WebKit sandbox, patching this pointer with
a null was sufficient, even if this pointer was signed. This has been patched
by Apple in i0OS 15.0 by always checking the signature, even if the pointer
is null (see fig. 1 and fig. 2).

2.2 More Diversity

To protect against pointer swapping, Apple tries to use the appropriate
key and a specific context for each usage. For example, at the beginning
of PAC and since iOS 14, every function pointer stored in a structure was
signed with a null context. Moreover, all those pointers signed with a null
context were all stored in the same section __DATA_CONST:__auth_ptr.
Now every function pointer field is signed on the fly with a specific context

E. Benoist-Vanderbeken, F. Perigaud

FIZE
es =
i intptr t cdecl mac label get(struct label *1, int slot)
int64 _ fastcall mac_label ge WORD. EXPORT mac_label get
EXPORT _mac_label get _mac_label_get
e et . W T ADD X8, X8, WL,SXTW#3
Lok X16, (@451 LOR 16, [x8,#3]!
CBZ X16, loc FFFFFFFO080FA748 MoV X17, X8
MOVK X17, #0OxB231,LSL#48
L] ¥ AUTDA X16, X17
E\%‘@ X8, #0xB231,LSL#48 = mov x17, X16
o X17, x16 Toc_FFFFFFFO030FA748 XPACD Xx17
AuTDA X16, X8 MoV P X16, X17
[XPACD X17 RET B.EQ loc_FFFFFFFOO85C6584
cnp X16, X17 End of function _mac_lal
B.EQ loc_FFFFFFFODBOFA740]
¥ [ol i = | W E
’:EK'@@ mcmi s = BRK #0xC472)
Toc_| 740 loc_FFFFFFFRO85C65B4
MOV X0, X16| Mov X0, X16
RET RET
; End of function _mac_label get
Fig. 1. PAC sandbox label before iOS
15 Fig. 2. PAC sandbox label after iOS

15

(but the pointer address is not used, maybe to support structure copy, so
it is still possible to swap two instances of the same field, see fig. 3 and
fig. 4).

Now the only pointers signed with a null context stored in kernel mem-
ory are two pointers on mig_strncpy_zerofill and __chkstk_darwin
and these are in read-only memory. The only other zero context pointers
are functions arguments and return value and those are stored in registers
that may only be temporarily saved on the stack. This greatly reduces
the possibility to swap pointers in memory and the available gadgets.

2.3 More Keys

At the beginning of PAC, all processes shared the same A key, used to
sign function pointers. So even if all processes already had different B keys,
used to sign process specific data like the saved return address, it was still
pretty easy to attack another process with a JOP chain (whereas ROP
has been killed by PAC). Now, processes have a A key that depends on
their Team ID, which is a unique identifier generated by Apple for every
developper account. Daemons and Apple apps don’t have any Team ID but
they can use a specific entitlement (com.apple.pac.shared_region_id)
to get a different A key nevertheless. Of course, WebKit uses this entitle-
ment so it is now as difficult to attack daemons from WebKit than from
any other application (at least from a PAC point of view).

4 An Apple a Day Keeps the Exploiter Away

ADRP X9, #zsigned_pty_get_ioctlRPAGE

LDR X9, [X9, #zsigned_pty_get_ioctl@PAGECFF]

ADRP X10, #tty_dev_headRfPAGE

LDR X11, [X10,#tty_dev_head@PAGEQOFF]

STP X11, X2, [X8,#0x10]

ADRP X9, §#zsigned pty_get_ name@PAGE

LDR X9, [X9,#zsigned pty_get_ name@PAGECFF]

STR X9, [¥&8,#(__pty_driver.name - OxFFFFFFF002418D70)]

Fig. 3. function pointer fields before iOS 14, zero-signed pointers are stored in
__DATA_CONST:__auth_ptr

ADR Xl6, _pty_get_ioctl

HOP

MOV X17, #O0xB4AC

PACIA Xle, X17

STR X16, [X&8,#(__pty_driver.open — OxFFFFFFFO0%AS59CE)]
ADR Xl6, _pty_get_name

HOP

MOV X17, #ox707

PACIA Xle, X17

STR X16, [X&8,#(__pty_driver.name — OxFFFFFFFO02AS52CE)]

Fig. 4. function pointer fields after iOS 14, different fields use different keys and
pointers are signed on the fly

2.4 Fewer Weaknesses

Last but not least, Apple fixed several PAC bypasses in its code and
even killed two bypass classes by adding hardware mitigations and another
one with a compiler mitigation.

