
1

An Apple a day keeps the
exploiter away

SSTIC 2022

2 / 28

22Who we are

 Eloi Benoist-Vanderbeken
 @elvanderb

 Fabien Perigaud
 @0xf4b

 Reverse engineering technical
leads

 30+ reversers
 Focus on low level dev, reverse,

vulnerability research/exploitation
 If there is software in it, we can

own it :)
 We are hiring!

3

Introduction

4 / 28

44Pwning an iPhone in 2019

 Exploit Safari
 Get arbitrary RW
 Find a way to bypass APRR

 Might need a PAC bypass to redirect code execution
 → Execute arbitrary code in the sandbox

 Get out of the sandbox
 Find a way to hook amfid, a userland daemon

 Might need a kernel vulnerability or several userland ones
 Use a valid certificate to sign your binary to bypass CoreTrust

 Easy!

5

WebKit Code Execution

6 / 28

66Reminder: browser exploitation

 Usually obtaining addrof / fakeobj primitives
 Allow crafting a fake object and getting objects addresses

 Building arbitrary read / write primitives
 Ability to read and modify the whole process memory

 Getting arbitrary code execution
 Depending on the hardware, this can be a hard task
 APRR → hardware permissions switch on JIT page (RX<>RW)
 PAC → data and instruction pointers signature

7 / 28

77Structure ID randomization

 Building a fake object requires building a fake JSCell

 Previously, a structure ID was an index into a table of
structure pointers

 A structure describes an object shape

struct JSC::JSCell {
JSC::StructureID m_structureID;
JSC::IndexingType m_indexingTypeAndMisc;
JSC::JSType m_type;
JSC::TypeInfo::InlineTypeFlags m_flags;
JSC::CellState m_cellState;

};

8 / 28

88Structure ID randomization (2)

 From iOS , the structure ID includes some random bits

 Entropy and index bits must match

N
Index

(26 bits)
Entropy
(5 bits)

Low index
(11 bits)

Structure pointer
(48 bits)

Entropy
(5 bits)

StructureID

StructureID
Table

9 / 28

99Structure ID randomization (3)

 Mitigation being removed ¯_(ツ)_/¯
 Several bypasses have been published

 Main idea: only use methods that do not involve object structure
manipulation

 Might be enough to build a R/W primitive

10 / 28

1010JIT instructions signature

 Known APRR bypasses
 Redirect code execution to the function write code in the JIT page
 Race the thread writing to the JIT page by modifying its

instructions buffer (no code execution required)
 Now, the JIT code is signed using PAC instructions (on

devices supporting PAC)
 Each instruction has an associated signature
 Signature is checked when writing each instruction to the JIT page

 Attackers need a primitive to sign arbitrary data
 No more data only attack to bypass APRR

11 / 28

1111JIT instructions signature (2)

 No known bypass
 Mitigation relies on PAC, a PAC bypass would bypass it

 uint32_t nextValue(uint64_t instruction, uint64_t index, uint32_t currentValue)
 {
 uint64_t a = tagInt(instruction, makeDiversifier(0x12, index, currentValue));
 uint64_t b = tagInt(instruction, makeDiversifier(0x13, index, currentValue));
 return (a >> 39) ^ (b >> 23);
 }

tagInt is PACDB (sign with data key B)

12 / 28

1212PAC improvements

 More signed pointers
 Signed data pointers
 No more unsigned .got pointers

 More diversity
 Pointers signed with a null context are increasingly rare
 Pointers usually signed on the fly
 → Pointers substitution attacks are harder

 Dedicated keys
 “com.apple.pac.shared_region_id” entitlement
 Complicated to attack other processes

13 / 28

1313PAC improvements (2)

 Brute-force prevention
 Wider signature for instruction pointers: 24 bits
 AUT instructions always followed by a check (-fptrauth-auth-traps)
 A14 has EnhancedPAC: no more “flipped” signature on invalid pointer

signature → null signature
 A15 has Armv8.6-A FPAC: exception when an AUT instruction

detects an invalid signature
 Exception termination

 Entitlement “com.apple.private.pac.exception”
 Adds “TF_PAC_EXC_FATAL” flag to the task
 Task termination on PAC-related exception

