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An Apple a day keeps the 
exploiter away

SSTIC 2022
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22Who we are

 Eloi Benoist-Vanderbeken
 @elvanderb

 Fabien Perigaud
 @0xf4b

 Reverse engineering technical 
leads

 30+ reversers
 Focus on low level dev, reverse, 

vulnerability research/exploitation
 If there is software in it, we can 

own it :)
 We are hiring!
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Introduction
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44Pwning an iPhone in 2019

 Exploit Safari
 Get arbitrary RW
 Find a way to bypass APRR

 Might need a PAC bypass to redirect code execution
 → Execute arbitrary code in the sandbox

 Get out of the sandbox
 Find a way to hook amfid, a userland daemon

 Might need a kernel vulnerability or several userland ones
 Use a valid certificate to sign your binary to bypass CoreTrust

 Easy!
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WebKit Code Execution



  

6 / 28

66Reminder: browser exploitation

 Usually obtaining addrof / fakeobj primitives
 Allow crafting a fake object and getting objects addresses

 Building arbitrary read / write primitives
 Ability to read and modify the whole process memory

 Getting arbitrary code execution
 Depending on the hardware, this can be a hard task
 APRR → hardware permissions switch on JIT page (RX<>RW)
 PAC → data and instruction pointers signature
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77Structure ID randomization

 Building a fake object requires building a fake JSCell

 Previously, a structure ID was an index into a table of 
structure pointers

 A structure describes an object shape

struct JSC::JSCell {
JSC::StructureID m_structureID;
JSC::IndexingType m_indexingTypeAndMisc;
JSC::JSType m_type;
JSC::TypeInfo::InlineTypeFlags m_flags;
JSC::CellState m_cellState;

};
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88Structure ID randomization (2)

 From iOS , the structure ID includes some random bits

 Entropy and index bits must match

N
Index

(26 bits)
Entropy
(5 bits)

Low index
(11 bits)

Structure pointer
(48 bits)

Entropy
(5 bits)

StructureID

StructureID
Table



  

9 / 28

99Structure ID randomization (3)

 Mitigation being removed ¯\_(ツ )_/¯
 Several bypasses have been published

 Main idea: only use methods that do not involve object structure 
manipulation

 Might be enough to build a R/W primitive



  

10 / 28

1010JIT instructions signature

 Known APRR bypasses
 Redirect code execution to the function write code in the JIT page
 Race the thread writing to the JIT page by modifying its 

instructions buffer (no code execution required)
 Now, the JIT code is signed using PAC instructions (on 

devices supporting PAC)
 Each instruction has an associated signature
 Signature is checked when writing each instruction to the JIT page

 Attackers need a primitive to sign arbitrary data
 No more data only attack to bypass APRR
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1111JIT instructions signature (2)

 No known bypass
 Mitigation relies on PAC, a PAC bypass would bypass it

        uint32_t nextValue(uint64_t instruction, uint64_t index, uint32_t currentValue)
        {
            uint64_t a = tagInt(instruction, makeDiversifier(0x12, index, currentValue));
            uint64_t b = tagInt(instruction, makeDiversifier(0x13, index, currentValue));
            return (a >> 39) ^ (b >> 23);
        }

tagInt is PACDB (sign with data key B)
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1212PAC improvements

 More signed pointers
 Signed data pointers
 No more unsigned .got pointers

 More diversity
 Pointers signed with a null context are increasingly rare
 Pointers usually signed on the fly
 → Pointers substitution attacks are harder

 Dedicated keys
 “com.apple.pac.shared_region_id” entitlement
 Complicated to attack other processes
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1313PAC improvements (2)

 Brute-force prevention
 Wider signature for instruction pointers: 24 bits
 AUT instructions always followed by a check (-fptrauth-auth-traps)
 A14 has EnhancedPAC: no more “flipped” signature on invalid pointer 

signature → null signature
 A15 has Armv8.6-A FPAC: exception when an AUT instruction 

detects an invalid signature
 Exception termination

 Entitlement “com.apple.private.pac.exception”
 Adds “TF_PAC_EXC_FATAL” flag to the task
 Task termination on PAC-related exception
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Privilege Escalation
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1515Privilege escalation