The idea of PAC is that some of the upper bits of a pointer are used to
store a signature. When one of the AUT instructions is used on a signed
pointer, if the signature is valid, a pointer stripped of its signature is
returned. This stripped pointer can then be used with classic instructions.
If the signature is invalid, the resulting pointer will be invalidated by
flipping one of its higher bits, this can be detected by checking this bit or
by directly trying to dereference it, which would trigger a exception.

One original weakness of PAC was that when an invalid pointer was
signed, a single bit of the signature was flipped and it was trivial to get
a valid signature from it. The AUT then PAC combination is frequent as
function pointers need to be signed for different contexts. For example,
a function pointer passed as an argument to a function will be signed
with a null context and if the function sets a structure field with it, it will
have to be resigned with the field context. Since the A14 (first used in
the iPhone 12), EnhancedPAC (as defined in Armv8.5) is implemented, so
when an invalid pointer is signed, the signature is discarded (filled with
zeroes) and it is not possible to deduce the signature for a valid pointer.

E. Benoist-Vanderbeken, F. Perigaud 5

With this protection, it is still possible to bruteforce a valid signature
under some circumstances. All the invalid pointers will have one signature
and the only valid one will have a different one. With this oracle, it is
possible in seconds to minutes (depending on the oracle speed and the
signature length) to find a valid signature. Apple again killed this method
by forcing the compiler (with the ~fptrauth-auth-traps option) to add
checks after every AUT instruction to crash the process (or the kernel) if
the pointer passed to the AUT instruction is not correctly signed. Moreover,
in the A15 (first used in the iPhone 13), Apple made sure to catch all
the invalid signatures by implementing the Armv8.6-A FPAC extension
that raises an exception when an AUT instruction encounters an invalid
signature. At last, they also made sure to make this attack less practical
by increasing the size of the signature in userland from 16 to 24 bits in
iOS 13 (it has always been 24 bits in kernelland).

3 Page Protection Layer

The hardware foundation of the Page Protection Layer (PPL) is
present in Apple SoCs since the iPhone 8 and was already used to protect
the JiT page, but without PAC it was worthless to protect kernel data, so
we had to wait until the A12 SoC to see PPL in the kernel. PPL is supposed
to protect arbitrary pages against modification by an attacker having an
arbitrary read/write in the kernel and even if they are able to bypass PAC
and execute arbitrary existing code in the kernel.

At first, PPL was only used to protect physical page mapping, some
structures related to code signing (most notably the dynamic trust cache
that contains the hash of all the platform binaries) and to protect platform
binaries against code injection (it’s a little bit more complex than that
but this is the general idea). But since then, and as a lot of Apple security
features, PPL gained a lot more importance.

3.1 Entitlements and Profiles

Starting from iOS 15.0, PPL is used to validate and protect a very
important piece of Apple security systems: profiles and entitlements.

Before iOS 12, hooking a userland daemon, amfid, was enough to
bypass all the signatures and entitlement checks. Apple mitigated that
by checking the executable signature in kernel with CoreTrust which
validates the signature and the certificate chain but doesn’t check the
entitlements and is not able to check all the certificate details (most

6 An Apple a Day Keeps the Exploiter Away

notably its expiration date and revocation status). A simple and effective
way to bypass this was to sign the executables with an expired or revoked
certificate while still hooking amfid to bypass the other checks. Since
iOS 15.0 however, the kernel also checks the profile signature and if the
entitlements requested match the ones authorized in the profile. If there
is no profile, the executable has to be a platform binary or be signed with
the Apple App Store certificate otherwise it is limited to a very restrictive
set of entitlements.