14

Privilege Escalation

15 / 28

1515Privilege escalation

 Goal
 To execute arbitrary code
 With arbitrary entitlements

 Attack surface
 User daemons
 Kernel extensions (KEXTs)
 Kernel

 2019 Protections
 Sandbox

 More and more
 PAC / PPL / RoRgn
 Code signature

 Kernel and user

16 / 28

1616Sandbox

2019
 120 userland services

 15 IOKit User Client Classes
 Arbitrary syscalls

 With restricted
functionalities

 Arbitrary ioctl/fnctl

2022
 4 userland services

 Some msgs are restricted
 0 IOKit User Client Classes
 Filtered syscalls

 ~ 100/500 syscalls
 ~ 30/500 kernel mig

 ~20 fnctl
 2 ioctls (on /dev/aes_0)

17 / 28

1717User

 WebKit now uses a specific PAC A key
 Impossible to sign pointers for another process

 Objective-C ISA pointers are now signed
 Kills a lot of exploit techniques

 Processes cannot directly get their task port
 Cannot easily force a process to send its task port
 Cannot easily manipulate a foreign process

 Port labels are used to block ports
 Platform Binary task/thread ports cannot be sent to non-PB tasks

18 / 28

1818Kernel

 Only two pointers signed with a zero context in memory
 mig_strncpy_zerofill and __chkstk_darwin
 Others are signed on the fly

 Specific context for function pointers in structures
 More and more data pointers are PACed

 Breaks exploit and post-exploit primitives
 Stack variables are always initialized with 0xAA

 No more stack leaks

19 / 28

1919Kernel Heap

 Zone require
 Sensitive objects must come from a specific zone

 Zone sequestration
 Impossible to reuse an object with another zone
 More specific zones
 Kills a lot of vulnerabilities

 Data/pointers Segregation
 KHEAP_DATA_BUFFERS / KHEAP_DEFAULT / KHEAP_KEXT
 Structure split (ipc_kmsg and others)

 Better randomization

20 / 28

2020Hardening

 Hooking amfid is not enough anymore
 Signature was already checked by the kernel with CoreTrust
 Now entitlements and provisioning profiles are also checked

 Injecting code in other processes is now more complex
 Task ports are now available with various flavors

 TASK_FLAVOR_CONTROL / READ / INSPECT / NAME
 No process has the entitlements needed to get tasks control port
 PPL blocks any non-PB code page in PB process

 Arbitrary entitlements are needed to access sensitive data

21 / 28

2121Hardening

 PPL is now used to
 Validate and protect entitlements in the kernel
 Provide RO zones

 RO zones
 Can only be written with a special PPL function
 It checks the type, size, source and destination of the copy
 Used to protect task credentials, threads exception ports, sandbox

profiles, entitlements, etc.
 No easy way to become root / steal entitlements

22

Conclusion

23 / 28

2323Pwning an iPhone in 2022

 Exploit Safari
 Get arbitrary RW

 A bit more complicated, more and more pointers are signed
 Find a way to bypass APRR

 Need to be able to sign arbitrary data with PAC
 Or to find a bypass

 → Execute arbitrary code in the sandbox
 Exploit the kernel

 Fight against the ultra-tight sandbox and the new mitigations
 Get arbitrary kernel R/W

24 / 28

2424Pwning an iPhone in 2022

 Bypass kernel protections
 Get root / bypass the sandbox

 Might require a read-only zone bypass
 Bypass signature verification in the kernel / PPL

 Might require a PPL bypass…
 …which will most probably require a PAC bypass

 Enjoy your root shell
 Cannot inject arbitrary code in arbitrary processes
 Doesn’t survive a reboot

25 / 28

2525Conclusion

 Harder and harder to attack iPhones
 Real, constant effort from Apple on all stages

 Attack surface reduction
 Effective mitigations

 Make whole class of bugs unexploitables
 Kill generic methods

 Strong post-exploit mitigations
 Even with arbitrary kernel R/W it is non trivial to get sensitive data

 A LOT of time and effort is put in securing iPhones
 And we didn’t even talk about data at rest, persistance, etc.

26 / 28

2626Conclusion – bis

“La lecture des deux articles bout à bout (je l'ai fait) risque en effet
d'avoir un effet pervers : on en ressort avec le sentiment que

beaucoup de choses sont désormais très bien protégées et que
l'exploitation d'une vulnérabilité semble impossible ou extrêmement

difficile.”

27 / 28

2727Conclusion – ter

New iOS version

28

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv

Nos publications sur : https://synacktiv.com

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv
https://synacktiv.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