 Goal
 To execute arbitrary code
 With arbitrary entitlements

 Attack surface
 User daemons
 Kernel extensions (KEXTs)
 Kernel

 2019 Protections
 Sandbox

 More and more
 PAC / PPL / RoRgn
 Code signature

 Kernel and user
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1616Sandbox

2019
 120 userland services

 15 IOKit User Client Classes
 Arbitrary syscalls

 With restricted 
functionalities

 Arbitrary ioctl/fnctl

2022
 4 userland services

 Some msgs are restricted
 0 IOKit User Client Classes
 Filtered syscalls

 ~ 100/500 syscalls
 ~ 30/500 kernel mig

 ~20 fnctl
 2 ioctls (on /dev/aes_0)
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1717User

 WebKit now uses a specific PAC A key
 Impossible to sign pointers for another process

 Objective-C ISA pointers are now signed
 Kills a lot of exploit techniques

 Processes cannot directly get their task port
 Cannot easily force a process to send its task port
 Cannot easily manipulate a foreign process

 Port labels are used to block ports
 Platform Binary task/thread ports cannot be sent to non-PB tasks
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1818Kernel

 Only two pointers signed with a zero context in memory
 mig_strncpy_zerofill and __chkstk_darwin
 Others are signed on the fly

 Specific context for function pointers in structures
 More and more data pointers are PACed

 Breaks exploit and post-exploit primitives
 Stack variables are always initialized with 0xAA

 No more stack leaks
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1919Kernel Heap

 Zone require
 Sensitive objects must come from a specific zone

 Zone sequestration
 Impossible to reuse an object with another zone
 More specific zones
 Kills a lot of vulnerabilities

 Data/pointers Segregation
 KHEAP_DATA_BUFFERS / KHEAP_DEFAULT / KHEAP_KEXT
 Structure split (ipc_kmsg and others)

 Better randomization
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2020Hardening

 Hooking amfid is not enough anymore
 Signature was already checked by the kernel with CoreTrust
 Now entitlements and provisioning profiles are also checked

 Injecting code in other processes is now more complex
 Task ports are now available with various flavors

 TASK_FLAVOR_CONTROL / READ / INSPECT / NAME
 No process has the entitlements needed to get tasks control port
 PPL blocks any non-PB code page in PB process

 Arbitrary entitlements are needed to access sensitive data
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2121Hardening

 PPL is now used to
 Validate and protect entitlements in the kernel
 Provide RO zones

 RO zones
 Can only be written with a special PPL function
 It checks the type, size, source and destination of the copy
 Used to protect task credentials, threads exception ports, sandbox 

profiles, entitlements, etc.
 No easy way to become root / steal entitlements
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Conclusion
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2323Pwning an iPhone in 2022

 Exploit Safari
 Get arbitrary RW

 A bit more complicated, more and more pointers are signed
 Find a way to bypass APRR

 Need to be able to sign arbitrary data with PAC
 Or to find a bypass

 → Execute arbitrary code in the sandbox
 Exploit the kernel

 Fight against the ultra-tight sandbox and the new mitigations
 Get arbitrary kernel R/W 
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2424Pwning an iPhone in 2022

 Bypass kernel protections
 Get root / bypass the sandbox

 Might require a read-only zone bypass
 Bypass signature verification in the kernel / PPL

 Might require a PPL bypass…
 …which will most probably require a PAC bypass

 Enjoy your root shell
 Cannot inject arbitrary code in arbitrary processes
 Doesn’t survive a reboot
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2525Conclusion

 Harder and harder to attack iPhones
 Real, constant effort from Apple on all stages

 Attack surface reduction
 Effective mitigations

 Make whole class of bugs unexploitables
 Kill generic methods

 Strong post-exploit mitigations
 Even with arbitrary kernel R/W it is non trivial to get sensitive data

 A LOT of time and effort is put in securing iPhones
 And we didn’t even talk about data at rest, persistance, etc.
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2626Conclusion – bis

“La lecture des deux articles bout à bout (je l'ai fait) risque en effet 
d'avoir un effet pervers : on en ressort avec le sentiment que 

beaucoup de choses sont désormais très bien protégées et que 
l'exploitation d'une vulnérabilité semble impossible ou extrêmement 

difficile.”
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2727Conclusion – ter

New iOS version
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https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv

Nos publications sur : https://synacktiv.com

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv
https://synacktiv.com/
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