To make sure that the entitlements have not been tampered with after
being validated, they are checked and stored in PPL and all the pointer
chains from the thread to the entitlements are, of course, signed with
dedicated PAC contexts. Last but not least, the entitlement bytes are also
signed with PAC.

One could say that an attacker with an arbitrary kernel read /write will
nevertheless always find a way to get their hands on the data they need,
even without arbitrary entitlements. It is true indeed but it considerably
complicates the development of a useful backdoor.

3.2 RO Zones

As if pointer signature was not enough, Apple introduced read-only
(RO) zomes in iOS 15.2. Several sensitive kernel structures are now allocated
in specific zones protected by PPL. Task credentials, threads exception
ports, sandbox profiles, entitlements or other signature-related elements
now cannot be written without a PPL bypass. That means that it is not
possible anymore to just patch the uid of a process to become root or to
nullify the sandbox pointer to escape the sandbox.

The design is quite robust and Apple blocked the obvious bypasses. To
make sure that RO pointers are not swapped, there is a back reference in
all RO allocations. If the back reference doesn’t match the address where
the RO zone pointer was stored, the kernel panics. Even without this back
reference, type confusions are worthless as the zone id is passed to the PPL
functions and checked against the effective zone id. It is also obviously
not possible to replace a RO zone pointer with a pointer in a read-write
memory or a pointer to another RO zone as the zone id is also checked
when the RO zones are read. The only PPL function used to write in the
RO zones also checks that the address is aligned, that the memcpy will not
overflow, that the source is either on the stack or in another RO zone, so
classic memory corruption vulnerabilities do not apply here as well.

E. Benoist-Vanderbeken, F. Perigaud 7

4 Kernel Mitigations

4.1 Zones Hardening

XNU has a zone allocator. A zone is a set of memory pages used to
allocate a certain type of objects with a fixed size. For example, there is a
zone for mach ports, and making an allocation in this zone using zalloc
will return a pointer to an allocation of the size of an ipc_port structure
in a page containing only ipc_port structures.

This behavior has a side effect in terms of exploitation: exploiting
a use-after-free in a zone was a bit complicated, as an allocation can
only be reused by another allocation of the same type. However, it was
still possible to re-use a whole page of allocations: the page has to be
completely freed, so the kernel garbage collector would potentially reassign
it to another zone.

A first mitigation has been introduced in iOS 13.2: for some critical
kernel objects which are often abused in exploits, such as mach ports,
a call to zone_require is added in functions manipulating such objects.
This function ensures that the object address belongs to the correct zone,
so it is no longer possible to craft a fake object in a random allocation,
or reuse a freed port address in another allocation. However, there is no
check about the address alignment, so it can point in the middle of an
allocation.

To further prevent abuse of the garbage collector, zone sequestration
has been introduced in iOS 14.0. This mechanism ensures that a page
virtual address belonging to a specific zone will never be reused for another
zone. This definitely prevents some use-after-free vulnerabilities from
being exploited. This mitigation is not enabled on all zones by default.
For example, as demonstrated by Ian Beer from Project Zero [5], the
ipc.ports zone was not sequestrated before iOS 15.2. The reason was
that zone_require checks were supposed to prevent a misuse of a fake
port.

Moreover, across the various iOS versions, the number of zones has
been increased, and a bunch of allocations made in the kernel heap now
belong to a specific zone.

Speaking of the kernel heap, before iOS 14, all kalloc allocations
were made in kalloc.x zones depending on their size. For example, a
kalloc(1000) resulted in an allocation in kalloc.1024. Starting from
iOS 14, the heap has been split in 4 different heaps:

— KHEAP_DEFAULT: for kernel objects which do not belong to a

specific zone;

8 An Apple a Day Keeps the Exploiter Away

— KHEAP_KEXT: for allocations made by kexts;

— KHEAP_DATA_BUFFERS: for allocations containing only data,
no pointers are present in this heap;

— KHEAP_TEMP: for allocations done in scope of a thread
(the same thread allocates and frees the pointer). This heap
is no longer present in iOS 15 and has been merged with
KHEAP_DATA_BUFFERS.

This heap separation widely mitigates the ability to spray controlled
data in order to exploit a use-after-free in kalloc.x zones, as user-
controlled allocations with controlled content are now performed in the
KHEAP_DATA_BUFFERS zone.

Furthermore, some interesting objects from an attacker point of view,
such as IPC messages, had their structure change: they were previously
allocated in a standard kalloc.x zone if the supplied size could not fit in
a zone allocation. Starting from iOS 14.2, the userland controlled data is
allocated in the KHEAP_DATA_BUFFERS heap while the original ipc_kmsg
structure is always allocated in the dedicated zone.

Finally, a new mitigation has been added in iOS 15.2: SAD_FENG_SHUT.
Its goal is to randomize zone assignments to one of the 4 general submaps,
so that there is no longer a guaranted zone interleave. This prevents some
OOB exploits relying on this fact or exploits hardcoding a kernel address
targeting a specific zone allocation after having filled the corresponding
zone.

4.2 Critical Port Rights Separation

Historically, there was a unique type of task or thread port, allowing
to use all APIs indifferently (read/write memory, read/write context, etc.).
Starting from iOS 14, there has been a separation in different flavors,
each one with its own port.

In iOS 15.4, the following flavors are defined for a task:

— TASK_FLAVOR,_ CONTROL

— TASK_FLAVOR,_ READ

— TASK_FLAVOR,_ INSPECT

— TASK_FLAVOR_NAME

Threads have one less flavor:

— THREAD_FLAVOR,__ CONTROL

— THREAD_FLAVOR_READ

— THREAD_FLAVOR_ INSPECT

The previous flavors are listed from the most to the least privileged,
and each port gives access to a subset of APIs. For example, using

E. Benoist-Vanderbeken, F. Perigaud 9

the mach_vm_read API requires a TASK_FLAVOR_READ port whereas the
mach_vm_write API requires a TASK_FLAVOR_CONTROL port.

In a fun way, this privilege separation has introduced a regression:
before iOS 14.5, the functions used to convert a port to a task ob-
ject skipped a call to task_conversion_eval when the flavor was not
TASK_FLAVOR_CONTROL. This function ensures that only a platform binary
can resolve the task port of another platform binary. This means that, in
iOS versions between 14.0 and 14.5, a non-platform binary was able to
read the memory space of a platform binary.

iOS 14.5 is also the version where Apple started to set the self task
port and main thread port as immovable, which means that these ports
rights cannot be sent in a mach message. They also introduced port labels,
another mechanism to control who can receive sensitive ports (task and
thread ports but also userland drivers ports for example). This change
mitigates many logical vulnerabilities and exploitation techniques, as it
no longer possible for a service to be exploited to send its self task port
or to legitimately send it to another process.

4.3 Minor Hardening

Since i0S 14, building a tfp0 is a little bit harder. There is an extra
check in convert_port_to_map_with_flavor which ensures that the map
does not directly give access to the kernel pmap.

With the RO zones protecting the cred structure (see subsection 3.2),
passing root with an arbitrary kernel read/write primitive became signifi-
cantly harder. To make that a little bit harder, the kernel was also stripped
of two functionalities: the handling of suid binaries and the suid cred port
support (a deprecated way to spawn process with arbitrary uids thanks to
a port created by a root process with the com.apple.private.suid_cred
entitlement).

5 WebKit

WebKit security has been widely impacted by all the generic PAC
improvements, and there is no public method nowadays to bypass PAC in
a WebKit exploit on iOS 15.x.

However, some WebKit-specific mitigations have also been added. As
stated in our initial publication [7], a usual WebKit exploit consists of the
following steps:

— Trigger a vulnerability to gain addrof and fakeobj primitives;

N O Ut W N

10 An Apple a Day Keeps the Exploiter Away

— Gain read/write primitives by crafting a fake JavaScript object;
— Gain arbitrary code execution by bypassing the hardware-backed
mitigations (APRR and PAC).
To make the second and third steps harder, new mitigations have been
added.

5.1 Structure ID Randomization

To be able to craft a fake object, an attacker has to build a JSCell
structure. This structure has the following representation in memory:

struct JSC::JSCell {
JSC::StructureID m_structurelD;
JSC::IndexingType m_indexingTypeAndMisc;
JSC::JSType m_type;
JSC::TypeInfo::InlineTypeFlags m_flags;
JSC::CellState m_cellState;

Previously, a StructureID was just an index into an array of
Structure objects. Getting a valid StructureID simply was a matter of
creating N (N being greater than 1000) new different objects and picking
N/2 as a valid StructurelD.

Now, random entropy bits have been added to the StructureID. The
number of bits has changed across time, but it is not possible to predict
them before having gained a read primitive.

For now, each time a Structure has to be accessed, the index is
extracted from the StructurelID, checked against the StructureIDTable
size, then the encodedStructureBits are xored with the lower bits of
the StructureID shifted by the pointer size (48-bits), to finally retrieve a
pointer to a Structure.

The encodings are represented as a comment in WebKit sources [1]:

1. StructurelID is encoded as:

The entropy bits are chosen at random and assigned when a
StructureID is allocated.

2. For each StructureID, the StructurelIDTable stores
encodedStructureBits which are encoded from the structure pointer
as such:

The entropy bits here are the same 5 bits used in the encoding of
the StructureID for this structure entry in the StructureIDTable.

E. Benoist-Vanderbeken, F. Perigaud 11

Bypasses of this mitigation have been made public back in 2019 [10].
The idea is quite simple: building a fake object and using it to gain a
leak or a read primitive without reaching code referencing the underlying
Structure to avoid any bad pointer dereference.

5.2 JIT Instructions Signature

A known method to bypass APRR was to modify the native code
generated by the JIT engine before it is written in the JIT page.

Now, on devices supporting PAC, the generated instructions are signed.
This is performed by computing a new signature for the block of instruc-
tions each time a new instruction is added. Then, when the block has to
be written in the JIT page, the signature is verified. On iOS 14.4, this has
been improved by keeping a signature for each instruction instead of a
unique one for the whole block. Each instruction signature is verified just
before the copy in the JIT page to ensure that no modification can occur.

The signature algorithm makes use of the PACDB instruction. This
implies that, to be able to modify JIT instructions, an attacker needs code
execution to be able to execute PAC instructions to build the signature.

5.3 PAC Exceptions Termination

Back in 2020, a blog post on Project Zero blog described a way to
bypass PAC and APRR by creating infinite loops in the exception handling
code while making another thread try to bruteforce a PAC pointer. This
would allow the main thread to catch the exception in case of an invalid
signature, and resume the thread to try the next value.

This has been mitigated by adding a specific entitlement to the
WebContent process. This entitlement adds the flag TF_PAC_EXC_FATAL to
the kernel task. This flag is involved whenever an exception is handled by
the kernel: if the flag is present and the exception is related to an invalid
PAC pointer (either a data pointer, an instruction pointer or a specific BRK
following a bad pointer authentication), the task will directly exit without
reaching the userland exception handlers.

5.4 Sandbox

Since our previous study, the sandbox has been greatly improved:
— Ability to filter unix syscalls;

— Ability to filter mach syscalls;

— Ability to filter any fentl;

12

An Apple a Day Keeps the Exploiter Away

Ability to filter any ioctl by their code and file name;

Ability to filter mach messages by their endpoint name and message
number;

Ability to filter IOKit methods by their id;

Support of different states of a process life.

The WebContent sandbox profile is usually where the latest sandbox
improvements appear first, as seen on the WebKit github repository:

Unix syscalls are all denied, except a subset specifi-
cally required by the process. This subset is divided be-
tween syscall-unix-only-in-use-during-launch and
syscall-unix-in-use-after-launch. When exploiting the
WebContent process, only the latter subset is available to try to
escape the sandbox;

Mach syscalls are all denied, except a subset specifi-
cally required by the process. This subset is divided be-
tween syscall-mach-only-in-use-during-launch and
syscall-mach-in-use-after-launch. When exploiting the
WebContent process, only the latter subset is available to try to
escape the sandbox;

only 4 services are accessible from the sandbox and some of them
are restricted (directly via the sandbox or thanks to specific enti-
tlements);

fnctl are all denied except a subset of less than 20 specifically
required by the process;

— joctl are all denied except 2 and they must be sent to the

/dev/aes_0 device;

— IOKits are all denied.
In i0OS 15.4 (latest available version when writing this article), the
process life states handling is not implemented yet.

6 Conclusion

While public jailbreaks have still been a thing on iOS 14, there are
no known complete jailbreaks for iOS 15 yet (despite public POC giving
kernel read/write primitives). Vulnerabilities that were easily exploited a
few months ago are now completely useless to an attacker.

Apple does a really good job at finding the root cause of vulnerabili-
ties and at mitigating whole classes of bugs and exploit strategies. Post
exploitation is also taken into account, even with powerful primitives,
extracting sensitive data and compromising applications is not simple,

E. Benoist-Vanderbeken, F. Perigaud 13

which gives Apple more time to fix bugs and gives users time to update
their devices. They also do a great job at integrating hardware mitigations:
all attackers fear the day when memory tagging will be implemented in
their SoC. Moreover, this paper didn’t even fully list all the job they did
to improve general iPhone security (the rootfs seal to prevent persistence,
their custom C compiler to mitigate classic memory corruption in the
boot process, the secure storage component used to protect passcodes in
recent iPhones, etc.).

However, powerful vulnerabilities can still be used to attack modern
phones and even if WebKit is strongly sandboxed, the vast majority of
the applications still have access to a huge attack surface in the kernel.
Moreover, Linus Henze has proven [9] that powerful logical vulnerabilities
can bypass even the latest mitigations.

It may become impossible in the near future to fully compromise an
iPhone with a simple web page but it doesn’t mean that the game is over.

References

1. Structureid memory representation. https://github.com/WebKit/WebKit/blob/
main/Source/JavaScriptCore/runtime/StructureIDTable.h#L140, 2022.

2. axi0mX. Announcement of checkm8. https://twitter.com/axiOmX/status/
1177542201670168576, 2019.

3. Brandon Azad. Examining pointer authentication on the iphone xs.
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-
authentication-on.html, 2019.

4. JTan Beer. An ios zero-click radio proximity exploit odyssey. https:
//googleprojectzero.blogspot.com/2020/12/an-ios-zero-click-radio-
proximity.html, 2020.

5. Jan Beer. Xnu kernel use-after-free in mach msg. https://bugs.chromium.org/
p/project-zero/issues/detail?id=2232, 2022.

6. Bahr Abdul Razzak Noura Al-Jizawi Siena Anstis Kristin Berdan Ron Deibert
Bill Marczak, John Scott-Railton. Forcedentry - nso group imessage zero-click
exploit captured in the wild. https://citizenlab.ca/2021/09/forcedentry-nso-
group-imessage-zero-click-exploit-captured-in-the-wild/, 2020.

7. Fabien Perigaud Eloi Benoist-Vanderbeken. Wen eta jb? a 2 million dollars problem.
https://www.sstic.org/2019/presentation/WEN_ETA_JB/, 2019.

8. Samuel Grofi. Remote iphone exploitation part 3: From memory corruption
to javascript and back — gaining code execution. https://googleprojectzero.
blogspot.com/2020/01/remote-iphone-exploitation-part-3.html, 2020.

9. Linus Henze. Fugul4 writeup. https://github.com/LinusHenze/Fugul4/blob/
master/Writeup.pdf, 2021.

10. YONG WANG. Thinking outside the jit compiler: Understanding and
bypassing structureid randomization with generic and old-school meth-
ods. https://i.blackhat.com/eu-19/Thursday/eu-19-Wang-Thinking-

https://github.com/WebKit/WebKit/blob/main/Source/JavaScriptCore/runtime/StructureIDTable.h#L140
https://github.com/WebKit/WebKit/blob/main/Source/JavaScriptCore/runtime/StructureIDTable.h#L140
https://twitter.com/axi0mX/status/1177542201670168576
https://twitter.com/axi0mX/status/1177542201670168576
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html
https://googleprojectzero.blogspot.com/2020/12/an-ios-zero-click-radio-proximity.html
https://googleprojectzero.blogspot.com/2020/12/an-ios-zero-click-radio-proximity.html
https://googleprojectzero.blogspot.com/2020/12/an-ios-zero-click-radio-proximity.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=2232
https://bugs.chromium.org/p/project-zero/issues/detail?id=2232
https://citizenlab.ca/2021/09/forcedentry-nso-group-imessage-zero-click-exploit-captured-in-the-wild/
https://citizenlab.ca/2021/09/forcedentry-nso-group-imessage-zero-click-exploit-captured-in-the-wild/
https://www.sstic.org/2019/presentation/WEN_ETA_JB/
https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-3.html
https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-3.html
https://github.com/LinusHenze/Fugu14/blob/master/Writeup.pdf
https://github.com/LinusHenze/Fugu14/blob/master/Writeup.pdf
https://i.blackhat.com/eu-19/Thursday/eu-19-Wang-Thinking-Outside-The-JIT-Compiler-Understanding-And-Bypassing-StructureID-Randomization-With-Generic-And-Old-School-Methods.pdf
https://i.blackhat.com/eu-19/Thursday/eu-19-Wang-Thinking-Outside-The-JIT-Compiler-Understanding-And-Bypassing-StructureID-Randomization-With-Generic-And-Old-School-Methods.pdf
https://i.blackhat.com/eu-19/Thursday/eu-19-Wang-Thinking-Outside-The-JIT-Compiler-Understanding-And-Bypassing-StructureID-Randomization-With-Generic-And-Old-School-Methods.pdf

14

An Apple a Day Keeps the Exploiter Away

11.

12.

13.

Outside-The-JIT-Compiler-Understanding-And-Bypassing-StructurelID-
Randomization-With-Generic-And-01d-School-Methods.pdf, 2019.

Ned Williamson. Sockpuppet: A walkthrough of a kernel exploit for
ios 12.4. https://googleprojectzero.blogspot.com/2019/12/sockpuppet—
walkthrough-of-kernel.html, 2019.

Hao Xu. Attack secure boot of sep. https://github.com/windknown/
presentations/blob/master/Attack_Secure_Boot_of_SEP.pdf, year = 2020.

Jundong Xie Zhi Zhou. Hack different: Pwning ios 14 with generation
z bugz. https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-Hack-
Different-Pwning-I0S-14-With-Generation-Z-Bug-wp.pdf, 2021.

https://i.blackhat.com/eu-19/Thursday/eu-19-Wang-Thinking-Outside-The-JIT-Compiler-Understanding-And-Bypassing-StructureID-Randomization-With-Generic-And-Old-School-Methods.pdf
https://i.blackhat.com/eu-19/Thursday/eu-19-Wang-Thinking-Outside-The-JIT-Compiler-Understanding-And-Bypassing-StructureID-Randomization-With-Generic-And-Old-School-Methods.pdf
https://i.blackhat.com/eu-19/Thursday/eu-19-Wang-Thinking-Outside-The-JIT-Compiler-Understanding-And-Bypassing-StructureID-Randomization-With-Generic-And-Old-School-Methods.pdf
https://i.blackhat.com/eu-19/Thursday/eu-19-Wang-Thinking-Outside-The-JIT-Compiler-Understanding-And-Bypassing-StructureID-Randomization-With-Generic-And-Old-School-Methods.pdf
https://i.blackhat.com/eu-19/Thursday/eu-19-Wang-Thinking-Outside-The-JIT-Compiler-Understanding-And-Bypassing-StructureID-Randomization-With-Generic-And-Old-School-Methods.pdf
https://googleprojectzero.blogspot.com/2019/12/sockpuppet-walkthrough-of-kernel.html
https://googleprojectzero.blogspot.com/2019/12/sockpuppet-walkthrough-of-kernel.html
https://github.com/windknown/presentations/blob/master/Attack_Secure_Boot_of_SEP.pdf
https://github.com/windknown/presentations/blob/master/Attack_Secure_Boot_of_SEP.pdf
https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-Hack-Different-Pwning-IOS-14-With-Generation-Z-Bug-wp.pdf
https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-Hack-Different-Pwning-IOS-14-With-Generation-Z-Bug-wp.pdf

	An Apple a Day Keeps the Exploiter Away

